Academic literature on the topic 'Mathematical Sciences'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical Sciences.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical Sciences"
Thomas, Jan, Michelle Muchatuta, and Leigh Wood. "Mathematical sciences in Australia." International Journal of Mathematical Education in Science and Technology 40, no. 1 (January 15, 2009): 17–26. http://dx.doi.org/10.1080/00207390802597654.
Full textZiegel, Eric. "Handbook of Mathematical Sciences." Technometrics 31, no. 2 (May 1989): 275. http://dx.doi.org/10.1080/00401706.1989.10488546.
Full textO'Leary, D. P., and S. T. Weidman. "The interface between computer science and the mathematical sciences." Computing in Science and Engineering 3, no. 3 (May 2001): 60–65. http://dx.doi.org/10.1109/mcise.2001.919268.
Full textKatz, Emily. "The Mixed Mathematical Intermediates." PLATO JOURNAL 18 (December 22, 2018): 83–96. http://dx.doi.org/10.14195/2183-4105_18_7.
Full textKim, K. H., F. W. Roush, and M. D. Intriligator. "Overview of Mathematical Social Sciences." American Mathematical Monthly 99, no. 9 (November 1992): 838. http://dx.doi.org/10.2307/2324119.
Full textDr. Sumit Agarwal, Dr Sumit Agarwal. "Mathematical Modelling In Transportation Sciences." IOSR Journal of Mathematics 5, no. 6 (2013): 39–43. http://dx.doi.org/10.9790/5728-0563943.
Full textKang, Zhou-Zheng, and Tie-Cheng Xia. "American Institute of Mathematical Sciences." Journal of Applied Analysis & Computation 10, no. 2 (2020): 729–39. http://dx.doi.org/10.11948/20190128.
Full textPulleyblank, W. R. "Mathematical sciences in the nineties." IBM Journal of Research and Development 47, no. 1 (January 2003): 89–96. http://dx.doi.org/10.1147/rd.471.0089.
Full textLewis, Hazel. "Mathematical Sciences Strand Outreach Work." MSOR Connections 11, no. 3 (September 2011): 52–56. http://dx.doi.org/10.11120/msor.2011.11030052.
Full textKim, K. H., F. W. Roush, and M. D. Intriligator. "Overview of Mathematical Social Sciences." American Mathematical Monthly 99, no. 9 (November 1992): 838–44. http://dx.doi.org/10.1080/00029890.1992.11995938.
Full textDissertations / Theses on the topic "Mathematical Sciences"
Kaya, Ahmet. "Modern mathematical methods for actuarial sciences." Thesis, University of Leicester, 2017. http://hdl.handle.net/2381/39613.
Full textWilensky, Uriel Joseph. "Connected mathematics : builiding concrete relationships with mathematical knowledge." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29066.
Full textHoldaway, Emma Lynn. "Mathematical Identities of Students with Mathematics Learning Dis/abilities." BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8536.
Full textBrown, Adam. "Infeasibility of solving finite mathematical problems." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86989.
Full textNous avons démontré que le problème quand à prendre des décisions concernant des énoncés mathématiques finis, bien que récursif, est infaisable accordé à n'importe quel modèle de calcul. Plus précisément, nous avons établi un ensemble de problèmes mathématiques ne pouvant être résolus que par des programmes assez long qui suggéreraient la décision finale implicitement, au fil des calculs. Ce fait a d'abord été publié en 1973 par un Hongrois du nom de Michael Makkai, et il sera expliqué en anglais pour la toute première fois ici. Dans ce travail, nous 1) éluciderons la démonstration faite par Makkai basé sur l'adaptation de la première démonstration du théorème incomplétude de Gödel, 2) appuierons les résultats trouvés en 1973 par Makkai et 3) tirerons des conclusions sur ses résultats en utilisant la théorie de la complexité et la théorie algorithmique de l'information, aussi appelée complexité de Kolmogorov.
Jakobsson-Åhl, Teresia. "Encouraging Participation in Mathematical Practices : Messages in the Boost for Mathematics." Thesis, Luleå tekniska universitet, Institutionen för konst, kommunikation och lärande, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-67660.
Full textCourvoisier, Pierre. "Mathematical modelling of composting processes using finite element method." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=103735.
Full textLe compostage est un composant de la gestion des déchets et permet de les transformer en un produit à valeur ajouté. Les procédés en jeu, ainsi que les produits finis peuvent cependant varier au niveau de la qualité, de l'efficacité, et de la sécurité. Des modèles ont été mis au point pour prendre en compte certaines caractéritiques du compostage, mais jamais de façon exhaustive. Notre hypothèse était que toutes les caractéristiques clés décrites dans la littérature peuvent être réunies en un seul modèle. Ce modèle doit être qualitativement fidèle, fiable, et facilement adaptable à toutes les situations. Nous avons utilisé COMSOL TM, un logiciel qui utilise des algorithmes établis et se base sur la méthode des éléments finis pour résoudre les systèmes d'équations différentielles partielles avec une bonne résolution spatiale en deux ou trois dimensions. La réponse de ce modèle face à des variations paramètriques et à une analyse de sensitivité a été étudiée. Les comportements de la température, de la biomasse, du substrat, de l'oxygène, et de la quantité d'eau ont été cohérents avec ceux trouvés dans la littérature sur le compostage. La concentration initiale en eau, ainsi que l'aération, ont été prouvés avoir un impact important sur le compostage, contrairement à la température de l'air entrant. La résolution du problème mathématique dans une coupe bidimensionnelle longitudinale du container rectangulaire permet l'observation de comportements spatiaux. Ce modèle pourra être utilisé comme un fondement pour de futures études car l'ajout de nouvelles caractéristiques y est aisé. Le modèle peut aussi être facilement adapté à différentes conditions expérimentales, ce qui en fait un bon outil comparatif. Cependant, le modèle suggéré doit d'abord être validé par des données expérimentales.
Boyaval, Sébastien. "Mathematical modelling and numerical simulation in materials science." Phd thesis, Université Paris-Est, 2009. http://tel.archives-ouvertes.fr/tel-00499254.
Full textDyson, Jack. "Mathematical techniques in the physical sciences: a geometric analysis of the convolution integral." Doctoral thesis, Università Politecnica delle Marche, 2010. http://hdl.handle.net/11566/242266.
Full textReeves, Laurence H. "Mathematical Programming Applications in Agroforestry Planning." DigitalCommons@USU, 1991. https://digitalcommons.usu.edu/etd/6495.
Full textBehzadi, Mahsa. "A Mathematical Model of Phospholipid Biosynthesis." Phd thesis, Palaiseau, Ecole polytechnique, 2011. https://theses.hal.science/docs/00/65/03/99/PDF/BehzadiPhD.pdf.
Full textWhen measuring high-throughput data of cellular metabolism and its evolution, it is imperative to use appropriate models. These models allow the incorporation of these data into a coherent set. They also allow inter- pretation of the relevant metabolic variations and the key regulatory steps. Finally, they make contradictions apparent that question the basis on which the model itself is constructed. I use the experimental data of the metabolism of tumor cells in response to an anti-cancer treatment obtained in the biological laboratory. I focus on the modeling of a particular point: the metabolism of glyc- erophospholipids, which are good markers of cell proliferation. Phospho- lipids are essential parts of cell membranes and the study of their synthe- sis (especially mammalian cells) is therefore an important issue. In this work, our choice is to use a mathematical model by ordinary differential equations. This model relies essentially on hyperbolic equations (Michaelis- Menten) but also on kinetics, based on the law of mass action or on the diffusion. The model consists of 8 differential equations thus providing 8 substrates of interest. It has naturally some parameters which are unknown in vivo. Moreover some of them depend on the cellular conditions (cellular differentiation, pathologies). The model is a collection of the structure of the metabolic network, the writing of the stoichiometry matrix, generating the rate equations and finally differential equations. The chosen model is the mouse model (mouse / rat), because it is it- self a model of human. To study the relationship between the synthesis of phospholipids and cancer, several conditions are successively considered for the identification of parameters: - The healthy liver of the rat - The B16 melanoma and 3LL carcinoma line in mice, respectively, without treatment, during treatment with chloroethyl-nitrosourea and after treatment - Finally, the B16 melanoma in mice under methionine deprivation stress. In summary, my work provides a new interpretation of experimental data showing the essential role of PEMT enzyme and the superstable nature of 9 phospholipids metabolic network in carcinogenesis and cancer treatment. It shows the advantage of using a mathematical model in the interpretation of complex metabolic data
Books on the topic "Mathematical Sciences"
Acu, Bahar, Donatella Danielli, Marta Lewicka, Arati Pati, Saraswathy RV, and Miranda Teboh-Ewungkem, eds. Advances in Mathematical Sciences. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42687-3.
Full textSociety, American Mathematical, ed. Mathematical sciences professional directory. Providence, R.I: American Mathematical Society, 1989.
Find full text1951-, Dass B. K., ed. Mathematical sciences, who's who. New Delhi: Taru Publications and Academic Forum, 2004.
Find full textChaudhary, Sanjay, Sanjeev Kumar, and Shyamli Gupta. Mathematical Sciences and Applications. London: CRC Press, 2024. http://dx.doi.org/10.1201/9781003451808.
Full textFowler, A. C. Mathematical models in the applied sciences. Cambridge: Cambridge University Press, 1997.
Find full textWilf, Herbert S. Mathematics for the physical sciences. Mineola, N.Y: Dover Publications, 2006.
Find full textLee, Ti-Chiang. Mathematical methods in physical sciences and engineering. New York: Vantage Press, 1995.
Find full textDeines, Alyson, Daniela Ferrero, Erica Graham, Mee Seong Im, Carrie Manore, and Candice Price, eds. Advances in the Mathematical Sciences. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98684-5.
Full textKılıçman, Adem, Hari M. Srivastava, M. Mursaleen, and Zanariah Abdul Majid, eds. Recent Advances in Mathematical Sciences. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0519-0.
Full textToni, Bourama, ed. Mathematical Sciences with Multidisciplinary Applications. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31323-8.
Full textBook chapters on the topic "Mathematical Sciences"
Polak, Elijah. "Mathematical Background." In Applied Mathematical Sciences, 646–742. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0663-7_5.
Full textSrivastav, Anand. "Consciousness and Mathematical Sciences." In Consciousness Studies in Sciences and Humanities: Eastern and Western Perspectives, 87–100. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-13920-8_8.
Full textVázquez, Luis. "Applied Mathematics (Mathematical Physics, Discrete Mathematics, Operations Research)." In Encyclopedia of Sciences and Religions, 114–19. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_1248.
Full textSerovajsky, Simon. "Mathematical models in social sciences." In Mathematical Modelling, 149–64. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003035602-9.
Full textAssous, Franck, Patrick Ciarlet, and Simon Labrunie. "Abstract Mathematical Framework." In Applied Mathematical Sciences, 147–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-70842-3_4.
Full textSchuss, Zeev. "Mathematical Brownian Motion." In Applied Mathematical Sciences, 1–34. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7687-0_1.
Full textSato, Aki-Hiro. "Mathematical Expressions." In Applied Data-Centric Social Sciences, 75–148. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54974-1_3.
Full textMcGurn, Arthur. "Mathematical Preliminaries." In Springer Series in Optical Sciences, 29–92. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-77072-7_2.
Full textLedder, Glenn. "Mathematical Modeling." In Mathematics for the Life Sciences, 83–143. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7276-6_2.
Full textCogan, N. G. "Mathematical Background." In Mathematical Modeling the Life Sciences, 9–26. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003316930-2.
Full textConference papers on the topic "Mathematical Sciences"
Rashed, Roshdi. "Earth’s Mathematical Sciences." In The Earth and its Sciences in Islamic Manuscript. Al-Furqān Islamic Heritage Foundation, 2011. http://dx.doi.org/10.56656/100137.01.
Full textGrootenboer, Peter. "Mathematics education: Building mathematical identities." In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000581.
Full textMohamed, Siti Rosiah, Syafiza Saila Samsudin, Ainun Hafizah Mohd, Nazihah Ismail, and Norhuda Mohammed. "An analysis of mathematical errors in business mathematics." In PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): Mathematical Sciences as the Core of Intellectual Excellence. Author(s), 2018. http://dx.doi.org/10.1063/1.5041632.
Full text"Preface: 2015 National Symposium of Mathematical Sciences." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954513.
Full textKishimoto, Sadaya, Mamoru Murakata, Takafumi Nakanishi, Tetsuya Sakurai, and Takashi Kitagawa. "Problem-Solving Support System for Mathematical Sciences." In 2007 IEEE International Workshop on Databases for Next Generation Researchers. IEEE, 2007. http://dx.doi.org/10.1109/swod.2007.353202.
Full textWan Zin, Wan Zawiah, Syahida Che Dzul-Kifli, Fatimah Abdul Razak, and Anuar Ishak. "Preface: 3rd International Conference on Mathematical Sciences." In PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4882457.
Full textBitar, Khalil, Ali Chamseddine, and Wafic Sabra. "The Mathematical Sciences after the Year 2000." In International Conference. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789814447348.
Full textIshak, Anuar, Ishak Hashim, Eddie Shahril Ismail, and Roslinda Nazar. "Preface: 20th National Symposium on Mathematical Sciences." In PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Research in Mathematical Sciences: A Catalyst for Creativity and Innovation. AIP, 2013. http://dx.doi.org/10.1063/1.4801097.
Full textMathai, A. M. "Basic research in mathematical and space sciences." In Basic space science. AIP, 1992. http://dx.doi.org/10.1063/1.41732.
Full text"3rd International Symposium on Mathematical and Computational Oncology (ISMCO'21)." In 3rd International Symposium on Mathematical and Computational Oncology (ISMCO'21). Frontiers Media SA, 2022. http://dx.doi.org/10.3389/978-2-88971-009-6.
Full textReports on the topic "Mathematical Sciences"
Mhaskar, Hrushikesh N. Research Area 3: Mathematical Sciences: 3.4, Discrete Mathematics and Computer Science. Fort Belvoir, VA: Defense Technical Information Center, May 2015. http://dx.doi.org/10.21236/ada625542.
Full textCox, Lawrence H. Board on Mathematical Sciences. Fort Belvoir, VA: Defense Technical Information Center, February 1990. http://dx.doi.org/10.21236/ada220292.
Full textBoisvert, Ronald F. Mathematical and Computational Sciences Division :. Gaithersburg, MD: National Institute of Standards and Technology, 2010. http://dx.doi.org/10.6028/nist.ir.7671.
Full textGerr, Neil L. Mathematical Sciences Division 1992 Programs. Fort Belvoir, VA: Defense Technical Information Center, October 1992. http://dx.doi.org/10.21236/ada268586.
Full textSterrett, A. Career Information in the mathematical sciences (CIMS). Office of Scientific and Technical Information (OSTI), May 1993. http://dx.doi.org/10.2172/6543775.
Full textTucker, John. Core Support of the Board on Mathematical Sciences. Fort Belvoir, VA: Defense Technical Information Center, January 1999. http://dx.doi.org/10.21236/ada395584.
Full textMegginson, Robert, and Hugo Rossi. Quantum Computing Program at the Mathematical Sciences Research Institute. Fort Belvoir, VA: Defense Technical Information Center, September 2003. http://dx.doi.org/10.21236/ada417275.
Full textScott T. Weidman. [National Academies' Board on Mathematical Sciences and their Application] Final technical report. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/835791.
Full textSchwalbe, Michelle Kristin. Partial Support of Meetings of the Board on Mathematical Sciences and Their Applications. Office of Scientific and Technical Information (OSTI), November 2019. http://dx.doi.org/10.2172/1574687.
Full textWeidman, Scott. Partial Support of Meetings of the Board on Mathematical Sciences and Their Applications (Final Report). Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1171691.
Full text