Academic literature on the topic 'Mathematical models'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical models.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical models"
Gardiner, Tony, and Gerd Fischer. "Mathematical Models." Mathematical Gazette 71, no. 455 (March 1987): 94. http://dx.doi.org/10.2307/3616334.
Full textDenton, Brian, Pam Denton, and Peter Lorimer. "Making Mathematical Models." Mathematical Gazette 78, no. 483 (November 1994): 364. http://dx.doi.org/10.2307/3620232.
Full textPavankumari, V. "Mathematical and Stochastic Growth Models." International Journal for Research in Applied Science and Engineering Technology 9, no. 11 (November 30, 2021): 1576–82. http://dx.doi.org/10.22214/ijraset.2021.39055.
Full textKumari, V. Pavan, Venkataramana Musala, and M. Bhupathi Naidu. "Mathematical and Stochastic Growth Models." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 987–89. http://dx.doi.org/10.22214/ijraset.2022.42330.
Full textSuzuki, Takashi. "Mathematical models of tumor growth systems." Mathematica Bohemica 137, no. 2 (2012): 201–18. http://dx.doi.org/10.21136/mb.2012.142866.
Full textKogalovsky, M. R. "Digital Libraries of Economic-Mathematical Models: Economic-Mathematical and Information Models." Market Economy Problems, no. 4 (2018): 89–97. http://dx.doi.org/10.33051/2500-2325-2018-4-89-97.
Full textBanasiak, J. "Kinetic models – mathematical models of everything?" Physics of Life Reviews 16 (March 2016): 140–41. http://dx.doi.org/10.1016/j.plrev.2016.01.005.
Full textKleiner, Johannes. "Mathematical Models of Consciousness." Entropy 22, no. 6 (May 30, 2020): 609. http://dx.doi.org/10.3390/e22060609.
Full textByrne, Patrick, S. D. Howison, F. P. Kelly, and P. Wilmott. "Mathematical Models in Finance." Statistician 45, no. 3 (1996): 389. http://dx.doi.org/10.2307/2988481.
Full textKozhanov, V. S., S. O. Ustalkov, and A. O. Khudoshina. "TOW CABLES MATHEMATICAL MODELS." Mathematical Methods in Technologies and Technics, no. 5 (2022): 62–68. http://dx.doi.org/10.52348/2712-8873_mmtt_2022_5_62.
Full textDissertations / Theses on the topic "Mathematical models"
Tonner, Jaromír. "Overcomplete Mathematical Models with Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233893.
Full textWidmer, Tobias K. "Reusable mathematical models." Zürich : ETH, Eidgenössische Technische Hochschule Zürich, Department of Computer Science, Chair of Software Engineering, 2004. http://e-collection.ethbib.ethz.ch/show?type=dipl&nr=192.
Full textMaggiori, Claudia. "Mathematical models in biomedicine." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/21247/.
Full textMathewson, Donald Jeffrey. "Mathematical models of immunity." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29575.
Full textScience, Faculty of
Physics and Astronomy, Department of
Graduate
Heron, Dale Robert. "Mathematical models of superconductivity." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296893.
Full textBozic, Ivana. "Mathematical Models of Cancer." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10220.
Full textMathematics
Luther, Roger. "Mathematical models of kleptoparasitism." Thesis, University of Sussex, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410365.
Full textMazzag, Barbara Cathrine. "Mathematical models in biology /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2002. http://uclibs.org/PID/11984.
Full textNiederhauser, Beat. "Mathematical Aspects of Hopfield models." [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=960147535.
Full textKowalewski, Jacob. "Mathematical Models in Cellular Biophysics." Licentiate thesis, KTH, Applied Physics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4361.
Full textCellular biophysics deals with, among other things, transport processes within cells. This thesis presents two studies where mathematical models have been used to explain how two of these processes occur.
Cellular membranes separate cells from their exterior environment and also divide a cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes has been studied, one the most important experimental techniques in these studies is fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. Analytical and numerical methods have been used to solve the partial differential equations that are expressed in the model. The choice of method depends mostly on the complexity of the geometry in the model.
Calcium ions (Ca2+) are known to be involved in several intracellular signaling mechanisms. One interesting concept within this field is a signaling microdomain where the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) membrane physically interacts with plasma membrane proteins. This microdomain has been shown to cause the intracellular Ca2+ level to oscillate. The second model in this thesis describes a signaling network involving both ER membrane bound and plasma membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. A MATLAB® toolbox was developed to implement the signaling networks and simulate its properties. This model was also implemented using Virtual cell.
The results show a high resemblance between the mathematical model and FRAP data in the D1R study. The model shows a distinct difference in recovery characteristics of simulated FRAP experiments on whole dendrites and dendritic spines, due to differences in geometry. The model can also explain trapping of D1R in dendritic spines.
The results of the Ca2+ signaling model show that stimulation of IP3R can cause Ca2+ oscillations in the same frequency range as has been seen in experiments. The removing of SOC channels from the model can alter the characteristics as well as qualitative appearance of Ca2+ oscillations.
Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling presenteras två studier där matematiska modeller har använts för att förklara hur två av dess processer uppkommer.
Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och numeriska metoder har använts för att lösa de partiella differentialekvationer som uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i modellen.
Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett intressant koncept inom detta fält är en signalerande mikrodomän där inositol 1,4,5-trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess egenskaper. Denna modell implementerades även i Virtual cell.
Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines.
Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa uppkomsten av Ca2+-oscillationer.
Books on the topic "Mathematical models"
Fischer, Gerd, ed. Mathematical Models. Wiesbaden: Springer Fachmedien Wiesbaden, 2017. http://dx.doi.org/10.1007/978-3-658-18865-8.
Full textTanguy, Jean-Michel, ed. Mathematical Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9781118557853.
Full textErshov, I͡Uriĭ Leonidovich. Constructive models. New York: Consultants Bureau, 2000.
Find full textHrsg, Crampin Mike, ed. Mathematical models and methods: Mathematical modelling. Milton Keynes: Open University, 1993.
Find full textTorres, Pedro J. Mathematical Models with Singularities. Paris: Atlantis Press, 2015. http://dx.doi.org/10.2991/978-94-6239-106-2.
Full textBorisov, Andrey Valerievich, and Anatoly Vlasovich Chigarev. Mathematical Models of Exoskeleton. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-97733-7.
Full textStamova, Ivanka, and Gani Stamov. Applied Impulsive Mathematical Models. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28061-5.
Full textMayergoyz, I. D. Mathematical Models of Hysteresis. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3028-1.
Full textAnsorge, Rainer. Mathematical Models of Fluiddynamics. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2002. http://dx.doi.org/10.1002/3527602771.
Full textZazzu, Valeria, Maria Brigida Ferraro, and Mario R. Guarracino, eds. Mathematical Models in Biology. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23497-7.
Full textBook chapters on the topic "Mathematical models"
Holst, Niels. "Mathematical Models." In Decision Support Systems for Weed Management, 3–23. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44402-0_1.
Full textGross, Sven, and Arnold Reusken. "Mathematical models." In Springer Series in Computational Mathematics, 33–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19686-7_2.
Full textPulido-Bosch, Antonio. "Mathematical Models." In Principles of Karst Hydrogeology, 195–240. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-55370-8_6.
Full textHinrichsen, Diederich, and Anthony J. Pritchard. "Mathematical Models." In Mathematical Systems Theory I, 1–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26410-8_1.
Full textMarquardt, Wolfgang, Jan Morbach, Andreas Wiesner, and Aidong Yang. "Mathematical Models." In OntoCAPE, 323–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04655-1_9.
Full textMauergauz, Yuri. "Mathematical Models." In Advanced Planning and Scheduling in Manufacturing and Supply Chains, 43–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27523-9_2.
Full textSkiena, Steven S. "Mathematical Models." In Texts in Computer Science, 201–36. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55444-0_7.
Full textThorn, Colin E. "Mathematical models." In An Introduction to Theoretical Geomorphology, 193–212. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-010-9441-2_13.
Full textLayer, Edward. "Mathematical Models." In Modelling of Simplified Dynamical Systems, 3–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56098-9_2.
Full textPayne, Stephen. "Mathematical Models." In Cerebral Autoregulation, 39–56. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31784-7_3.
Full textConference papers on the topic "Mathematical models"
Morrow, Gregory J., and Wei-Shih Yang. "Probability Models in Mathematical Physics." In Conference on Probability Models in Mathematical Physics. WORLD SCIENTIFIC, 1991. http://dx.doi.org/10.1142/9789814539852.
Full textWeckesser, Markus, Malte Lochau, Michael Ries, and Andy Schürr. "Mathematical Programming for Anomaly Analysis of Clafer Models." In MODELS '18: ACM/IEEE 21th International Conference on Model Driven Engineering Languages and Systems. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3239372.3239398.
Full textTweedie, Lisa, Robert Spence, Huw Dawkes, and Hus Su. "Externalising abstract mathematical models." In the SIGCHI conference. New York, New York, USA: ACM Press, 1996. http://dx.doi.org/10.1145/238386.238587.
Full textLi, Yajun. "Mathematical models for diode laser beams." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/oam.1991.thr5.
Full textMaskal, Alan B., and Fatih Aydogan. "Mathematical Models of Spacer Grids." In 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60098.
Full textChilbert, M., J. Myklebust, T. Prieto, T. Swiontek, and A. Sances. "Mathematical models of electrical injury." In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 1988. http://dx.doi.org/10.1109/iembs.1988.94632.
Full textBogdanov, Yu I., A. Yu Chernyavskiy, A. S. Holevo, V. F. Lukichev, and A. A. Orlikovsky. "Mathematical models of quantum noise." In International Conference on Micro-and Nano-Electronics 2012, edited by Alexander A. Orlikovsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2017396.
Full textNedostup, Leonid, Yuriy Bobalo, Myroslav Kiselychnyk, and Oxana Lazko. "Production Systems Complex Mathematical Models." In 2007 9th International Conference - The Experience of Designing and Applications of CAD Systems in Microelectronics. IEEE, 2007. http://dx.doi.org/10.1109/cadsm.2007.4297505.
Full textSanjana, N., M. S. Deepthi, H. R. Shashidhara, and Yajunath Kaliyath. "Comparison of Memristor Mathematical Models." In 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). IEEE, 2022. http://dx.doi.org/10.1109/discover55800.2022.9974669.
Full textDowding, Kevin. "Quantitative Validation of Mathematical Models." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24308.
Full textReports on the topic "Mathematical models"
Equihua, M., and O. Perez-Maqueo. Mathematical Modeling and Conservation. American Museum of Natural History, 2010. http://dx.doi.org/10.5531/cbc.ncep.0154.
Full textMayergoyz, I. D. [Mathematical models of hysteresis]. Office of Scientific and Technical Information (OSTI), January 1991. http://dx.doi.org/10.2172/6911694.
Full textMayergoyz, I. D. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/6946876.
Full textMayergoyz, I. Mathematical models of hysteresis. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/5246564.
Full textKaper, H. Mathematical models of superconductivity. Office of Scientific and Technical Information (OSTI), March 1991. http://dx.doi.org/10.2172/5907100.
Full textRinghofer, Christian. Mathematical Models for VLSI Device Simulation. Fort Belvoir, VA: Defense Technical Information Center, November 1987. http://dx.doi.org/10.21236/ada191125.
Full textMayergoyz, Isaak. MATHEMATICAL MODELS OF HYSTERESIS (DYNAMIC PROBLEMS IN HYSTERESIS). Office of Scientific and Technical Information (OSTI), August 2006. http://dx.doi.org/10.2172/889747.
Full textLovianova, Iryna V., Dmytro Ye Bobyliev, and Aleksandr D. Uchitel. Cloud calculations within the optional course Optimization Problems for 10th-11th graders. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3267.
Full textDawson, Steven. The Genesis of Cyberscience and its Mathematical Models (CYBERSCIENCE). Fort Belvoir, VA: Defense Technical Information Center, February 2005. http://dx.doi.org/10.21236/ada431570.
Full textSteefel, C., D. Moulton, G. Pau, K. Lipnikov, J. Meza, P. Lichtner, T. Wolery, et al. Mathematical Formulation Requirements and Specifications for the Process Models. Office of Scientific and Technical Information (OSTI), November 2010. http://dx.doi.org/10.2172/1000859.
Full text