Dissertations / Theses on the topic 'Mathematical Modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Mathematical Modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Bergman, Ärlebäck Jonas. "Mathematical modelling in upper secondary mathematics education in Sweden." Doctoral thesis, Linköpings universitet, Tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54318.
Full textCinquin, Olivier. "Mathematical modelling of development." Thesis, University College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424702.
Full textChalmers, Alexander David. "Mathematical Modelling of Atherosclerosis." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14986.
Full textNurtay, Anel. "Mathematical modelling of pathogen specialisation." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667178.
Full textLa aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelizaci ón matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estudia el caso de los varias cepas N>> 1 que compiten por diferentes tipos de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica, contraria a lo que se preveía, del tiempo de especialización sobre el tamaño inicial y la tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a la modelización matemática y el análisis de la dinámica de los patógenos y los procesos evolutivos.
The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N=1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate is discovered as a result of carrying out a regression analysis on numerically obtained data. Overall, this work makes broad contributions to mathematical modelling and analysis of pathogen dynamics and evolutionary processes.
Tacon, Geoffrey Reginald Russell. "Mathematical modelling of liver kinetics /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19399.pdf.
Full textDu, Peng 1985. "Mathematical modelling of gastric electrophysiology." Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/10234.
Full textMemon, Sohail Ahmed. "Mathematical modelling of complex dynamics." Thesis, University of Central Lancashire, 2017. http://clok.uclan.ac.uk/20497/.
Full textAbdullah, Zia. "Mathematical modelling of casting processes." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/21048.
Full textMacDonald, Grant. "Mathematical modelling of semiconductor photocatalysis." Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27029.
Full textKura, K. "Mathematical modelling of dominance hierarchies." Thesis, City, University of London, 2016. http://openaccess.city.ac.uk/15838/.
Full textCaunce, James Frederick Physical Environmental & Mathematical Sciences Australian Defence Force Academy UNSW. "Mathematical modelling of wool scouring." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Physical, Environmental and Mathematical Sciences, 2007. http://handle.unsw.edu.au/1959.4/38650.
Full textZhong, Guisong 1961. "Mathematical modelling of Osprey process." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=99554.
Full textIn this study, a simple mathematical model is established to describe the atomizing gas velocity profile and the velocity, thermal and solidification profiles of rapidly cooled metal droplets of different sizes during the in flight droplet-gas interaction. Given the relevant spray parameters, the model allows to predict quickly the transient droplet velocity, temperature, and solid fraction contents of individual droplets at various spray distances from the substrate. This model can be used to ascertain the suitability of the nozzle-substrate distance in Osprey process. The developed mathematical model has been used to predict thermal history and solidification behavior of atomized droplets of gamma-TiAl alloy. The model predicts undercooling, nucleation temperature, nucleation position and the extent of solidification of the in flight droplets of sizes ranging from 20 mum to 500 mum.
Duursma, Gail Rene. "Mathematical modelling of fluidization phenomena." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305995.
Full textQi, Qi. "Mathematical modelling of telomere dynamics." Thesis, University of Nottingham, 2011. http://eprints.nottingham.ac.uk/12258/.
Full textLi, Beibei. "Mathematical modelling of aortic dissection." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/3968/.
Full textParsons, Mark. "Mathematical modelling of evolving networks." Thesis, University of Reading, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590673.
Full textDyson, Rosemary. "Mathematical Modelling of Curtain Coating." Thesis, University of Oxford, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.489434.
Full textHarris, John Richard. "Mathematical modelling of mechanical alloying." Thesis, University of Nottingham, 2002. http://eprints.nottingham.ac.uk/10018/.
Full textCocks, David. "Mathematical modelling of dune formation." Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.442818.
Full textAhmad, Mohammad Najeeb. "Mathematical modelling of fermentation systems." Thesis, Queen's University Belfast, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296797.
Full textWoodroffe, P. J. "Mathematical modelling of cell signalling." Thesis, University of Nottingham, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.416886.
Full textClark, John Malcolm. "Mathematical modelling of G.F.M. forging." Thesis, University of Sheffield, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266125.
Full textDaae, Elisabeth Bull. "Mathematical modelling of biochemical pathways." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327023.
Full textGorrod, Martin John. "Mathematical modelling of Be stars." Thesis, University of Southampton, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.385099.
Full textRata, Scott. "Mathematical modelling of mitotic controls." Thesis, University of Oxford, 2018. https://ora.ox.ac.uk/objects/uuid:7bef862c-2025-4494-a2bb-4fe93584d92a.
Full textPrieto, Curiel Rafael. "Mathematical modelling of social systems." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10057708/.
Full textGrandjean, Thomas R. B. "Mathematical modelling of transporter kinetics." Thesis, University of Warwick, 2013. http://wrap.warwick.ac.uk/61779/.
Full textShabala, Alexander. "Mathematical modelling of oncolytic virotherapy." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:cca2c9bc-cbd4-4651-9b59-8a4dea7245d1.
Full textFay, Gemma Louise. "Mathematical modelling of turbidity currents." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:62bb9382-1c50-47f3-8f59-66924cc31760.
Full textKrupp, Armin Ulrich. "Mathematical modelling of membrane filtration." Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:ae6dd9e4-a862-4476-a8d9-35156848297f.
Full textEvans, Matthew. "Mathematical modelling of calcium signalling." Thesis, University of East Anglia, 2017. https://ueaeprints.uea.ac.uk/63285/.
Full textEvans, Thomas W. "Mathematical modelling of phage dynamics." Thesis, University of Liverpool, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511077.
Full textEl-Khairi, Muna. "Mathematical modelling of tuberculosis infection." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/10747.
Full textMacdougall, Lindsey C. "Mathematical modelling of retinal metabolism." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30615/.
Full textDomínguez, Hüttinger Elisa. "Mathematical modelling of epithelium homeostasis." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/47969.
Full textBrümmer, Anneke. "Mathematical modelling of DNA replication." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16212.
Full textBefore a cell divides it has to duplicate its entire genetic material. Eukaryotic genomes are replicated from multiple replication origins across the genome. This work is focused on the quantitative analysis of the underlying molecular mechanism that allows these origins to initiate DNA replication almost simultaneously and exactly once per cell cycle. Based on a vast amount of experimental findings, a molecular regulatory network is constructed that describes the assembly of the molecules at the replication origins that finally form complete replication complexes. Using mass–action kinetics, the molecular reactions are translated into a system of differential equations. To parameterize the mathematical model, the initial protein concentrations are taken from experimental data, while kinetic parameter sets are determined using an optimization approach, in particular a minimization of the duration, in which a minimum number of replication complexes has formed. The model identifies a conflict between the rapid initiation of replication origins and the efficient inhibition of DNA rereplication. Analyses of the model suggest that a time delay before the initiation of DNA replication provided by the multiple phosphorylations of the proteins Sic1 and Sld2 by cyclin-dependent kinases in G1 and S phase, G1-Cdk and S-Cdk, respectively, may be essential to solve this conflict. In particular, multisite phosphorylation of Sld2 by S-Cdk creates a time delay that is robust to changes in the S-Cdk activation kinetics and additionally allows the near-simultaneous activation of multiple replication origins. The calculated distribution of the assembly times of replication complexes, that is also the distribution of origin activation times, is then used to simulate the consequences of certain mutations in the assembly process on the copying of the genetic material in S phase of the cell cycle.
Jones, Tiffany. "Mathematical modelling of cancer growth." Thesis, Curtin University, 2014. http://hdl.handle.net/20.500.11937/2546.
Full textDargaville, Steven. "Mathematical modelling of LiFePO4 cathodes." Thesis, Queensland University of Technology, 2013. https://eprints.qut.edu.au/60800/4/Steven_Dargaville_Thesis.pdf.
Full textOlofsson, Thomas. "Mathematical modelling of jointed rock masses." Doctoral thesis, Luleå tekniska universitet, Byggkonstruktion och -produktion, 1985. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26756.
Full textGodkänd; 1985; 20070502 (ysko)
Fatouros, Dimitrios Michael. "Mathematical modelling for international tax planning." Thesis, Imperial College London, 1998. http://hdl.handle.net/10044/1/7954.
Full textReddyhoff, Dennis. "Mathematical modelling of acetaminophen induced hepatotoxicity." Thesis, Loughborough University, 2016. https://dspace.lboro.ac.uk/2134/23008.
Full textPerkins, Gregory Martin Parry Materials Science & Engineering Faculty of Science UNSW. "Mathematical modelling of underground coal gasification." Awarded by:University of New South Wales. Materials Science and Engineering, 2005. http://handle.unsw.edu.au/1959.4/25518.
Full textDepree, Nicholas Brian. "Mathematical modelling of an annealing furnace." Thesis, University of Auckland, 2010. http://hdl.handle.net/2292/5855.
Full textPetrakis, Leonidas. "The mathematical modelling of tumour growth." Thesis, Brunel University, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.427666.
Full textKing, J. R. "Mathematical aspects of semiconductor process modelling." Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375274.
Full textAnderson, Jacob T. "Mathematical modelling of lake level fluctuations." Thesis, University of Oxford, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302759.
Full textTerrill, E. L. "Mathematical modelling of some spinning processes." Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.280001.
Full textHewitt, Ian. "Mathematical modelling of geophysical melt drainage." Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509957.
Full textGrills, Claire Melissa Emma. "Mathematical and statistical modelling of apoptosis." Thesis, Queen's University Belfast, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517342.
Full textSandbach, Steven D. "Mathematical and laboratory modelling of ventilation." Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506639.
Full text