Academic literature on the topic 'Mathematical modelling/biology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical modelling/biology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical modelling/biology"
Vasieva, Olga, Manan'Iarivo Rasolonjanahary, and Bakhtier Vasiev. "Mathematical modelling in developmental biology." REPRODUCTION 145, no. 6 (June 2013): R175—R184. http://dx.doi.org/10.1530/rep-12-0081.
Full textTomlin, Claire J., and Jeffrey D. Axelrod. "Biology by numbers: mathematical modelling in developmental biology." Nature Reviews Genetics 8, no. 5 (May 2007): 331–40. http://dx.doi.org/10.1038/nrg2098.
Full textJäger, Willi. "Mathematical Modelling in Chemistry and Biology." Interdisciplinary Science Reviews 11, no. 2 (January 1986): 181–88. http://dx.doi.org/10.1179/isr.1986.11.2.181.
Full textChaplain, M. A. J. "Multiscale mathematical modelling in biology and medicine." IMA Journal of Applied Mathematics 76, no. 3 (May 26, 2011): 371–88. http://dx.doi.org/10.1093/imamat/hxr025.
Full textLei, Jinzhi. "Viewpoints on modelling: Comments on "Achilles and the tortoise: Some caveats to mathematical modelling in biology"." Mathematics in Applied Sciences and Engineering 1, no. 1 (February 29, 2020): 85–90. http://dx.doi.org/10.5206/mase/10267.
Full textMiddleton, A., M. Owen, M. Bennett, and J. King. "Mathematical modelling of gibberellinsignalling." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 150, no. 3 (July 2008): S46. http://dx.doi.org/10.1016/j.cbpa.2008.04.023.
Full textButler, George, Jonathan Rudge, and Philip R. Dash. "Mathematical modelling of cell migration." Essays in Biochemistry 63, no. 5 (October 2019): 631–37. http://dx.doi.org/10.1042/ebc20190020.
Full textDivya, B., and K. Kavitha. "A REVIEW ON MATHEMATICAL MODELLING IN BIOLOGY AND MEDICINE." Advances in Mathematics: Scientific Journal 9, no. 8 (August 19, 2020): 5869–79. http://dx.doi.org/10.37418/amsj.9.8.54.
Full textMacArthur, B. D., C. P. Please, M. Taylor, and R. O. C. Oreffo. "Mathematical modelling of skeletal repair." Biochemical and Biophysical Research Communications 313, no. 4 (January 2004): 825–33. http://dx.doi.org/10.1016/j.bbrc.2003.11.171.
Full textShone, John. "Working at the biology/mathematics interface: mathematical modelling and sixth form biology." International Journal of Mathematical Education in Science and Technology 19, no. 4 (July 1988): 501–9. http://dx.doi.org/10.1080/0020739880190402.
Full textDissertations / Theses on the topic "Mathematical modelling/biology"
Hunt, Gordon S. "Mathematical modelling of pattern formation in developmental biology." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2706.
Full textNurtay, Anel. "Mathematical modelling of pathogen specialisation." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667178.
Full textLa aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelizaci ón matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estudia el caso de los varias cepas N>> 1 que compiten por diferentes tipos de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica, contraria a lo que se preveía, del tiempo de especialización sobre el tamaño inicial y la tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a la modelización matemática y el análisis de la dinámica de los patógenos y los procesos evolutivos.
The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N=1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate is discovered as a result of carrying out a regression analysis on numerically obtained data. Overall, this work makes broad contributions to mathematical modelling and analysis of pathogen dynamics and evolutionary processes.
Rata, Scott. "Mathematical modelling of mitotic controls." Thesis, University of Oxford, 2018. https://ora.ox.ac.uk/objects/uuid:7bef862c-2025-4494-a2bb-4fe93584d92a.
Full textCatt, Christopher Joseph. "Mathematical modelling of tissue metabolism and growth." Thesis, University of Southampton, 2010. https://eprints.soton.ac.uk/176447/.
Full textModhara, Sunny. "Mathematical modelling of vascular development in zebrafish." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29125/.
Full textDurney, Clinton H. "A Two-Component Model For Bacterial Chemotaxis." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366312981.
Full textMoi, Adriano. "Mathematical modelling of integrin-like receptors systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11255/.
Full textBakshi, Suruchi D. "Mathematical modelling of Centrosomin incorporation in Drosophila centrosomes." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:baefde65-bc38-4a11-bd92-e2e4cccad784.
Full textChapman, Lloyd A. C. "Mathematical modelling of cell growth in tissue engineering bioreactors." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:7c9ee131-7d9b-4e5d-8534-04a059fbd039.
Full textOsman, Mohamad Hussein. "Mathematical modelling and simulation of biofuel cells." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/363762/.
Full textBooks on the topic "Mathematical modelling/biology"
Morris, Richard J., ed. Mathematical Modelling in Plant Biology. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5.
Full textBrebbia, C. A. Modelling in medicine and biology. Southampton: WIT Press, 2011.
Find full textWilkinson, Darren James. Stochastic modelling for systems biology. 2nd ed. Boca Raton: Taylor & Francis, 2012.
Find full textR, Carson Ewart, ed. Mathematical modelling of dynamic biological systems. 2nd ed. Letchworth, Hertfordshire, England: Research Studies Press, 1985.
Find full textDemin, Oleg. Kinetic modelling in systems biology. Boca Raton: Chapman & Hall/CRC, 2009.
Find full textNisbet, R. M. Modelling fluctuating populations. Caldwell, N.J: Blackburn Press, 2003.
Find full textNisbet, R. M. Modelling fluctuating populations. Ann Arbor, Mich: University Microfilms International, 1992.
Find full textDaley, Daryl J. Epidemic modelling: An introduction. Cambridge: Cambridge University Press, 1999.
Find full textWilkinson, Darren James. Stochastic modelling for systems biology. Boca Raton, FL: Chapman & Hall/CRC Press, 2007.
Find full textStochastic modelling for systems biology. Boca Raton: Taylor & Francis, 2006.
Find full textBook chapters on the topic "Mathematical modelling/biology"
Pérez-Escobar, José Antonio. "Mathematical Modelling and Teleology in Biology." In Proceedings of the Canadian Society for History and Philosophy of Mathematics/ Société canadienne d’histoire et de philosophie des mathématiques, 69–82. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-31298-5_4.
Full textWedgwood, K. C. A., J. Tabak, and K. Tsaneva-Atanasova. "Modelling Ion Channels." In Mathematical Modelling in Plant Biology, 37–52. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5_3.
Full textAhmed, Danish A., Joseph D. Bailey, Sergei V. Petrovskii, and Michael B. Bonsall. "Mathematical Bases for 2D Insect Trap Counts Modelling." In Computational Biology, 133–59. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69951-2_6.
Full textSlavova, Angela. "CNN modelling in biology, physics and ecology." In Mathematical Modelling: Theory and Applications, 118–67. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0261-4_4.
Full textGreulich, Philip. "Mathematical Modelling of Clonal Stem Cell Dynamics." In Computational Stem Cell Biology, 107–29. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9224-9_5.
Full textDeinum, Eva E., and Bela M. Mulder. "Modelling the Plant Microtubule Cytoskeleton." In Mathematical Modelling in Plant Biology, 53–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5_4.
Full textD’Agostino, Daniele, Andrea Clematis, Emanuele Danovaro, and Ivan Merelli. "Modelling of Protein Surface Using Parallel Heterogeneous Architectures." In Mathematical Models in Biology, 189–99. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-23497-7_14.
Full textDumond, Mathilde, and Arezki Boudaoud. "Physical Models of Plant Morphogenesis." In Mathematical Modelling in Plant Biology, 1–14. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5_1.
Full textŽivković, Daniel, and Aurélien Tellier. "All But Sleeping? Consequences of Soil Seed Banks on Neutral and Selective Diversity in Plant Species." In Mathematical Modelling in Plant Biology, 195–212. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5_10.
Full textBlyth, M. G., and R. J. Morris. "Fluid Transport in Plants." In Mathematical Modelling in Plant Biology, 15–36. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99070-5_2.
Full textConference papers on the topic "Mathematical modelling/biology"
Sabrekov, A. F., M. V. Glagolev, I. E. Terentieva, and S. Y. Mochenov. "Identification of soil methane oxidation activity by inverse modelling." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.77.
Full textIaparov, B. I., and V. V. Ivchenko. "Mathematical modelling of the ryanodine receptor’s activation time dependence on magnesium." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.69.
Full textSabrekov, A. F., M. V. Glagolev, and I. E. Terentieva. "Measuring methane flux from the soil by inverse modelling using adjoint equations." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.85.
Full textRomanov, M. S., and V. B. Masterov. "Modelling of the Steller’s Sea Eagle Population: Stable Demographic Structure vs. Transient Dynamics." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.99.
Full textOkenov, A. O., B. Ya Iaparov, and A. S. Moskvin. "Kramers rate theory as a starting point for modelling temperature effects in TRP channels." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2018. http://dx.doi.org/10.17537/icmbb18.38.
Full textPolyakov, M. V., and A. S. Astakhov. "Mathematical Processing and Computer Analysis of Data from Numerical Modelling of Radiothermometric Medical Examinations." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2020. http://dx.doi.org/10.17537/icmbb20.23.
Full textNikolaev, G. I., N. A. Shuldov, I. P. Bosko, A. I. Anischenko, A. V. Tuzikov, and A. M. Andrianov. "Application of Deep Learning and Molecular Modelling Methods to Identify Potential HIV-1 Entry Inhibitors." In Mathematical Biology and Bioinformatics. Pushchino: IMPB RAS - Branch of KIAM RAS, 2020. http://dx.doi.org/10.17537/icmbb20.6.
Full textvan Leeuwen, Ingeborg M. M., Helen M. Byrne, Matthew D. Johnston, Carina M. Edwards, S. Jonathan Chapman, Walter F. Bodmer, Philip K. Maini, Kamel Ariffin Mohd Atan, and Isthrinayagy S. Krishnarajah. "Modelling multiscale aspects of colorectal cancer." In INTERNATIONAL CONFERENCE ON MATHEMATICAL BIOLOGY 2007: ICMB07. AIP, 2008. http://dx.doi.org/10.1063/1.2883865.
Full textBANERJEE, M., M. BENMIR, and V. VOLPERT. "MULTI-SCALE MODELLING IN CELL DYNAMICS." In International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814667944_0020.
Full textMONDAINI, RUBEM P., and ROBERTO A. C. PRATA. "GEODESIC CURVES FOR BIOMOLECULAR STRUCTURE MODELLING." In International Symposium on Mathematical and Computational Biology. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812812339_0018.
Full text