Academic literature on the topic 'Mathematical Modelling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical Modelling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical Modelling"
Ketova, K. V., I. G. Rusyak, and D. D. Vavilova. "MATHEMATICAL MODELLING OF WORKFORCE POTENTIAL." European Journal of Natural History, no. 3 2020 (2020): 65–69. http://dx.doi.org/10.17513/ejnh.34088.
Full textSmith, D. "Mathematical modelling." Teaching Mathematics and its Applications 15, no. 1 (March 1, 1996): 37–41. http://dx.doi.org/10.1093/teamat/15.1.37.
Full textCampbell, P. "Mathematical modelling." Manufacturing Engineer 77, no. 4 (August 1, 1998): 187–89. http://dx.doi.org/10.1049/me:19980407.
Full textZiegel, Eric R. "Mathematical Modelling." Technometrics 32, no. 2 (May 1990): 240. http://dx.doi.org/10.1080/00401706.1990.10484666.
Full textRamos, J. I. "Mathematical Modelling." Applied Mathematical Modelling 14, no. 8 (August 1990): 444. http://dx.doi.org/10.1016/0307-904x(90)90102-b.
Full textRawson, H. "Mathematical modelling." Journal of Non-Crystalline Solids 73, no. 1-3 (August 1985): 551–63. http://dx.doi.org/10.1016/0022-3093(85)90374-6.
Full textRawson, H. "Mathematical modelling." Journal of Non-Crystalline Solids 80, no. 1-3 (March 1986): 92. http://dx.doi.org/10.1016/0022-3093(86)90381-9.
Full textCundy, H. Martyn, J. S. Berry, D. N. Burghes, I. D. Huntley, D. J. G. James, and A. O. Moscardini. "Mathematical Modelling Courses." Mathematical Gazette 72, no. 460 (June 1988): 152. http://dx.doi.org/10.2307/3618954.
Full textReyniers, Diane, J. S. Berry, D. N. Hughes, I. D. Huntley, D. J. G. James, and A. O. Moscardini. "Mathematical Modelling Courses." Journal of the Operational Research Society 39, no. 12 (December 1988): 1181. http://dx.doi.org/10.2307/2583605.
Full textSMITH, D. N. "Independent Mathematical Modelling." Teaching Mathematics and its Applications 16, no. 3 (September 1, 1997): 101–6. http://dx.doi.org/10.1093/teamat/16.3.101.
Full textDissertations / Theses on the topic "Mathematical Modelling"
Bergman, Ärlebäck Jonas. "Mathematical modelling in upper secondary mathematics education in Sweden." Doctoral thesis, Linköpings universitet, Tillämpad matematik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-54318.
Full textCinquin, Olivier. "Mathematical modelling of development." Thesis, University College London (University of London), 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424702.
Full textChalmers, Alexander David. "Mathematical Modelling of Atherosclerosis." Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14986.
Full textNurtay, Anel. "Mathematical modelling of pathogen specialisation." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667178.
Full textLa aparición de nuevos virus causantes de enfermedades está estrechamente ligada a la especialización de las subpoblaciones virales hacia nuevos tipos de anfitriones. La modelizaci ón matemática proporciona un marco cuantitativo que puede ayudar a la predicción de procesos a largo plazo como la especialización. Debido a la naturaleza compleja que presentan las interacciones intra e interespecíficas en los procesos evolutivos, aplicar herramientas matemáticas complejas, tales como el análisis de bifurcación, al estudiar dinámicas de población. Esta tesis desarrolla una jerarquía de modelos de población para poder comprender la aparición y las dinámicas de especialización, y su dependencia de los parámetros del sistema. Utilizando un modelo para un virus de tipo salvaje y un virus mutado que compiten por el mismo anfitrión, se determinan las condiciones para la supervivencia únicamente de la subpoblación mutante, junto con su coexistencia con la cepa de tipo salvaje. Los diagramas de estabilidad que representan regiones de dinámicas diferenciadas se construyen en términos de tasa de infección, virulencia y tasa de mutación; los diagramas se explican en base a las características biológicas de las subpoblaciones. Para parámetros variables, se observa y se describe el fenómeno de intersección e intercambio de estabilidad entre diferentes soluciones sistemáticas y periódicas en el ámbito de las cepas de tipo salvaje y las cepas mutantes en competencia directa. En el caso de que varios tipos de anfitriones estén disponibles para ser disputados por cepas especializadas y generalistas existen regiones de biestabilidad, y las probabilidades de observar cada estado se calculan como funciones de las tasas de infección. Se ha encontrado un raro atractor caótico y se ha analizado con el uso de exponentes de Lyapunov. Esto, combinado con los diagramas de estabilidad, muestra que la supervivencia de la cepa generalista en un entorno estable es un hecho improbable. Además, se estudia el caso de los varias cepas N>> 1 que compiten por diferentes tipos de células anfitrionas. En este caso se ha descubierto una dependencia no monotónica, contraria a lo que se preveía, del tiempo de especialización sobre el tamaño inicial y la tasa de mutación, como consecuencia de la realización de un análisis de regresión sobre datos obtenidos numéricamente. En general, este trabajo hace contribuciones amplias a la modelización matemática y el análisis de la dinámica de los patógenos y los procesos evolutivos.
The occurrence of new disease-causing viruses is tightly linked to the specialisation of viral sub-populations towards new host types. Mathematical modelling provides a quantitative framework that can aid with the prediction of long-term processes such as specialisation. Due to the complex nature of intra- and interspecific interactions present in evolutionary processes, elaborate mathematical tools such as bifurcation analysis must be employed while studying population dynamics. In this thesis, a hierarchy of population models is developed to understand the onset and dynamics of specialisation and their dependence on the parameters of the system. Using a model for a wild-type and mutant virus that compete for the same host, conditions for the survival of only the mutant subpopulation, along with its coexistence with the wild-type strain, are determined. Stability diagrams that depict regions of distinct dynamics are constructed in terms of infection rates, virulence and the mutation rate; the diagrams are explained in terms of the biological characteristics of the sub-populations. For varying parameters, the phenomenon of intersection and exchange of stability between different periodic solutions of the system is observed and described in the scope of the competing wild-type and mutant strains. In the case of several types of hosts being available for competing specialist and generalist strains, regions of bistability exist, and the probabilities of observing each state are calculated as functions of the infection rates. A strange chaotic attractor is discovered and analysed with the use of Lyapunov exponents. This, combined with the stability diagrams, shows that the survival of the generalist in a stable environment is an unlikely event. Furthermore, the case of N=1 different strains competing for different types of host cells is studied. For this case, a counterintuitive and non-monotonic dependence of the specialisation time on the burst size and mutation rate is discovered as a result of carrying out a regression analysis on numerically obtained data. Overall, this work makes broad contributions to mathematical modelling and analysis of pathogen dynamics and evolutionary processes.
Tacon, Geoffrey Reginald Russell. "Mathematical modelling of liver kinetics /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19399.pdf.
Full textDu, Peng 1985. "Mathematical modelling of gastric electrophysiology." Thesis, University of Auckland, 2011. http://hdl.handle.net/2292/10234.
Full textMemon, Sohail Ahmed. "Mathematical modelling of complex dynamics." Thesis, University of Central Lancashire, 2017. http://clok.uclan.ac.uk/20497/.
Full textAbdullah, Zia. "Mathematical modelling of casting processes." Thesis, University of Ottawa (Canada), 1988. http://hdl.handle.net/10393/21048.
Full textMacDonald, Grant. "Mathematical modelling of semiconductor photocatalysis." Thesis, University of Strathclyde, 2016. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=27029.
Full textKura, K. "Mathematical modelling of dominance hierarchies." Thesis, City, University of London, 2016. http://openaccess.city.ac.uk/15838/.
Full textBooks on the topic "Mathematical Modelling"
Heiliö, Matti, Timo Lähivaara, Erkki Laitinen, Timo Mantere, Jorma Merikoski, Seppo Pohjolainen, Kimmo Raivio, et al. Mathematical Modelling. Edited by Seppo Pohjolainen. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27836-0.
Full textMoghadas, Seyed M., and Majid Jaberi-Douraki. Mathematical Modelling. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119483946.
Full textCaldwell, J., and Y. M. Ram. Mathematical Modelling. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-017-2201-8.
Full textCaldwell, Jim, and Douglas K. S. Ng, eds. Mathematical Modelling. Dordrecht: Kluwer Academic Publishers, 2004. http://dx.doi.org/10.1007/1-4020-1993-9.
Full textN, Burghes D., ed. Mathematical modelling. London: Prentice Hall, 1996.
Find full textN, Burghes David, ed. Mathematical modelling. London: Prentice Hall, 1996.
Find full textBrennan, Christopher R. Mathematical modelling. Hauppauge, N.Y: Nova Science Publishers, 2011.
Find full textKen, Houston, ed. Mathematical modelling. London: Edward Arnold, 1995.
Find full textYaglom, I. M. Mathematical structures and mathematical modelling. New York: Gordon and Breach, 1986.
Find full textI͡Aglom, I. M. Mathematical structures and mathematical modelling. New York: Gordon and Breach Science, 1986.
Find full textBook chapters on the topic "Mathematical Modelling"
Wess, Raphael, Heiner Klock, Hans-Stefan Siller, and Gilbert Greefrath. "Mathematical Modelling." In International Perspectives on the Teaching and Learning of Mathematical Modelling, 3–20. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78071-5_1.
Full textSerovajsky, Simon. "Mathematical problems of mathematical models." In Mathematical Modelling, 365–80. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003035602-19.
Full textPatel, Ravi, Dipankar Deb, Rajeeb Dey, and Valentina E. Balas. "Mathematical Modelling." In Intelligent Systems Reference Library, 11–28. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18068-3_2.
Full textJones, Jenny M., Amanda R. Lea-Langton, Lin Ma, Mohamed Pourkashanian, and Alan Williams. "Mathematical Modelling." In Pollutants Generated by the Combustion of Solid Biomass Fuels, 71–97. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-6437-1_6.
Full textFowler, Andrew. "Mathematical Modelling." In Interdisciplinary Applied Mathematics, 1–63. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-721-1_1.
Full textBerry, John, and Patrick Wainwright. "Mathematical Modelling." In Foundation Mathematics for Engineers, 473–82. London: Macmillan Education UK, 1991. http://dx.doi.org/10.1007/978-1-349-11717-8_13.
Full textRoy, Kalyan Kumar. "Mathematical Modelling." In Natural Electromagnetic Fields in Pure and Applied Geophysics, 453–511. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38097-7_9.
Full textElliott, Novak S. J. "Mathematical Modelling." In Syringomyelia, 103–16. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-13706-8_7.
Full textAwange, Joseph. "Mathematical Modelling." In GNSS Environmental Sensing, 43–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58418-8_4.
Full textHofmann, Bernd. "Mathematical Modelling." In Regularization for Applied Inverse and III-Posed Problems, 12–60. Wiesbaden: Vieweg+Teubner Verlag, 1986. http://dx.doi.org/10.1007/978-3-322-93034-7_2.
Full textConference papers on the topic "Mathematical Modelling"
Grootenboer, Peter. "Mathematics education: Building mathematical identities." In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0000581.
Full textGreefrath, Gilbert, and Susana Carreira. "Mathematical Applications and Modelling in Mathematics Education." In The 14th International Congress on Mathematical Education. WORLD SCIENTIFIC, 2024. http://dx.doi.org/10.1142/9789811287152_0046.
Full textDarmawijoyo, Apit Fathurohman, Maryam Akila, and Somakim. "Learning mathematical modelling: A portrait of secondary school student’s mathematical perception in learning mathematical modelling." In THE 2ND NATIONAL CONFERENCE ON MATHEMATICS EDUCATION (NACOME) 2021: Mathematical Proof as a Tool for Learning Mathematics. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0150968.
Full textSaleem, Zainab, and Syed Aseem Ul Islam. "Mathematical Modelling of RocketMotorTwo." In 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3684.
Full textMagnucka-Blandzi, E. "Mathematical and numerical modelling." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4913002.
Full textMcGuinness, Mark J., Theodore E. Simos, George Psihoyios, and Ch Tsitouras. "Mathematical Modelling of Extremes." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS: International Conference on Numerical Analysis and Applied Mathematics 2009: Volume 1 and Volume 2. AIP, 2009. http://dx.doi.org/10.1063/1.3241364.
Full textRogovchenko, Yuriy, and Svitlana Rogovchenko. "Promoting engineering students’ learning with mathematical modelling projects." In SEFI 50th Annual conference of The European Society for Engineering Education. Barcelona: Universitat Politècnica de Catalunya, 2022. http://dx.doi.org/10.5821/conference-9788412322262.1451.
Full textAlksnis, Reinis, and Janis Valeinis. "BARTLETT CORRECTIONS FOR QUANTILE INFERENCE WITH EMPIRICAL LIKELIHOOD." In Mathematical Modelling and Analysis. University of Latvia, 2023. http://dx.doi.org/10.22364/jzym4660.01.
Full textUremović, Boris, and Ivica Završki. "Parametric modelling using mathematical functions." In 8th Symposium on Doctoral Studies in Civil Engineering. University of Zagreb Faculty of Civil Engineering, 2022. http://dx.doi.org/10.5592/co/phdsym.2022.22.
Full textVargas, C., L. Esteva, and G. Cruz-Pacheco. "Mathematical modelling of arbovirus diseases." In 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010) (Formerly known as ICEEE). IEEE, 2010. http://dx.doi.org/10.1109/iceee.2010.5608601.
Full textReports on the topic "Mathematical Modelling"
Sternberg, Natalia. Mathematical Modelling in Plasma Physics. Fort Belvoir, VA: Defense Technical Information Center, September 1994. http://dx.doi.org/10.21236/ada294972.
Full textMiller, Willard, Sell Jr., Weinberger George, and Hans. Scientific Computation and Mathematical Modelling. Fort Belvoir, VA: Defense Technical Information Center, February 1986. http://dx.doi.org/10.21236/ada173178.
Full textFeustel, H. Mathematical modelling of infiltration and ventilation. Office of Scientific and Technical Information (OSTI), November 1989. http://dx.doi.org/10.2172/7154245.
Full textLock, X. Ge, and N. Prywes. An Intelligent Mathematical Modelling System - Mathmodel. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada207807.
Full textSzekely, J. The mathematical modelling of arc welding operation. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6821760.
Full textSinan, Muhammad, Hijaz Ahmad, Zubair Ahmad, Jamel Baili, Saqib Murtaza, M. A. Aiyashi, and Thongchai Botmart. Fractional Mathematical Modelling of Malaria Disease with Treatment & Insecticides. Peeref, October 2022. http://dx.doi.org/10.54985/peeref.2210p3573404.
Full textSaptsin, Vladimir, and Володимир Миколайович Соловйов. Relativistic quantum econophysics – new paradigms in complex systems modelling. [б.в.], July 2009. http://dx.doi.org/10.31812/0564/1134.
Full textDestefan, D. E. Mathematical modelling of part voltage and weld current in resistance welders. Office of Scientific and Technical Information (OSTI), September 1990. http://dx.doi.org/10.2172/6376958.
Full textALMODARESI, S. A., and Ali BOLOOR. A mathematical modelling for spatio temporal substitution base on Ergodic theorem. Cogeo@oeaw-giscience, September 2011. http://dx.doi.org/10.5242/iamg.2011.0026.
Full textAshley, K., S. Pons, and M. Fleischmann. Mathematical Modelling of Transport through Conducting Polymer Films. 1. The Poly(paraphenylene) System. Fort Belvoir, VA: Defense Technical Information Center, July 1988. http://dx.doi.org/10.21236/ada200842.
Full text