To see the other types of publications on this topic, follow the link: Mathematical model.

Journal articles on the topic 'Mathematical model'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Mathematical model.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Kumar, Jitender, and V. K. Kukreja. "Mathematical Model of Pulp Washing Using Mathematica." MATEC Web of Conferences 57 (2016): 05008. http://dx.doi.org/10.1051/matecconf/20165705008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rifki Taufik, Muhammad, Dwi Lestari, and Tri Wijayanti Septiarini. "Mathematical Model for Vaccinated Tuberculosis Disease with VEIT Model." International Journal of Modeling and Optimization 5, no. 3 (June 2015): 192–97. http://dx.doi.org/10.7763/ijmo.2015.v5.460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Połowniak, Piotr, and Mariusz Sobolak. "Mathematical model of globoid worm for use of generating CAD model." Mechanik, no. 2 (February 2015): 145/31. http://dx.doi.org/10.17814/mechanik.2015.2.53.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

ROTARU, Constantin, Oliver CIUICĂ, Eduard MIHAI, Ionică CÎRCIU, and Radu DINCĂ. "SIMPLIFIED MATHEMATICAL MODEL FOR AIRCRAFTSRESPONSE CHARACTERISTICS." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (June 24, 2016): 55–60. http://dx.doi.org/10.19062/2247-3173.2016.18.1.7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Stehney, Ann K., Sarah Flannery, and David Flannery. "Mathematical Model." Women's Review of Books 19, no. 1 (October 2001): 7. http://dx.doi.org/10.2307/4023851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wan, Delong, and Huiping Zeng. "Water environment mathematical model mathematical algorithm." IOP Conference Series: Earth and Environmental Science 170 (July 2018): 032133. http://dx.doi.org/10.1088/1755-1315/170/3/032133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bаzhanova, А. Yu, M. G. Suryaninov, and G. B. Shotadze. "Finite elements mathematical model of geometric nonlinearity." Odes’kyi Politechnichnyi Universytet. Pratsi, no. 2 (June 15, 2015): 138–44. http://dx.doi.org/10.15276/opu.2.46.2015.25.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

TRIVEDI, PRATIK H. "An Appropriate Mathematical Model for A Product." Global Journal For Research Analysis 3, no. 5 (June 15, 2012): 11–12. http://dx.doi.org/10.15373/22778160/may2014/5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bouizem, Nacera, Mohamed Helal, Bedr'Eddine Ainseba, and Abdelkader Lakmeche. "Leukemia mathematical model." ITM Web of Conferences 4 (2015): 01006. http://dx.doi.org/10.1051/itmconf/20150401006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shrivastava, Rajesh, Deepika Basedia, and Keerty Shrivastava. "Predictive Mathematical Model on Breast Cancer: A Study." international journal of mathematics and computer research 12, no. 03 (March 31, 2024): 4107–13. http://dx.doi.org/10.47191/ijmcr/v12i3.05.

Full text
Abstract:
In the present study, we have designed a mathematical model to analyze whether the cases of breast cancer are maximized or minimized in Madhya Pradesh. Especially to check the age range in which it’s more susceptible to the disease and its means of therapy. The important data collected from Jawaharlal Nehru Cancer Hospital, Bhopal (JLNCH) and Gandhi Medical College, Bhopal (GMC) is from over ten years of reviews of the cases. Actual documentary and analytical methods were used to collect and analyze the data. It is concluded from the results that the number of cancer cases is increasing in both hospitals; its projection may reach up to 97.8% by the year 2023; the age range of 40–50 is more vulnerable to the disease. The line of treatment for breast cancer patients is surgery, chemotherapy, and radiotherapy in both hospitals.
APA, Harvard, Vancouver, ISO, and other styles
11

WILCZYNSKI, KRZYSZTOF. "A mathematical model of single-screw extrusion. Part X. Experimental verification of the model." Polimery 45, no. 03 (March 2000): 191–96. http://dx.doi.org/10.14314/polimery.2000.191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Teresa Reginska. "REGULARIZATION METHODS FOR MATHEMATICAL MODEL OF LASER BEAMS." Eurasian Journal of Mathematical and Computer Applications 1, no. 1 (2013): 39–49. http://dx.doi.org/10.32523/2306-3172-2013-1-2-39-49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

CORCAU, Jenica-Ileana, and Liviu DINCA. "MATHEMATICAL MODEL AND NUMERICAL SIMULATIONS FOR PHOTOVOLTAIC PANELS." Review of the Air Force Academy 15, no. 3 (December 14, 2017): 47–56. http://dx.doi.org/10.19062/1842-9238.2017.15.3.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

ul Rahman, Jamshaid, Muhammad Raheel Mohyuddin, S. V. Satyanarayana, Syed Zahoor, and Amira Al-Ghareebi. "Mathematical and Simulink Model for Paint Industry Effluent." DJ Journal of Engineering Chemistry and Fuel 1, no. 2 (February 23, 2016): 1–8. http://dx.doi.org/10.18831/djchem.org/2016021001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

MARTYNYUK, V. V., G. I. RADELCHUK, and O. V. SHPAK. "IMPROVED IMPEDANCE MATHEMATICAL MODEL OF A SOLAR CELL." Measuring and computing devices in technological processes 63, no. 1 (January 2019): 5–9. http://dx.doi.org/10.31891/2219-9365-2019-63-1-5-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

PEDYASH, Volodymyr. "INVESTIGATION OF THE MATHEMATICAL MODEL OF OPTICAL FIBER." Herald of Khmelnytskyi National University. Technical sciences 317, no. 1 (February 23, 2023): 167–73. http://dx.doi.org/10.31891/2307-5732-2023-317-1-167-173.

Full text
Abstract:
Fiber optic transmission systems are the main type of systems for building telecommunication networks. The transponders of modern optical transmission systems implement efficient modulation and coding methods, which can significantly increase the receiver sensitivity and increase the length of the regeneration area. The task to define the quality characteristics of optical channels occurs during the design of such systems. To solve this problem, it is necessary to develop a mathematical model of the transmission system and perform a simulation using it. One of the main blocks of the system is the propagation medium (optical fiber). The optical fiber model is based on the nonlinear Schrödinger differential equation. Several groups of modeling methods have been developed on its basis. The most widespread is the Fourier method of splitting by physical factors, as it has a simple algorithm structure, high computing speed, and high accuracy. This method is recursive, so to reduce the number of iterations, it is reasonable to use the well-known method of nonlinear phase rotation. To check the functionality of the developed program code, it is recommended to perform testing in several stages. At the first stage, it is proposed to check the accuracy of the distortion of chromatic dispersion. Single pulses of simple shape, such as Gaussian pulses, should be used as a test signal. By calculating the pulse shape using theoretical expressions and comparing them with the modeling results, the accuracy of the optical fiber modeling algorithm can be verified. The next step in verifying the fiber model is to evaluate the accuracy of the simultaneous introduction of dispersion and nonlinear distortions. For this purpose, it is proposed to analyze the propagation of pulses of optical solitons of the first and higher orders.
APA, Harvard, Vancouver, ISO, and other styles
17

Grigoriev-Golubev, Vladimir, Natalia Vasileva, and Margarita Volodicheva. "Using the Mathematica package in teaching mathematical disciplines." SHS Web of Conferences 141 (2022): 03001. http://dx.doi.org/10.1051/shsconf/202214103001.

Full text
Abstract:
This article analyzes the capabilities of the Wolfram Mathematica computer system, examines the feasibility of using its tools in the study of mathematical disciplines. The authors propose and demonstrate by examples a methodology for building a training course based on the integration of the methods of the discipline being studied and their implementation in the Mathematica environment. The paper explores the practical significance of including the Mathematica toolkit in the training course, which makes it possible to mathematically model various processes in modern society, demonstrate the solution of mathematically complex problems using the built-in functions of the package, as well as provide visualization of analytically obtained solutions.
APA, Harvard, Vancouver, ISO, and other styles
18

Vasileva, Natalia, Vladimir Grigorev-Golubev, and Irina Evgrafova. "Mathematical programming in Mathcad and Mathematica." E3S Web of Conferences 419 (2023): 02007. http://dx.doi.org/10.1051/e3sconf/202341902007.

Full text
Abstract:
An article generalizes the long-term work of authors with packages of applied mathematical programs. It discusses and demonstrates the features and methods of solution of mathematical tasks in mathematical package Mathcad and Mathematica: from the simplest ones, included in the set of typical problems of mathematical disciplines for training specialists for shipbuilding, to complex computational tasks and applied problems of professional orientation, which require the construction of a mathematical model and analysis of the results obtained. The examples show the solution of mathematical problems in symbolic form, mathematical studies in the Mathcad and Mathematica environment, and mathematical programming with these packages.
APA, Harvard, Vancouver, ISO, and other styles
19

Kruszewski, Robert. "Equilibrium and business cycle. Mathematical model." Studia i Prace WNEiZ 51 (2018): 197–211. http://dx.doi.org/10.18276/sip.2018.51/3-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Щетинина, Ирина Владимировна, Екатерина Алексеевна Москалева, Марина Евгеньевна Волкова, and Валерий Константинович Власов. "COVID-INFODEMY MATHEMATICAL MODEL." ИНФОРМАЦИЯ И БЕЗОПАСНОСТЬ, no. 4(-) (December 15, 2021): 521–30. http://dx.doi.org/10.36622/vstu.2021.24.4.004.

Full text
Abstract:
Инфодемия представляет собой стремительное и неконтролируемое распространение в медиа необоснованной и ложной информации о кризисных событиях. Во время пандемии коронавируса возникла новая разновидность сетевой дезинформации, связанная с распространением различных слухов о заболевании, вакцинации и т. п., которая стремительно развиваясь, охватила все страны, став таким образом ковид-инфодемией. Инфодемия наносит большой вред работе систем здравохранения, правительств стран, существенно снижая уровень доверия к ним граждан. В статье представлена математическая модель инфодемии, основанная на данных по статистике о слухах, посвященных коронавирусной пандемии. За основу взяты эпидемические SEIR и SEIR-D модели. Результаты моделирования показали применимость предлагаемых моделей. Предлагаемые в статье модели можно использовать для прогнозирования развития и моделирования угроз ковид-инфодемии, в задачах определения ущерба, наносимого ковид-инфодемией экономике и здравохранению. Infodemia is the rapid and uncontrolled dissemination of unreasonable and false information about crisis events in the media. During the coronavirus pandemic, a new type of online misinformation has emerged, associated with the spread of various rumors about the disease, vaccinations, etc., which is rapidly developing, spreading across all countries, thus becoming a covid infodemic. Infodemia causes great harm to the work of health care systems, governments of countries, significantly reducing the level of citizens' trust in them. The article presents a mathematical model of infodemic, based on statistics on rumors about the coronavirus pandemic. Epidemic SEIR and SEIR-D models are taken as a basis. The simulation results showed the applicability of the proposed models. The models proposed in the article can be used to predict the development and modeling of the threats of covid-infodemia, in the tasks of determining the damage caused by covid-infodemy to the economy and health care.
APA, Harvard, Vancouver, ISO, and other styles
21

Brumercik, Frantisek, Michal Lukac, and Aleksander Nieoczym. "Mechanical Differential Mathematical Model." Communications - Scientific letters of the University of Zilina 17, no. 3 (August 31, 2015): 88–91. http://dx.doi.org/10.26552/com.c.2015.3.88-91.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Khoroshaylo, Yurii, Vladyslav Shlyakhov, Sergii Yefymenko, Svetlana Sotnik, and Aleksandr Kagramanyan. "MATHEMATICAL MODEL OF COLORIMETRY." Bulletin of Kyiv Polytechnic Institute. Series Instrument Making, no. 54(2) (December 25, 2017): 27–32. http://dx.doi.org/10.20535/1970.54(2).2017.119512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Ivanov, Konstantin. "Mathematical Model of Adaptation." Journal of Modern Mathematics Frontier 5 (2016): 1. http://dx.doi.org/10.14355/jmmf.2016.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Toumasis, C. "A mathematical diet model." Teaching Mathematics and its Applications 23, no. 4 (December 1, 2004): 165–71. http://dx.doi.org/10.1093/teamat/23.4.165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Krakhmalev, O. N. "MATHEMATICAL MODEL MANIPULATOR ROBOTS." International Journal of Advanced Studies 5, no. 4 (December 19, 2015): 31. http://dx.doi.org/10.12731/2227-930x-2015-4-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Polyakov, S., and M. Borodin. "MATHEMATICAL MODEL DISPENSING MATERIALS." Актуальные направления научных исследований XXI века: теория и практика 2, no. 5 (November 11, 2014): 134–40. http://dx.doi.org/10.12737/6364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Koenders, M. A., and J. B. Sellmeijer. "Mathematical Model for Piping." Journal of Geotechnical Engineering 118, no. 6 (June 1992): 943–46. http://dx.doi.org/10.1061/(asce)0733-9410(1992)118:6(943).

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Bonsu, Bema K., and Marvin B. Harper. "Explanation of Mathematical Model." Pediatric Infectious Disease Journal 23, no. 9 (September 2004): 893. http://dx.doi.org/10.1097/01.inf.0000137586.42248.00.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hao, Wenrui, Elliott D. Crouser, and Avner Friedman. "Mathematical model of sarcoidosis." Proceedings of the National Academy of Sciences 111, no. 45 (October 27, 2014): 16065–70. http://dx.doi.org/10.1073/pnas.1417789111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Jafarov, M. A., V. O. Yevdokymenko, D. S. Kamenskyh, K. A. Rustamov, and Z. A. Jafarov. "Mathematical Model Desublimation Conditions." Asian Journal of Chemical Sciences 13, no. 2 (April 13, 2023): 1–6. http://dx.doi.org/10.9734/ajocs/2023/v13i2234.

Full text
Abstract:
The developed and software-implemented simplified three-dimensional mathematical model of the unsteady-state process of HFS desublimation is described. The study of regularities in the HFS desublimation process is performed by numerical modeling.
APA, Harvard, Vancouver, ISO, and other styles
31

Алимов, Х. Т., Ф. Х. Дзамихова, and Р. И. Паровик. "Fractional Mathematical Model McSherry." Вестник КРАУНЦ. Физико-математические науки, no. 1 (April 17, 2023): 164–79. http://dx.doi.org/10.26117/2079-6641-2023-42-1-164-179.

Full text
Abstract:
В статье предложено обобщение математической модели Макшерри для моделирования искусственной электрокардиограммы — изменяющегося во времени сигнала, отражающий ионный ток, который заставляет сердечные волокна сокращаться, а затем расслабляться. Обобщение математической модели Макшерри заключается в учете свойства наследственности (памяти) динамического процесса, которое можно описать с помощью дробных производных в смысле Герасимова-Капуто. Эффект памяти динамической системы определяет возможность зависимости ее состояний от предыстории и может указывает на диссипативный характер, рассматриваемого процесса. Далее в работе с помощью теории конечно-разностных схем строится явная конечно-разностная схема первого порядка точности для нахождения численного решения предложенной модели. С помощью алгоритма проводится визуализация результатов моделирования: строятся осциллограммы и фазовые траектории при различных значениях параметров модели для здорового человека. Проводится интерпретация результатов моделирования. Показано, что порядки дробных производных влияют на динамические режимы, рассматриваемой дробной динамической системы. В случае соизмеримой дробной динамической системы предельный цикл начинает разрушаться при значениях порядков дробных производных меньше 0,5. В этом случае роль диссипации имеет значительную роль. В случае несоизмеримой дробной динамической системы могут возникать различные режимы от предельных циклов до затухающих, возможны и хаотические режимы. В работе было показано, что при достаточно больших значениях угловой скорости возникает хаотический режим. Исследование хаотических режимов заслуживает отдельного внимания и будет рассмотрено с следующих статьях. Также порядки дробных производных можно рассматривать как дополнительные степени для параметризации сигналов ЭКГ. The article proposes a generalization of the McSherry mathematical model for modeling an artificial electrocardiogram — a time-varying signal that reflects the ion current that causes the heart fibers to contract and then relax. The generalization of the McSherry mathematical model consists in taking into account the property of heredity (memory) of the dynamic process, which can be described using fractional derivatives in the sense of Gerasimov-Caputo. The memory effect of a dynamic system determines the possibility of dependence of its states on the prehistory and may indicate the dissipative nature of the process under consideration. Further, using the theory of finite-difference schemes, an explicit finite-difference scheme of the first order of accuracy is constructed to find a numerical solution of the proposed model. With the help of the algorithm, the simulation results are visualized: oscillograms and phase trajectories are built for different values of the model parameters for a healthy person. The simulation results are interpreted. It is shown that the orders of fractional derivatives affect the dynamic modes of the considered fractional dynamical system. In the case of a commensurate fractional dynamical system, the limit cycle begins to collapse when the orders of the fractional derivatives are less than 0.5. In this case, the role of dissipation plays a significant role. In the case of an incommensurable fractional dynamical system, various regimes can arise from limit cycles to damped ones, and chaotic regimes are also possible. It was shown in the work that a chaotic regime arises at sufficiently large values of the angular velocity. The study of chaotic regimes deserves special attention and will be considered in the following articles. Also, the orders of fractional derivatives can be considered as additional degrees for the parameterization of ECG signals.
APA, Harvard, Vancouver, ISO, and other styles
32

Khanna, Aditya, and Andrei Kotousov. "A Mathematical Model for Interfacial Defects in Snow Layers." International Journal of Materials, Mechanics and Manufacturing 4, no. 3 (2015): 200–203. http://dx.doi.org/10.7763/ijmmm.2016.v4.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kumar, Deepak. "A Mathematical Model of Chemotherapeutic Drug for Tumor Treatment." Indian Journal of Applied Research 4, no. 2 (October 1, 2011): 7–10. http://dx.doi.org/10.15373/2249555x/feb2014/101.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Grytsay, V. I. "A mathematical model of the metabolic process of atherosclerosis." Ukrainian Biochemical Journal 88, no. 4 (August 31, 2016): 75–84. http://dx.doi.org/10.15407/ubj88.04.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Kanchanarat, Siwaphorn, and Settapat Chinviriyasit. "A Mathematical Study of an Influenza Model with Vaccination." International Journal of Applied Physics and Mathematics 4, no. 1 (2014): 22–26. http://dx.doi.org/10.7763/ijapm.2014.v4.248.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Vsevolod Horyachko, Vsevolod, Oksana Hoholyuk, Taras Ryzhyi, and Serhiy Rendzinyak. "Mathematical model of electrical activity of biological network areas." Computational Problems of Electrical Engineering 9, no. 2 (November 10, 2019): 8–12. http://dx.doi.org/10.23939/jcpee2019.02.008.

Full text
Abstract:
In the paper, the mathematical model describing the generation of action potential and propagation of an impulse in the neuron's filaments on the basis of the analysis of parametric electriс circuits with distributed parameters and the mathematical model of synaptic interneuron connections are proposed. Developed models allow taking into account the influence of such factors as geometric, physical and chemical parameters of the neuron's filaments and the presence of different neurotransmitters in chemical synapses on transmitting a neural impulse. Further, such models can be used for investigating the conditions of neuron firing at spatial and time integration of input signals, as well as for the simulation of neuromuscular junctions.
APA, Harvard, Vancouver, ISO, and other styles
37

Rajić, Dušan. "Mathematical-physical model of solving inventive problems." FME Transactions 49, no. 3 (2021): 726–33. http://dx.doi.org/10.5937/fme2103726r.

Full text
Abstract:
The spatial-temporal LT-contradiction matrix is an inventology tool that enables exact calculations of certain parameters in an engineering system through mathematical-physical modeling. It objectifies the decision-making process and creates the preconditions to finding an adequate resource (X-element) with a higher probability, and thus to reach a higher degree of ideality solution (HDIS) of an inventive problem as well. Any engineering system that generates an inventive problem can be described using the LT-contradiction matrix. By crossing the appropriate parameters in the LT-contradiction matrix, with the help of the differential geometry of the tensor, a qualitative-quantitative analysis and calculation of relevant degree all contradictions that exist in the inventive problem can be performed. After that, the path to finding the physical characteristics of the X-element in the mathematical-physical model is facilitated, i.e. finding a real resource that will enable a HDIS of the inventive problem in an engineering system.
APA, Harvard, Vancouver, ISO, and other styles
38

Klyachin, Alеksеy. "Mathematical Model for Reconstructing a Damaged Bitmap." Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 1. Mathematica. Physica, no. 1 (March 2016): 45–56. http://dx.doi.org/10.15688/jvolsu1.2016.1.5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Kézi, Csaba. "Teaching the Analysis of Newton’s Cooling Model to Engineering Students." International Journal of Engineering and Management Sciences 8, no. 2 (June 30, 2023): 63–68. http://dx.doi.org/10.21791/ijems.2023.2.7.

Full text
Abstract:
To apply mathematical methods to physical or other real life problem, we have to formulate the problem in mathematical terms. It means that, we have to construct the mathematical model for the problem. Many physical problems shows the relationships between changing quantities. The rates of change are represented mathematically by derivatives. In this case the mathematical models involve equations relating an unknown function and one or more of its derivatives. These equations are the differential equations. In this article, teaching the analysis of Newton's cooling model to engineering students is presented as one of the applications of separable differential equations.
APA, Harvard, Vancouver, ISO, and other styles
40

Tlustý, T., and P. Tlustý. "Ryder cup, history and strategy - mathematical model." Studia Kinanthropologica 19, no. 3 (September 30, 2018): 287–90. http://dx.doi.org/10.32725/sk.2018.057.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

LIU, Yusheng. "A mathematical model of symmetry based on mathematical definition." Journal of Zhejiang University SCIENCE 3, no. 1 (2002): 24. http://dx.doi.org/10.1631/jzus.2002.0024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Abdullah, Saeed Ahmad, Saud Owyed, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kamal Shah, and Hussam Alrabaiah. "Mathematical analysis of COVID-19 via new mathematical model." Chaos, Solitons & Fractals 143 (February 2021): 110585. http://dx.doi.org/10.1016/j.chaos.2020.110585.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yusheng, Liu, Yang Jiangxin, Wu Zhaotong, and Gao Shuming. "A mathematical model of symmetry based on mathematical definition." Journal of Zhejiang University-SCIENCE A 3, no. 1 (January 2002): 24–29. http://dx.doi.org/10.1631/bf02881837.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Agárdi, Anita, László Kovács, and Tamás Bányai. "Mathematical Model for the Generalized VRP Model." Sustainability 14, no. 18 (September 16, 2022): 11639. http://dx.doi.org/10.3390/su141811639.

Full text
Abstract:
The Vehicle Routing Problem (VRP) is a highly investigated logistics problem. VRP can model in-plant and out-plant material handling or a whole supply chain. The first Vehicle Routing Problem article was published in 1959 by Dantzig and Ramser, and many varieties of VRP have appeared since then. Transport systems are becoming more and more customized these days, so it is necessary to develop a general system that covers many transport tasks. Based on the literature, several components of VRP have appeared, but the development of an integrated system with all components has not yet been completed by the researchers. An integrated system can be useful because it is easy to configure; many transportation tasks can be easily modeled with its help. Our purpose is to present a generalized VRP model and show, in the form of case studies, how many transport tasks the system can model by including (omitting) each component. In this article, a generalized system is introduced, which covers the main VRP types that have appeared over the years. In the introduction, the basic Vehicle Routing Problem is presented, where the most important Vehicle Routing Problem components published so far are also detailed. The paper also gives the mathematical model of the generalization of the Vehicle Routing Problem and some case studies of the model are presented.
APA, Harvard, Vancouver, ISO, and other styles
45

Al-Hanifah, Jihan Azizah, Yus Mochamad Cholily, and Siti Khoiruli Ummah. "Analysis of Students' Analytical Thinking Ability and Mathematical Communication Using Online Group Investigation Learning Model." Mathematics Education Journal 7, no. 1 (March 1, 2023): 100–113. http://dx.doi.org/10.22219/mej.v7i1.23342.

Full text
Abstract:
Analytical thinking and mathematical communication are abilities included in the learning process objectives. This study aims to describe students' analytical thinking skills and mathematical communication using the online group investigation cooperative learning model. The subjects of this research were 30 students of class VIII-C. The type of research used is descriptive qualitative. The data to determine the implementation of learning and the ability to think analytically and communicate mathematically are observations, documentation, and tests. The study results show that the online group investigation type cooperative learning model implementation takes place following the steps of group investigation learning. The results of the ability to think analytically and communicate mathematically meet all indicators. The distinguishing indicator of analytical thinking ability is the most widely achieved, and the one that has yet to be completed much is the attributing indicator. So that students' analytical thinking skills have an analytical category. The most widely conducted indicator of mathematical communication ability is the indicator of expressing mathematical ideas in writing. What has yet to be widely achieved is the indicator of analyzing and evaluating mathematical concepts. So that students' mathematical communication skills have a mathematical category.
APA, Harvard, Vancouver, ISO, and other styles
46

Cârdei, P., A. Nedelcu, and R. Ciuperca. "MATHEMATICAL MODEL FOR THE EVOLUTION OF Chlorella Algae." INMATEH Agricultural Engineering 57, no. 1 (April 30, 2019): 91–102. http://dx.doi.org/10.35633/inmateh_57_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Neel, Matthew S. "Simple Mathematical Model for Designing a Corbeled Arch." Mathematics Teacher: Learning and Teaching PK-12 116, no. 4 (April 2023): 281–88. http://dx.doi.org/10.5951/mtlt.2022.0162.

Full text
Abstract:
This mathematical method can be used to find the size and shape of the bricks necessary to create a corbeled arch of nearly any shape. This method focuses on finding the minimum lengths of the bricks necessary to create a mathematically stable arch subject to certain constraints.
APA, Harvard, Vancouver, ISO, and other styles
48

Stepova, Kateryna, Yaroslav Gumnitskyy, and Duncan Maquarrie. "Mechanism and Mathematical Model of Н2S Chemisorption on Modified Bentonite." Chemistry & Chemical Technology 3, no. 3 (September 15, 2009): 169–72. http://dx.doi.org/10.23939/chcht03.03.169.

Full text
Abstract:
New H2S adsorbent was synthesized on the basis of bentonite. It was analyzed using elemental and BET surface area analysis. Models and mathematical representations of mechanisms that govern the chemisorption of hydrogen sulfide on the chemically treated bentonite were presented. The models adequacy was assessed by means of statistic t-criterion.
APA, Harvard, Vancouver, ISO, and other styles
49

TUDOSIE, Alexandru-Nicolae. "MATHEMATICAL MODEL FOR AN AIRCRAFT TURBOSHAFT-TYPE AUXILIARY POWER UNIT." Review of the Air Force Academy 15, no. 3 (December 14, 2017): 161–70. http://dx.doi.org/10.19062/1842-9238.2017.15.3.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

KAMBUSHEV, Martin, Stefan BILIDEROV, and Yavor VARBANOV. "SYNTHESIS AND STUDY OF THE MATHEMATICAL MODEL OF A TRICOPTER." SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE 18, no. 1 (June 24, 2016): 149–58. http://dx.doi.org/10.19062/2247-3173.2016.18.1.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography