Academic literature on the topic 'Mathematical and symbolic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mathematical and symbolic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mathematical and symbolic"
Wolfram, Stephen. "Symbolic mathematical computation." Communications of the ACM 28, no. 4 (April 1985): 390–94. http://dx.doi.org/10.1145/3341.3347.
Full textBing, Thomas J., and Edward F. Redish. "Symbolic manipulators affect mathematical mindsets." American Journal of Physics 76, no. 4 (April 2008): 418–24. http://dx.doi.org/10.1119/1.2835053.
Full textLutovac, Miroslav, and Dejan Tosic. "Symbolic signal processing and system analysis." Facta universitatis - series: Electronics and Energetics 16, no. 3 (2003): 423–31. http://dx.doi.org/10.2298/fuee0303423l.
Full textVasileva, Natalia, Vladimir Grigorev-Golubev, and Irina Evgrafova. "Mathematical programming in Mathcad and Mathematica." E3S Web of Conferences 419 (2023): 02007. http://dx.doi.org/10.1051/e3sconf/202341902007.
Full textBehmanesh-Fard, Navid, Hossein Yazdanjouei, Mohammad Shokouhifar, and Frank Werner. "Mathematical Circuit Root Simplification Using an Ensemble Heuristic–Metaheuristic Algorithm." Mathematics 11, no. 6 (March 19, 2023): 1498. http://dx.doi.org/10.3390/math11061498.
Full textZhanatauov, S. U. "VERBAL, SYMBOLIC, MATHEMATICAL, SEMANTIC, BEHAVIORAL, COGNITIVE MODELS." Theoretical & Applied Science 113, no. 09 (September 30, 2022): 169–74. http://dx.doi.org/10.15863/tas.2022.09.113.32.
Full textDiez, F., and R. Moriyon. "Solving mathematical exercises that involve symbolic computations." Computing in Science & Engineering 6, no. 1 (January 2004): 81–84. http://dx.doi.org/10.1109/mcise.2004.1255826.
Full textTorresi, Sandra. "Interaction between domain-specific and domain-general abilities in math´s competence." Journal of Applied Cognitive Neuroscience 1, no. 1 (December 7, 2020): 43–51. http://dx.doi.org/10.17981/jacn.1.1.2020.08.
Full textXu, Chang, Feng Gu, Katherine Newman, and Jo-Anne LeFevre. "The hierarchical symbol integration model of individual differences in mathematical skill." Journal of Numerical Cognition 5, no. 3 (December 20, 2019): 262–82. http://dx.doi.org/10.5964/jnc.v5i3.140.
Full textLestari, Nurcholif Diah Sri, Wasilatul Murtafiah, Marheny Lukitasari, Suwarno Suwarno, and Inge Wiliandani Setya Putri. "IDENTIFIKASI RAGAM DAN LEVEL KEMAMPUAN REPRESENTASI PADA DESAIN MASALAH LITERASI MATEMATIS DARI MAHASISWA CALON GURU." KadikmA 13, no. 1 (April 30, 2022): 11. http://dx.doi.org/10.19184/kdma.v13i1.31538.
Full textDissertations / Theses on the topic "Mathematical and symbolic"
Redelinghuys, Gideon. "Symbolic string execution." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20335.
Full textENGLISH ABSTRACT: Symbolic execution is a well-established technique for automated test generation and for nding errors in complex code. Most of the focus has however been on programs that manipulate integers, booleans, and even, references in object-oriented programs. Recently researchers have started looking at programs that do lots of string processing, motivated, in part, by the popularity of the web and the risk that errors in web servers may lead to security violations. Attempts to extend symbolic execution to the domain of strings are mainly divided into one of two camps: automata-based approaches and approaches based on bitvector analysis. Here we investigate these two approaches in a uni ed setting, namely the symbolic execution framework of Java PathFinder. We describe the implementations of both approaches and then do an evaluation to show under what circumstances each approach performs well (or not so well). We also illustrate the usefulness of the symbolic execution of strings by nding errors in real-world examples.
AFRIKAANSE OPSOMMING: Simboliese uitvoering is 'n bekende tegniek vir automatiese genereering van toetse en om foute te vind in ingewikkelde bronkode. Die fokus sover was grotendeels op programme wat gebruik maak van heelgetalle, boolse waardes en selfs verwysings in objek geörienteerde programme. Navorsers het onlangs begin kyk na programme wat baie gebruik maak van string prosessering, deelteliks gemotiveerd deur die populariteit van die web en die gepaardgaande risiko's daarvan. Vorige implementasies van simboliese string uitvoering word binne twee kampe verdeel: die automata gebaseerde benadering en bitvektoor gebaseerde benadering. Binne hierdie tesis word die twee benaderings onder een dak gebring, naamliks Java PathFinder. Die implentasie van beide benaderings word bespreek en ge-evalueer om die omstandighede uit te wys waarbinne elk beter sou vaar. Die nut van simboliese string uitvoering word geïllustreer deur dit toe te pas in foutiewe regte wêreld voorbeelde.
Bishop, Joyce Wolfer Otto Albert D. Lubinski Cheryl Ann. "Middle school students' understanding of mathematical patterns and their symbolic representations." Normal, Ill. Illinois State University, 1997. http://wwwlib.umi.com/cr/ilstu/fullcit?p9803721.
Full textTitle from title page screen, viewed June 1, 2006. Dissertation Committee: Albert D. Otto, Cheryl A. Lubinski (co-chairs), John A. Dossey, Cynthia W. Langrall, George Padavil. Includes bibliographical references (leaves 119-123) and abstract. Also available in print.
Uwimbabazi, Aline. "Extended probabilistic symbolic execution." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/85804.
Full textENGLISH ABSTRACT: Probabilistic symbolic execution is a new approach that extends the normal symbolic execution with probability calculations. This approach combines symbolic execution and model counting to estimate the number of input values that would satisfy a given path condition, and thus is able to calculate the execution probability of a path. The focus has been on programs that manipulate primitive types such as linear integer arithmetic in object-oriented programming languages such as Java. In this thesis, we extend probabilistic symbolic execution to handle data structures, thus allowing support for reference types. Two techniques are proposed to calculate the probability of an execution when the programs have structures as inputs: an approximate approach that assumes probabilities for certain choices stay fixed during the execution and an accurate technique based on counting valid structures. We evaluate these approaches on an example of a Binary Search Tree and compare it to the classic approach which only take symbolic values as input.
AFRIKAANSE OPSOMMING: Probabilistiese simboliese uitvoering is ’n nuwe benadering wat die normale simboliese uitvoering uitbrei deur waarksynlikheidsberekeninge by te voeg. Hierdie benadering kombineer simboliese uitvoering en modeltellings om die aantal invoerwaardes wat ’n gegewe padvoorwaarde sal bevredig, te beraam en is dus in staat om die uitvoeringswaarskynlikheid van ’n pad te bereken. Tot dus vêr was die fokus op programme wat primitiewe datatipes manipuleer, byvoorbeeld lineêre heelgetalrekenkunde in objek-geörienteerde tale soos Java. In hierdie tesis brei ons probabilistiese simboliese uitvoering uit om datastrukture, en dus verwysingstipes, te dek. Twee tegnieke word voorgestel om die uitvoeringswaarskynlikheid van ’n program met datastrukture as invoer te bereken. Eerstens is daar die benaderingstegniek wat aanneem dat waarskynlikhede vir sekere keuses onveranderd sal bly tydens die uitvoering van die program. Tweedens is daar die akkurate tegniek wat gebaseer is op die telling van geldige datastrukture. Ons evalueer hierdie benaderings op ’n voorbeeld van ’n binêre soekboom en vergelyk dit met die klassieke tegniek wat slegs simboliese waardes as invoer neem.
Lindroth, Olof. "A random formula lower bound for ordered DLL extended with local symmetry recognition /." Uppsala, 2004. http://www.math.uu.se/research/pub/Lindroth1.pdf.
Full textLindman, Phillip A. (Phillip Anthony). "Intuition versus Formalization: Some Implications of Incompleteness on Mathematical Thought." Thesis, University of North Texas, 1994. https://digital.library.unt.edu/ark:/67531/metadc277970/.
Full textGorman, Judith A. "Aspects of coherent logic." Thesis, McGill University, 1987. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=63868.
Full textBrierley, William. "Undecidability of intuitionistic theories." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=66016.
Full textLindberg, Maja. "The innate ability to cope with mathematics : A comparative fMRI study of children's and adults' neural activity during non-symbolic mathematical tasks." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-158199.
Full textWheeler, Russell Clark. "Using symbolic dynamical systems: A search for knot invariants." CSUSB ScholarWorks, 1998. https://scholarworks.lib.csusb.edu/etd-project/3033.
Full textSharma, Richa. "Semi-automated approach to support logical formalism for requirements analysis and validation." Thesis, IIT Delhi, 2016. http://localhost:8080/xmlui/handle/12345678/7227.
Full textBooks on the topic "Mathematical and symbolic"
Understanding symbolic logic. 2nd ed. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textKlenk, Virginia. Understanding symbolic logic. 3rd ed. Upper Saddle River, N.J: Prentice Hall, 1994.
Find full textKlenk, Virginia. Understanding symbolic logic. 3rd ed. Englewood Cliffs, N.J: Prentice Hall, 1994.
Find full textUnderstanding symbolic logic. New York: Custom Publishing, a division of Pearson, 2008.
Find full textSmith, Karl J. Introduction to symbolic logic. 2nd ed. Pacific Grove, Calif: Brooks/Cole Pub. Co., 1991.
Find full textSymbolic logic. Australia: Wadsworth/Thomson Learning, 2001.
Find full text1915-, Metropolis N., ed. Symbolic dynamics of trapezoidal maps. Dordrecht: D. Reidel Pub. Co., 1986.
Find full textPeter, Milosav, and Ercegovaca Irene, eds. Mathematics and mathematical logic: New research. Hauppauge, NY: Nova Science Publishers, 2009.
Find full textKlenk, Virginia. Understanding symbolic logic. 2nd ed. Englewood Cliffs, N.J: Prentice Hall, 1989.
Find full textMartin, Robert M. Introducing symbolic logic. Peterborough, Ont: Broadview Press, 2004.
Find full textBook chapters on the topic "Mathematical and symbolic"
Awange, Joseph L., Béla Paláncz, Robert H. Lewis, and Lajos Völgyesi. "Symbolic Regression." In Mathematical Geosciences, 321–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67371-4_11.
Full textAwange, Joseph L., Béla Paláncz, Robert H. Lewis, and Lajos Völgyesi. "Symbolic Regression." In Mathematical Geosciences, 433–68. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-92495-9_12.
Full textGlasner, Eli. "Symbolic representations." In Mathematical Surveys and Monographs, 269–97. Providence, Rhode Island: American Mathematical Society, 2003. http://dx.doi.org/10.1090/surv/101/15.
Full textGilmore, Camilla, Silke M. Göbel, and Matthew Inglis. "Symbolic Number." In An Introduction to Mathematical Cognition, 29–50. Matthew Inglis. Description: Abingdon, Oxon ; New York, NY : Routledge, 2018. |: Routledge, 2018. http://dx.doi.org/10.4324/9781315684758-3.
Full textCohen, Arjeh M. "Interactive Mathematical Documents." In Artificial Intelligence and Symbolic Computation, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11856290_1.
Full textWang, Paul S. "Modern Symbolic Mathematical Computation Systems." In Applications of Computer Algebra, 62–73. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-6888-5_2.
Full textMazzucco, Isolde. "SYMOPT: Symbolic Parametric Mathematical Programming." In Computer Algebra in Scientific Computing CASC 2001, 417–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56666-0_32.
Full textKohlhase, Michael, and Ioan Sucan. "A Search Engine for Mathematical Formulae." In Artificial Intelligence and Symbolic Computation, 241–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11856290_21.
Full textPfalzgraf, J. "On mathematical modeling in robotics." In Artificial Intelligence and Symbolic Mathematical Computing, 116–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-57322-4_8.
Full textDiveev, Askhat, and Elizaveta Shmalko. "Mathematical Statements of MLC Problems." In Machine Learning Control by Symbolic Regression, 7–25. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-83213-1_2.
Full textConference papers on the topic "Mathematical and symbolic"
Watt, Stephen M. "On the Mathematics of Mathematical Handwriting Recognition." In 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2010). IEEE, 2010. http://dx.doi.org/10.1109/synasc.2010.93.
Full textLudwig, Simone A., Omer F. Rana, William Naylor, and Julian Padget. "Mathematical matchmaker for numeric and symbolic services." In the fourth international joint conference. New York, New York, USA: ACM Press, 2005. http://dx.doi.org/10.1145/1082473.1082819.
Full textBuchberger, Bruno. "Mathematical Theory Exploration." In 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2006. http://dx.doi.org/10.1109/synasc.2006.50.
Full textSasaki, Yuji, Keito Tanemura, Yuki Tokuni, Ryohei Miyadera, and Hikaru Manabe. "Application of Symbolic Regression to Unsolved Mathematical Problems." In 2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1). IEEE, 2023. http://dx.doi.org/10.1109/icaia57370.2023.10169711.
Full textKasihmuddin, Mohd Shareduwan Mohd, Saratha Sathasivam, and Mohd Asyraf Mansor. "Artificial bee colony in neuro - Symbolic integration." In PROCEEDINGS OF THE 24TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES: Mathematical Sciences Exploration for the Universal Preservation. Author(s), 2017. http://dx.doi.org/10.1063/1.4995912.
Full textMansor, Mohd Asyraf, and Saratha Sathasivam. "Activation function comparison in neural-symbolic integration." In ADVANCES IN INDUSTRIAL AND APPLIED MATHEMATICS: Proceedings of 23rd Malaysian National Symposium of Mathematical Sciences (SKSM23). Author(s), 2016. http://dx.doi.org/10.1063/1.4954526.
Full textWatt, Stephen. "Improving Pen-Based Mathematical Interfaces." In 2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2006. http://dx.doi.org/10.1109/synasc.2006.46.
Full textCarstea, Alexandru, Georgiana Macariu, Marc Frincu, and Dana Petcu. "Composing Web-Based Mathematical Services." In 2007 Ninth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing. IEEE, 2007. http://dx.doi.org/10.1109/synasc.2007.39.
Full textLarcombe, P. J. "Exact algebraic pole-zero cancellation using symbolic mathematical computation." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980212.
Full textDOS REIS, G., B. MOURRAIN, PH TRÉBUCHET, and F. ROUILLIER. "AN ENVIRONMENT FOR SYMBOLIC AND NUMERIC COMPUTATION." In Proceedings of the First International Congress of Mathematical Software. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777171_0024.
Full textReports on the topic "Mathematical and symbolic"
Steinberg, Stanly. Symbol Manipulation and Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada179571.
Full text