Contents
Academic literature on the topic 'Matériaux – Modèles mathématiques – Piles à combustible'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matériaux – Modèles mathématiques – Piles à combustible.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Matériaux – Modèles mathématiques – Piles à combustible"
Costa, Rémi. "Contribution à l'étude et à la mise en forme d'une cellule de pile à combustible à conduction protonique P. C. F. C." Paris, ENMP, 2009. http://www.theses.fr/2009ENMP0024.
Full textHydrogen and fuel cells are now considered as a potential and credible alternative to the massive use of fossil fuels. In a French project led by EDF, a consortium focused its research on the achievement of a Proton Conducting Fuel Cell (P. C. F. C. ) operating at 600°C for residential use with BaCe0,9Y0,1O3-α as proton conductor. This study was led in this framework and aimed to understand the behaviour of this material during sintering and to assess tape casting and co-sintering as low cost process to shape anode-electrolyte half cells. BaCe0,9Y0,1O3-α can be easily prepared by soft chemistry. However, the refractory behaviour of this material imposes strong sintering parameters which led to its thermal decomposition and the degradation of its transport properties. We propose a model on this thermal damaging. The study of interactions between BaCe0,9Y0,1O3-α and NiO, generally used as nickel precursor in anode cermet, has been particularly complex, and highlighted both benefits (reduction of sintering temperature) and drawbacks (impaired transport properties) of Ni2+ diffusion. About shaping process, sedimentation of powders due to a lack of stability of slurries and interactions with NiO led to prohibitive deformations during co-sintering. As a consequence, a new metal supported approach based on the use of a nickel foam was developed, giving encouraging results
Bouloré, Antoine. "Etude et modélisation de la densification en pile des oxydes nucléaires UO2 et MOX." Grenoble INPG, 2001. http://www.theses.fr/2001INPG4203.
Full textAmongst the many phenomena which take place in the course of the irradiation of UO2 or (U, Pu)O2 nuclear fuels, one of them involves the elimination of a fraction of the as-fabricated porosity. In-pile densification or sintering can reach 2. 5%, i. E. Approximately half the initial volume of pores is likely to disappear. Our literature survey indicates that the amplitude and kinetics of the phenomenon are both heavily dependent on the initial fuel microstructure. Micro-structural characterisation techniques of oxide fuels have therefore been developed in conjunction with quantitative image analysis methods. The ensuing methodology enables a quantitative comparison of micro-structural features in different fuels and has been applied to ascertaining the influence of the local fission rate and temperature on in-pile densification. It is thus revealed that in-pile operation eliminates a significant fraction of pores smaller than 3 microns in diameter. The experimental data generated has been used to set up a semi-empirical and a mechanistic model. The former is based on experimental results and is not essentially predictive. The inability of this model to predict the in-pile densification of oxide fuels is illustrated by the fact that the maximum fraction of pores that disappears is proportional to an empirical function of fission rate, and temperature. The proportionality factor appears to be difficult to correlate quantitatively to any given micro-structural feature. The model has however been applied to the interpretation of an in-pile densification experiment carried out in the Halden reactor (Norway). The latter model is mechanistic, i. E. It is based on the solution to a set of equations that describe the coupled temperature and radiation induced phenomena which occur in-pile. These can broadly be broken down into three categories : the fission fragment-pore interaction, the creation of point defects as the fission fragments slow down, and the diffusion of these point defects to sinks. The model calculates the evolution of the pore size distribution and has successfully been applied to modelling the in-pile densification behaviour of a fuel pellet characterised before and after irradiation
Mathieu-Potvin, François. "Modélisation et optimisation des canaux réactifs de microréacteurs et des piles à combustible à hydrogène." Thesis, Université Laval, 2014. http://www.theses.ulaval.ca/2014/30552/30552.pdf.
Full textPolymer electrolyte membrane fuel cells (PEMFC) are devices that produce electricity by means of a chemical reaction between hydrogen and oxygen. These devices are possible alternatives for the replacement of internal combustion engines. However, they are not yet competitive, because their cost, weight and volume are still too large. A challenge is thus to increase PEMFC efficiency by optimizing their design. The main objective of the present project is to develop mathematical and numerical modeling tools in order to optimize the PEMFC design. First, small-scale transport phenomena in the porous media of PEMFC are formulated mathematically, and then a volume averaging method is used to transform these equations into equations that are valid at a larger scale in the porous media. The new mathematical model obtained with this strategy shows that the mass conservation equation contains an additional term, while the momentum equation remains similar to Darcy’s Law. Second, a numerical model is developed in order to optimize the geometry of catalytic channels in which a fluid undergoes chemical reactions. This kind of flow may represent, for example, the reacting species that move in PEMFC channels. Correlations are developed analytically in order to predict the optimal designs for these channels. These correlations were validated with numerical simulations. The results obtained may be applied to several different devices (e.g., microreactors, monolith, PEMFC). Finally, the mathematical and numerical model of a PEMFC are developed and validated. This model is used to optimize catalyst allocation between the anode and cathode sides of the fuel cell, and also to optimize catalyst distribution within the cathode catalyst layer. The analysis shows that an unequal allocation of catalyst between the anode and cathode sides results in a higher electric current. It was also shown that a non-uniform catalyst distribution within the cathode layer yields higher electric current. Finally, the most influential parameters of the numerical model were identified by a sensitivity analysis.
Levesque, Caillol Noémie. "Elaboration, caractérisation et modélisation de cathode sérigraphiée, La₀. ₈Sr₀. ₂MnO₃, pour pile à combustible SOFC." Saint-Etienne, EMSE, 2006. http://tel.archives-ouvertes.fr/tel-00165173.
Full textThe properties of LSM screen-printed cathodes on YSZ electrolytes and the modelling of oxygen reduction have been studied. A bibliographic review of published works on LSM and LSM/YSZ interface reveals the lack of consensus over the mechanism proposed between oxygen and LSM. The different theoretic models possible and their associated kinetic laws are presented to serve as the basis for the kinetic modelling. Microstructural characterisations proved the adaptability of the screen-printing technique for making electrodes. The layers are stable in time and well reproducible. Their microstructure is homogenous and regular with a porosity of 0. 6. Physico-chemical characterisations were carried out. Infra-red spectrometry analysis and thermo-programmed desorptions have shown the existence of different kinds of oxygen-adsorbed species on LSM powder. A calorimetric study has revealed a change in the quantity of heat released during oxygen adsorption as a function of temperature. By XPS analysis on screen-printed layers, important strontium segregation was observed depending on pressure, temperature and polarisation conditions. From electrochemical characterisations made by impedance spectroscopy, three resistive contributions have been identified. Only the low frequency contribution, which is the only pressure sensitive contribution, was considered to correspond to an electrode phenomenon. Following a methodical study of the different modelling hypothesis, a mechanism for the cathodic reaction was obtained. The proposed model is complex. It is composed of three conductivity paths running in parallel (two surface paths and one bulk path). These paths involve two different oxygen species and their preponderance depends on pressure, temperature and polarisation conditions. A study of water vapour influence completes this work, to understand its impact on the cathode electrical performance. The benefits brought by water vapour are not linked to a direct catalytic effect, as it does not affect the apparent activation energy of the cathode's process. The experiments seem to indicate that the benefits are linked to the strontium segregation at the surface of grains. It seems water vapour helps maintain and regenerate the initial properties of the layer
Friede, Klaus Wolfgang. "Modélisation et caractérisation d'une pile à combustible du type PEM." Vandoeuvre-les-Nancy, INPL, 2003. http://www.theses.fr/2003INPL044N.
Full textIn this work, the behaviour of a fuel cell is described in regard of its integration into a power production system. Its use is difficult as a great number of operating parameters has to be controlled and internal behaviour has to be known. Therefore, the relations between the operating conditions and the electrical parameters are presented. The model describes the internal phenomena in the fuel cell while staying restricted enough to allow a fast resolution in stationary and transient operation. The fuel cell is divided into layers. Each layer consists of a different material. A mono-dimensional approach has been chosen. Following an axis that is perpendicular to the membrane surface, every layer is discretised into several elements. This work is dealing with a mathematical model of a single fuel cell, based on gas and water flow equations. The electrochemical reactions are described while taking into account the mutual influence with other values. The description of the cell impedance is of special interest. The model shows the evolution of electrical values as a function of operating conditions. The resolution of the equations using Matlab-Simuling software allows to localise the internai phenomena and to visualise the transient behaviour. Special attention is given to water management, which is one of the biggest challenges in operating low temperature fuel cells. The presentation of a test hench with a 500 W PEM fuel cell and stationary and transient measurements show the cell's performance and its sensibility to parameter changes. In particular, membrane resistance and impedance values are interpreted to get more information about the internal physical phenomena of the fuel cell
Bouhala, Lyazid. "Endommagement des piles à combustible type SOFC : simulation de la propagation des fissures par EFG étendue." Strasbourg, 2011. http://www.theses.fr/2011STRA6011.
Full textThe thesis objective is the modeling of thermo mechanical failure in Solid Oxide Fuel Cells and the simulation of crack propagation. The study is conducted by extended Element Free Galerkin method (XEFG). After implementing the meshless method for a mechanical problem without crack, we introduced the method by partition of unity principle in fracture mechanics. The second part of this work was devoted to the application of the meshless method to simulate crack propagation in a pre-cracked solid. The problem of cracking in the presence of an interface of a bi-layered material like fuel cell unit was discussed. We then detailed the technique used for calculating stress intensity factors and the criterion for crack propagation. A parametric study is given to illustrate the effect of geometry and mechanical properties of the interface on the crack propagation path. The third part of the thesis extends the concept of the method XEFG to thermo-elasticity according to the crack nature. The last part of the thesis is devoted to extending the meshless method to interfacial fracture
Bencherif, Karim. "Modélisation mathématique d'une pile à combustible et d'un reformeur essence en vue de la commande." Paris 9, 2004. https://portail.bu.dauphine.fr/fileviewer/index.php?doc=2004PA090072.
Full textThe goal of this study is to develop mathematical models for a fuel cell and a gasoline reformer used in a fuel cell vehicle. Mathematical modeling of the physicochemical phenomena involved by the fuel cell and the reformer shows us that a single class of mathematical models can be used : particular reaction-transport-diffusion system of dimension 1 in space. Once this class of models made precise, it is possible to use several methods of reduction : time-scales separation, variables aggregation and particular space in semi-discretization. Some reduced models obtained by this way were used in many applications in simulation, estimation and control
Bernier, Michel. "Modélisation d'un coeur de pile au gaz naturel." Aix-Marseille 1, 1999. http://www.theses.fr/1999AIX11034.
Full textRabih, Samer. "Contribution à la modélisation de systèmes réversibles de types électrolyseur et pile à hydrogène en vue de leur couplage aux générateurs photovoltaïques." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7731/1/rabih.pdf.
Full textBerrod, Quentin. "Relation structure - transport dans des membranes et matériaux modèles pour pile à combustible." Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00981913.
Full text