Contents
Academic literature on the topic 'Matériaux hybrides – Teneur en silicium'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Matériaux hybrides – Teneur en silicium.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Matériaux hybrides – Teneur en silicium"
Touati, Fahti, Khaled Haouemi, and Néji Gharbi. "Synthèse de nouveaux matériaux hybrides à base de silicium." Annales de Chimie Science des Matériaux 31, no. 2 (March 31, 2006): 259–66. http://dx.doi.org/10.3166/acsm.31.259-266.
Full textHellali, Taoufik, Afifa Hafidh, Noureddine Etteyeb, Fathi Touati, Ahmed Hichem Hamzaoui, and Sayda Somrani. "New silica-based hybrid materials (Nouveaux matériaux hybrides à base de silicium)." Phosphorus, Sulfur, and Silicon and the Related Elements 192, no. 9 (July 5, 2017): 1018–26. http://dx.doi.org/10.1080/10426507.2017.1315423.
Full textDissertations / Theses on the topic "Matériaux hybrides – Teneur en silicium"
Bruneau, Marion. "Elaboration de matériaux composites hybrides pour l'encapsulation de molécules d'intérêt relargables sous différents stimuli." Thesis, Mulhouse, 2020. http://www.theses.fr/2020MULH3696.
Full textThis work is devoted to the development of materials allowing the controlled release of molecules of interest. In the first part of this project, syntheses of organic-inorganic hybrids having a talc type structure were carried out with different silica sources, which induces variable crystallinity and polycondensation of silicic species. These hybrids were then characterized. The folic acid (molecule of interest) once added to the synthesis medium was encapsulated into the hybrid. The incorporation of folic acid does not induce significant changes in the structure of the hybrids formed. The different characterization techniques have shown that the folic acid is not very mobile in the structure and is therefore well encapsulated in the interlayer space of the hybrids. The hybrids showed a fast releasing kinetics, both in water or in a model soil. Hybrids prepared from N2TMS (N- [3-(trimethoxysilyl))propyl]ethylenediamine) showed the fastest release, while those synthesized with C16TMS (Hexadecyltrimethoxysilane) exhibited the slowest releasing kinetics due to the highly hydrophobic nature of the organic chain of the hybrid. The second part of the thesis was focused on finding and testing materials potentially active in the photo-controlled release of active molecules. The hybrid materials synthesized from NBATES (3-(triethoxysilylpropyl)-4- nitrobenzamide) have shown promising results: under UV irradiation at 254 nm, the quantity released of a model molecule was indeed two times higher than that measured in the absence of light. For the hybrids synthesized from MCTES (O-4-methylcoumarinyl-N-[3- (triethoxysilyl)propyl]carbamate), the best results was obtained under UV irradiation at 365 nm. The photosensitive functional groups present in the talc type hybrids made possible to obtain photosensitive composites. These promising results are the base for further developments in agricultural applications
Prunet, Geoffrey. "Matériaux polymères/silicium hybrides pour des applications thermoélectriques." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0223.
Full textNowadays, human beings seek mainly to manage energy and their uses toward sustainable development. Among the various renewable energies, thermoelectricity is the solution for the conversion of heat losses into electricity, and therefore the improvement of thermal efficiency. Thermoelectric materials for room-temperature applications are dominated by bismuth telluride (Bi2Te3) based materials offering higher efficiencies. Nevertheless, their cost and toxicity prevent large-scale applications. In recent years, polymer materials have been considered as alternatives for Bi2Te3, although their thermoelectric properties are significantly lower. The aim of this thesis was therefore to develop an efficient thermoelectric polymer, in combination with an inorganic material in order to obtain an efficient thermoelectric generator. PEDOT, P3HT, and PCDTBT were chosen as p-type polymers and silicon substrates as semi-conducting inorganic materials due to their high importance and performance in their respective fields. Several optimization routes have been investigated, either by fine-tuning the doping level parameters or by tailoring the surface of the inorganic materials. Hybrid thermoelectric generators (TEGs) were developed for near room temperature application. The coupling with polymer material achieved to obtain an enhancement of device performances resulting in record value
Halioua, Yacine. "Etude de structures hybrides : lasers à cristaux photoniques en semi-conducteurs III-V sur silicium." Paris 7, 2011. http://www.theses.fr/2011PA077169.
Full textThe ever-growing demand for high data transmission and processing rates is hitting the limits of microelectronic circuits and Systems. It is currently admitted that photons can significantly relieve the speed constraints of inter as well as intra-chip communications. More specifically, due to their inherent advantages, the hybridisation of III-V active and Si passive photonic structures, which are CMOS compatible, opens a new avenue for an exciting field of endeavour. In this context, the present thesis deals with fabrication and study in depth of a two level structure based on III-V photonic crystals (PhCs) evanescently coupled to silicon wires. The two levels are bonded together using an adhesive BCB-based bonding technique. Taking advantage of PhCs properties reasonably low threshold laser operation coupled to the silicon wire underneath is demonstrated, using both PhCs waveguides and wire cavities. The optical characteristics and coupling efficiencies of the System against various parameters were experimentally studied and the results successfully confronted to modelling, showing amongst other results that 90% of the light emitted in the top level is extracted via the silicon wire. Such a high value has been rendered possible by by an important work on modelling and the development of a specific alignment processing procedure providing an accuracy of ~ 25 nm. In conclusion, the observation of low-threshold bistability under gain regime is presented and numerous perspectives are discussed
Cauquil-Vergnes, Aude. "Etude structurale et propriétés d'auto-organisation dans des gels hybrides organique-inorganique à base de silicium." Montpellier 2, 2002. http://www.theses.fr/2002MON20128.
Full textBen, Dkhil Sadok. "Cellules solaires hybrides transparentes à base de nanofils de silicium et du poly(vinylcarbazole)." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10130.
Full textThe work presented in this thesis focuses on the implementation and study of hybrid solar cells interpenetrating networks using silicon nanowires. Our studies have focused on the optimization of hybrid structures based PVK or MEH-PPV mixed in their volume with silicon nanowires phase, referring to structures PVK/NFSI and MEH-PPV/NFSI respectively. This study showed the close interdependence between morphology and properties of nanocomposites photovoltaic cells made. We studied the influence of the concentration of silicon nanowires on the dissociation process of photo-generated pairs. We also studied the effect of heat treatment and we have demonstrated a better load transfer in the case of structures PVK/NFSI. We also observed the beneficial effect of deoxidation treatment and functionalization of the nanowires on the improvement of charge transfer in the case of structures made. In conclusion, we have shown that the PV hybrid cell using silicon nanowires can be optimized through understanding and fine tuning of the charge transfer
Bouclé, Johann. "Elaboration et étude des propriétés électro-optiques de matériaux hybrides à base de nanocristaux de carbure de silicium." Phd thesis, Université du Maine, 2004. http://tel.archives-ouvertes.fr/tel-00007825.
Full textLepeytre, Cédric. "Matériaux hybrides organique-inorganique monophasés : synthèse et étude des paramètres conditionnant le solide." Montpellier 2, 1998. http://www.theses.fr/1998MON20014.
Full textBoullanger, Arnaud. "Matériaux hybrides organiques - inorganiques. Structuration et contrôle de la multifonctionnalisation." Thesis, Montpellier 2, 2010. http://www.theses.fr/2010MON20065.
Full textMesostructured hybrid materials (organic-inorganic) were prepared according two different ways: the sol-gel process on the one hand, the assembly of molecular hybrid 'bricks' on the other. In the first part, we focused on the one-pot synthesis of monofunctionalised cubic silicas (SBA-16) through the sol-gel process. Different organic functions were successfully introduced within the pores of the material (SH, CN, Cl, PO(OEt)2 and acac). Their accessibility was brought to light by complexation of lanthanide salts (europium) by acac moieties, but also by growing of gold nanoparticles within the pores, regularly distributed thanks to the SH groups. Thanks to their small size (2 nm) and their high accessibility, these supported nanoparticles could be used as catalysts. Secondly, our study was extended to bifunctional materials. 2-D hexagonal silicas (SBA-15) were functionalised by one-step synthesis within both pores and walls. Several organic groups were covalently included within the structure, which then allowed us to confine very closely two kinds of nanoparticles, able to interact between themselves at nanometric scale. The bimetallic material is consequently qualified as 'interactive'. The last part was dedicated to a new approach for the synthesis of 3-D structured materials, consisting in the assembly of hybrid molecular 'cages' (functionalised octasilsesquioxanes). Chloro terminations were chosen because of their easy conversion into acid or ionic moieties, able to self-assemble, driven by weak interactions such as H-bonds or electrostatic forces. The use of organic “linkers” such as cyclam groups was also considered to connect cages and anchor metallic ions
Guégan, Régis. "Étude des propriétés d'un cristal liquide (8CB) confiné dans des nanopores unidirectionnels." Rennes 1, 2006. https://tel.archives-ouvertes.fr/tel-00264429.
Full textThepot, Philippe. "Matériaux hybrides organo-minéraux élaborés à partir de précurseurs moléculaires à liaison Si-C. Caractérisation et réactivité." Montpellier 2, 1993. http://www.theses.fr/1993MON20108.
Full text