Dissertations / Theses on the topic 'Matériaux hybrides nanostructurées'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Matériaux hybrides nanostructurées.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Philippot, Gilles. "Supercritical fluids synthesis of BaTiO3 based nanoparticles : study of the particles growth mechanisms, powder processing and ferroelectric properties." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0175/document.
Full textIn a context where the electronic is at the center of our society, theproduction of more compact and multifunctional devices focuses the research efforts.To answer to the expectations, one option is to improve the volume efficiency ofpassive components such as capacitors using dielectric nanoparticles such asBaTiO3. First, the objective is to optimize the synthesis of BaTiO3 nanoparticles andunderstand their formation in supercritical fluids. To do this, we combinedconventional ex situ analyses such as X-ray diffraction, electronic microscopy,infrared and Raman spectroscopies with in situ synchrotron wide angle X-rayscattering analyses. This was then transferred to the development of Ba1-xSrxTiO3 (0≤ x ≤ 1) and BaTi1-yZryO3 (0 ≤ y ≤ 1) solid solutions. Once the syntheses wereoptimized, using spark plasma sintering (SPS), we processed the powders intodense and nanostructured ceramics keeping the starting particles size (20 nm), tostudy the materials intrinsic properties at the nanoscale. Finally, knowing thenanoparticles properties, we could start to develop hybrid dielectric materials forflexible electronics
El, Hankari Samir. "Silices hybrides nanostructurées par 'Liquid Crystal Templating' de précurseurs ioniques." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20016/document.
Full textA series of precursors containing organo-ionic substructures such as imidazolium, guanidinium, ammonium and zwitterionic entities and several neutral precursors containing thiol-amide, thiol-amine and amino groups were successfully synthesized. These precursors were used for the synthesis of nanostructured silica hybrid materials containing ionic substructures via soft templating approaches. The formation of structured materials was achieved using template directed hydrolysis polycondensation procedures in the presence of various structure directing agents. The goal of this study was the determination of the parameters influencing the structuring of the materials. Thus, we prepared a series of nanostructured ionosilicates using a new method of structuring that is based on specific interactions between ‘cationic precursor - anionic surfactant' and ‘anionic precursor - cationic surfactant' ion pairs. This new strategy allowed the synthesis of ionic 'periodic mesoporous organosilicas'. At the end of this thesis, we used a new ‘guanidinium' type template in the preparation of nanostructured i-silica hybrid materials with a spherical morphology. Nanostructured ionosilicates bearing amine, amino-thiol, ammonium and zwitterionic substructures prepared in this work present high specific surface areas and a high accessibility of the organic functional sites. Due to these features, these materials have large potential in the fields of catalysis and separation
Sutra, Pierre. "Catalyseurs hybrides organiques-inorganiques. Ancrage de complexes organométalliques sur silices mésoporeuses nanostructurées." Montpellier 2, 1998. http://www.theses.fr/1998MON20117.
Full textNabokoff, Pierre. "Synthèses de précurseurs organiques de radicaux hétéroatomiques pour la préparation de matériaux hybrides." Electronic Thesis or Diss., Aix-Marseille, 2020. http://theses.univ-amu.fr.lama.univ-amu.fr/201218_NABOKOFF_575sxytx526xlluw827l449jumhkc_TH.pdf.
Full textThe aim of this work was to investigate the influence of the nanocofinement on the behaviour of organic substrates embedded in mesoporous silicas. This research hinged on two parts. The first study focused on the efficiency of the fragmentation reaction of confined alkoxyamines, under thermal or photochemical activation. Thanks to the comparison with the very same reactions in solution, the quantitative EPR measurements showed that the confinement of organic precursors had no effect on the efficiency of these reactions. Secondly, organic-inorganic hybrid materials were synthesized. These mesoporous silicas were functionalized with diazene radical precursors. Upon 360 nm irradiation, they generated heteroatomic radicals. Different materials were prepared, including one which enabled to form a face-to-face pair of different radicals, i.e. an aryloxyl radical in front of an arylsulfanyl radical. Studies carried out by continuous and pulsed wave EPR enabled to highlight the high stability of these confined paramagnetic species and to measure their relaxation times
Aboulaich, Abdelhay. "Synthèse de nanoparticules d'oxydes et d'oxydes métalliques par sol-gel non-hydrolytique." Montpellier 2, 2009. http://www.theses.fr/2009MON20126.
Full textAmorphous and crystalline nanoparticles (SiO2, SiO2-TiO2, TiO2 and SnO2) were prepared by non-hydrolytic sol-gel process. The synthesis is based on non-hydrolytic condensation reactions of metal chlorides MCln with isopropyl ether or tétraisopropoxyde corresponding metal. SiO2 nanoparticles have been used successfully for the preparation of nanocomposite polymer. The synthesized nanoparticles are reactive to nucleophile agent and are successfully used for the preparation of nanostructured layers
Bosq, Nicolas. "Nanocomposites à matrice polymère : influence de silices nanostructurées sur la cristallisation, la transition vitreuse et les propriétés thermomécaniques." Phd thesis, Université Nice Sophia Antipolis, 2013. http://tel.archives-ouvertes.fr/tel-00932853.
Full textNguyen, Thy Phuong. "Hybrides organiques-inorganiques organisés par 'liquid crystal templating' de précurseurs ioniques." Montpellier 2, 2009. http://www.theses.fr/2009MON20201.
Full textA series of precursors containing organic cationic sub-structures such as imidazolium, guanidinium, and ammonium entities and several neutral precursors containing amino groups were successfully synthesized. These precursors were used for the synthesis of nanostructures silica hybrid materials or functionalized silica materials containing ionic substructures via template directed hydrolysis polycondensation procedures using various structure directing agents. The main factors influencing the structuring of the materials in the presence of different types of surfactant were studied and the optimal condition for the synthesis of nanostructured materials were found. 2D hexagonal structured materials have been obtained for different precursors both featuring high flexibility and high molecular size and high molecular rigidity. The addition of a silica source such as TEOS appeared to be necessary especially when rather flexible precursors were used. A new strategy was introduced permitting the structuring of materials bearing cationic substructures. This process is based on specific precursor-surfactant interactions and allowed the synthesis of 'periodic mesoporous organosilicas ' bearing amine and ammonium substructures with high specific surface areas and a high accessibility of the organic sites. Due to these features, these materials have large potential in the fields of catalysis and separation
El, Hamzaoui Hicham. "Préparation et caractérisation de matériaux hybrides organostanniques nanostructures." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13237.
Full textEpelde, Elezcano Nerea. "Matériaux Hybrides nanostructures photoactifs pour des applications optiques et biomédicales." Thesis, Pau, 2016. http://www.theses.fr/2016PAUU3007/document.
Full textAlong this manuscript different hybrid materials are synthesized and extensively characterized for several uses: from optical to therapeutic applications. First, by the intercalation of different dyes, styryl 722 and pyronine-Y into several smectite clay films, macroscopically ordered system are obtained. Clay films are elaborated by spin-coating technique and the dyes are intercalated by the immersion of clay thin films into dye solutions. The effect of clay on the dye properties is deeply analyzed and its preferential orientation in the interlayer space of the clay is studied by the anisotropic response of the films to the linear polarized light. Second, large silica monoliths with embedded laser dyes with strong absorption and fluorescence bands in different region of the Visible spectrum are attained by sol-gel chemistry to obtain solid-state dye laser (SSDL) with good photo, thermal and chemical stabilities. Third, silica nanoparticles (NP) with suitable size (50 nm) and functionalized external surface are also synthesised by sol-gel chemistry. Through the encapsulation of fluorescent dye molecules in their core and by the grafting of photosensitizers on their shell, biocompatible nanoparticles for bio-imaging and Photodynamic Therapy (PDT) applications are prepared. In order to optimize their properties, a careful investigation of the photophysical properties and mainly the singlet oxygen generation of a large range of new photosensitizers based on chromophores known as BODIPYs, is previously carried out. Based on these results, some efficient BODIPYs are selected for grafting on silica nanoparticles in order to use them for PDT. The photophysical properties of all these hybrid materials are analyzed by absorption and fluorescence (steady-state and time correlated) spectroscopies, and the singlet oxygen measurements are monitored by direct method (recording the singlet oxygen luminescence at 1270 nm) and by indirect method (using selective chemical probe). Moreover, the hybrid materials are fully characterized by several techniques such as, SEM, TEM, XRD, XPS, IR, DLS, BET
Yang, Xiaofang. "Development of hybrid surface mechanical attrition treatment : formation of carbon and nitride nanomaterials." Troyes, 2009. http://www.theses.fr/2009TROY0009.
Full textSince the development of the new technique SMAT (Surface Mechanical Attrition Treatment), great success has been achieved. The mechanical properties and the diffusion properties of materials treated by SMAT are greatly improved. Carbon nanomaterials such as carbon nanofibers (CNFs) and carbon nanotubes (CNTs) have attracted special attention due to their unique properties and potential application. Since the diffusion properties of materials have been improved after the SMAT process, a SMAT process followed by a CVD process, i. E. Hybrid SMAT, is tailored for synthesizing carbon nanomaterials in-situ on the surface of bulk metallic materials. 316L stainless steel, pure Co, pure Ni and pure Ti plate were subjected to hybrid SMAT process to synthesize carbon nanomaterials. The effects of main parameters are discussed. The products were investigated by SEM, TEM, XRD and RAMAN characterizations. Growth mechanism was proposed. The second part of work concerns the development of SMAT machine and the formation of nitride nanomaterials on bulk metallic materials. A new SMAT system that can provide various treating conditions was developed to form a thicker nanostructured surface layer. 316 stainless steel samples were subjected to the new system, treating under traction and under thermal stress respectively. The treated samples were investigated by optical micros-copy, XRD and nanoindentation. Treated samples were submitted to the nitriding process to form nitride nanomaterials. The nitride samples were investigated by optical microscopy and microhardness tester
Gadenne, Benoît. "Matériaux hybrides nanostructurés incorporant des entités chirales ou ioniques : Synthèse et application." Montpellier 2, 2005. http://www.theses.fr/2005MON20024.
Full textHartmann, Lucia. "Elaboration et étude de matériaux hybrides orientés et nanostructurés d'intérêt pour l'électronique organique." Phd thesis, Université de Strasbourg, 2012. http://tel.archives-ouvertes.fr/tel-00819804.
Full textSanchez, Sylvia. "Réalisation de cellules solaires nanostructurées à base de nanofils de ZnO. Matériaux et propriétés." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00745270.
Full textGaudon, Alexandre. "Matériaux composites nanostructurés par séparation de phases dans le système silice - zircone." Limoges, 2005. http://aurore.unilim.fr/theses/nxfile/default/04090e61-c42c-4fa5-a005-6843abcb42da/blobholder:0/2005LIMO0033.pdf.
Full textThis work is devoted to the synthesis of nanocomposite via a sol-gel process. We have more specifically focused our attention to the silica – zirconia system. Microstructural properties of these materials were investigated by small angle X-ray scattering, X-ray diffraction and transmission electron microscopy. After 600°C heat treatments, a nanoscaled amorphous phase separation consisting in silicon-rich and zirconium-rich interconnected domains was shown to be present. For higher heat treatments the crystallization of zirconia nanocrystals occurs in the previously formed zirconium-rich region. The size and spatial distribution of crystalline particles, dispersed in the amorphous silica-rich matrix, are controlled by the annealing conditions. Finally we have extended this study to silica – zirconia thin coatings and to potentially luminescent materials in the ZrO2 – Eu2O3 – SiO2 and ZnO – SiO2 systems
Perret, Philippe. "Nanostructuration du dioxyde de plomb pour applications dans les supercapacités électrochimiques hybrides." Nantes, 2009. http://www.theses.fr/2009NANT2069.
Full textThe objective of this thesis is to study the nanostructuration of metal oxide PbO 2 as electrode material in a hybrid electrochemical supercapacitor carbone/Pbö-. Despite modest power density and limited cyclability, low production costs and easy recycling of PbO 2 make it a good candidate for low cost hybrid systems. However, the characteristics of this material should be improved. The choice of nanostructuring active electrode material was revealed to be a feasible and sensible solution to increase performance and improve the cyclability of PbO 2. Studies on using nanostructured electrode were carried out and various ways have been explored. It was finally chosen to synthesize nanowires by PbO 2 electroplating. Then the electrochemical performances were measured in sulfuric acid by cyclic voltarnmetry and compared to those of a thin film. The fact is that nanostructure improves the energy density and power by a factor of three but it does not improve the cyclability due to the phenomenon of sulfation of PbO 2 in sulfuric acid. Sulfation is inevitable so it was decided to change the electrolyte. Methanesulfonic acid was chosen for its ability to do redox of the couple PbO 2 /Pb 2 + without lead sulphate as reduction product. A system is obtained where the redox is a dissolution-redeposition of the PbO 2 electrode. A hybrid system carbon/Pbö, using an electrolyte based on methanesulfonic acid was studied. The performance obtained so far are encouraging and can lead to optimization and further study of this system$$24e de couverture
Phe, Bou-Huot. "Élaboration de matériaux hybrides organiques-inorganiques intégrée aux opérations de mise en oeuvre des thermoplastiques." Lyon 1, 2004. http://www.theses.fr/2004LYO10287.
Full textEyele-Mezui, Séraphin. "Complexes de métaux de transition organisés dans des nanostructures lamellaires hybrides fonctionnelles." Strasbourg, 2011. https://publication-theses.unistra.fr/public/theses_doctorat/2011/EYELE_MEZUI_Seraphin_2011.pdf.
Full textThis PhD work allowed to elaborate new multifunctionnal inorganic/organic hybrid materials. We showed that it was possible to functionalize the interlayer space of Layered Simple Hydroxides by transition metal complexes (phthalocyanine complexes, Schiff bas complexes and ruthenium polypyridine complexes) via an anionic exchange mechanism. We thus developed a new synthetic procedure, called “indirect synthesis”. We have succeeded to overcome the numerous difficulties linked to the insertion grafting of coordination complexes. The insertion of such complexes allowed to precise the mechanism of the magnetic ordering of theses hybrid materials. The insertion of copper phthalocyanine allows to benefit from an internal paramagnetic probe in-between the inorganic layers, and thus to evaluate the internal field resulting from the magnetic ordering of the material. Finally, with this approach, we have been able to obtain new functional magnets, combining magnetism and chirality, or magnetism and luminescence
Zaarour, Lama. "Fabrication thermoactivée de nanoparticules hybrides : vers l'imagerie photo-thermique à l'échelle nanométrique." Thesis, Troyes, 2014. http://www.theses.fr/2014TROY0008/document.
Full textNowadays, the thermoplasmonic field undergoes a very interesting applications development thanks to the amplification of the light absorbed by the metal nanoparticle, which makes it an ideal nanosource of heat controlled by light. Because of this applications development, one of the challenges is to control and manipulate the thermal energy on a small scale.New optical techniques are dedicated to studying the thermal phenomenon induced by plasmonic nanoparticles. These techniques show different capacities to quantify and characterize the heat generated and the temperature distribution around nanoparticles. But the spatial resolution achieved is still limited by diffraction.In this thesis, we present a new molecular imaging approach, which is based on the nanopolymerization reaction thermally induced to characterize the heat profile in the vicinity of a single photoexcited nanoparticle. This approach is based on a thermo-polymerizable formulation with specific temperature threshold Tth (the temperature required to induce polymerization reaction). We develop formulations with different Tth. After irradiation of the nanoparticle covered by the thermo-polymerizable solution, the polymer shell created is the impression of areas where the photoconversion induced a temperature higher than Tth. We demonstrate the ability of this method to map the thermal field induced around the nanoparticle with a resolution better than 35 nm
Dol, Cyrielle. "Effet du nanoconfinement par des matériaux nanostructurés sur les propriétés des radicaux phénoxyle." Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4739.
Full textAbstract : The aim of this study is to explore the influence of nanoconfinement on the phenoxyl radical behavior. A new methodology allowing the traceless solid state generation of phenoxyl radical was developed. It relies on the fragmentation of a diazene moieties and no solvent nor co-reagent are needed. A spin-trapping study was used to validate this approach. A wide variety of organic-inorganic hybrid materials, like mesoporous silica (SBA-15, MCM-41) and lamellar or porous polysilsesquioxane, functionalized with various phenoxyl radical precursors was synthesized. The spectroscopic properties of the phenoxyl radical contained in these materials were studied by EPR. These materials enable an amazing increase of the phenoxyl radical lifetime, they transform transient phenoxyl radical into persistent and even stable ones. The influence of the confinement has also been observed on the radical relaxation properties. Finally, an application of these materials as polymerization photo-initiator was successfully developed
Pathan, Shaheen. "Développement de matériaux flexibles optiquement actifs basés sur des nanostructures hybrides chirales de modèle d’assemblage moléculaire." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0126.
Full textIn this work, we focused on the creation of optically active chiral nanostructures by fabricating fluorescent silica nanohelices in order to obtain optically active nanoscale soft materials for applications as nanophotonics materials. For this purpose, silica chiral nanohelices were used for grafting and organizing achiral fluorescent inorganic nanocrystals, dyes, molecules, and fluorescent polymers through different approaches. These inorganic helices were formed via sol-gel method using organic helical self–assemblies of surfactant molecules (achiral and cationic gemini surfactant, with chiral counterion, tartrate) as templates. First, the surface of helical silica was functionalized by APTES in order to graft inorganic quantum dots ZnS-AgInS2 with different capping ligands. In the second part, fluorescent anthracene derivative polymer was organized via deposition and absorption on the surface of helical silica. To investigate the chiroptical properties, circular dichroism and circularly polarised luminescence characterization were performed.In the first chapter, the bibliographic study on different chiral organic self-assembling systems and their chiroptical properties are shown. The studies on the formation of chiral self-assembled systems in different conditions, structural morphology, fabrication techniques and their applications are discussed followed by the use of fluorescent nanocrystals, i.e., quantum dots (QDs) and achiral fluorescent polymers on which chiroptical properties can be obtained and their applications in optical nanodevices, sensors, and nano-photonics.In the first part of the second chapter, different characterisation techniques such as transmission electron microscope (TEM) , high resolution transmission electron microscope (HRTEM), and confocal microscopy, UV-Vis spectroscopy and fluorescence spectroscopies, as well as circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies are described. In the second part, the synthesis of Gemini 16-2-16 as well as their self-assemblies mechanism, and their transformation to silica replica via sol-gel chemistry are described. These silica nanohelices are functionalized by 3-aminopropyltriethoxysilane (APTES). Their analysis is performed by Thermogravimetric analysis (TGA) and elementary analysis (EA).In the third Chapter, we focused on the synthesis of inorganic ((ZnS)x-1(AgInS2)x) QDs with different compositions molar ratio and its characterizations by TEM, TGA, EA, Fourier-transform infrared spectroscopy (FTIR), zeta potential measurements, absorption, and emission spectroscopy. Four types of ligands were used to cap the QDs via phase ligand exchange as follows: ammonium sulphide (AS), 3-mercaptopropionic acid (MPA), l-cysteine (L-Cys) and the fourth one is oleylamine (OLA). These QDs are grafted on the surface of amine-modified silica helices through ionic interaction. Various techniques were used to show the grafting of QDs on the surface of silica helix, and their optical properties were studied using absorption and emission spectroscopy. After grafting, in each case of ligands, different results were observed as follows: The TEM characterization shows that QDs are grafted on the surface of silica helices. In the case of AS-capped QDs, the helical morphology of silica helices after grafting is destroyed; therefore the further ananlysis was not possible. While, in the cases of QDs with three other ligands MPA, OLA and L-cys, dense and homogeneous grafting of the QDs were observed by TEM and the helical morphology was preserved after their grafting. The HRTEM images were taken on the MPA-QDs@silica helices and energy-dispersive x-ray (EDX) analysis was performed in STEM mode, confirming the QDs elements present on the silica surfaces. [...]
Ge, Dandan. "Advanced Anisotropic Hybrid Plasmonic Nano-emitters." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0005.
Full textAlthough the hybrid plasmonic nanosystems based on the interaction between quantum emitters and metallic nanostructures have been receiving much attention because of the possibility for developing controllable nanosources, controlling the relative position of nano-emitters and metal nanostructures remains challenging. This thesis has aimed at developing anisotropic hybrid plasmonic nano-emitters via near-field two-photon polymerization that is triggered by localized field enhancement from surface plasmon supported by metal nanoparticles. By trapping the nano-emitters (QDs) inside the polymer or at its surface, the distribution of the nano-emitter can be controlled accordingly by controlling the spatial distribution of the polymer in the vicinity of the metal nanostructures. By decreasing the number of QDs inside polymer lobes, a hybrid cube-based nano-emitters with only a single QD contained is achieved
Halioua, Yacine. "Etude de structures hybrides : lasers à cristaux photoniques en semi-conducteurs III-V sur silicium." Paris 7, 2011. http://www.theses.fr/2011PA077169.
Full textThe ever-growing demand for high data transmission and processing rates is hitting the limits of microelectronic circuits and Systems. It is currently admitted that photons can significantly relieve the speed constraints of inter as well as intra-chip communications. More specifically, due to their inherent advantages, the hybridisation of III-V active and Si passive photonic structures, which are CMOS compatible, opens a new avenue for an exciting field of endeavour. In this context, the present thesis deals with fabrication and study in depth of a two level structure based on III-V photonic crystals (PhCs) evanescently coupled to silicon wires. The two levels are bonded together using an adhesive BCB-based bonding technique. Taking advantage of PhCs properties reasonably low threshold laser operation coupled to the silicon wire underneath is demonstrated, using both PhCs waveguides and wire cavities. The optical characteristics and coupling efficiencies of the System against various parameters were experimentally studied and the results successfully confronted to modelling, showing amongst other results that 90% of the light emitted in the top level is extracted via the silicon wire. Such a high value has been rendered possible by by an important work on modelling and the development of a specific alignment processing procedure providing an accuracy of ~ 25 nm. In conclusion, the observation of low-threshold bistability under gain regime is presented and numerous perspectives are discussed
Piot, Madeleine. "Auto-assemblages d'hybrides de polyoxométallates par coordination dirigée." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS342.
Full textDevelopment of nanostructured materials is a challenge in several fields, such as information technologies or catalysis. Bottom-up synthesis is the formation of these materials through self-assembly of molecular building blocks. Reversible interactions between those elements leads to development of supramolecular structures which dimensionnality and shape are controlled by buiding blocks topology. Especially coordination chemistry is a relevant tool for this purpose. Polyoxometalates are anionic nano-oxoclusters composed of high oxydation state transition metals. Their redox properties make them attractive, but they need to be shaped. Their functionnalisation into organic-inorganic hybrids allow us to graft coordinating functions onto their inorganic skeleton. It’s a good way to self-assemble them, controlling dimensionality of the final assembly. This thesis presents synthesis of hybrid polyoxometalates presenting one, two or three coordinating arms, and their self-assembly through coordination to appropriate metallic ions. Linear, macrocyclic and bidimensionnal assemblies have been developped and characterised. Moreover, in some cases, thanks to anionic nature of polyoxometalates, formation of hierarchical structures have been observed and studied
Massuyeau, Florian. "Études photophysiques d'un polymère conjugué nanostructuré : du film nanocomposite à la nanofibre." Nantes, 2008. http://www.theses.fr/2008NANT2115.
Full textThis PhD. Thesis is aimed at the investigation of organic nanomaterials presenting original photophysical properties. We address the consequences of nanostructuration on the absorbing and emissive properties of poly(p-phenylene vinylene) (PPV), a prototypal semiconducting conjugated polymer for light emitting diode applications. On one hand we investigate quasi-two dimensional thin composite films of PPV loaded with carbon nanotubes (CNT). On the other hand, we achieve the synthesis of quasi-one dimensional PPV nanofibers exhibiting optical properties different from the bulk, which are possibly related to a near confinement regime of the photoexcited species. The PPV/NTC nanocomposite thin films are prepared by drop casting for several concentrations of PPV precursor polymer and for increasing CNT loads. The optical properties are strongly modified by these synthesis conditions. The interacting effects between polymer chains and CNT on the photoluminescence properties are discussed. The PPV nanofibers are elaborated by the wetting template method in nanoporous membranes. Depending on the synthesis conditions, we obtain either nanowires or nanotubes. These objects present different emissive characteristics. In PPV nanotubes, the quantum yield is increased and a new long-lived photoluminescence band is observed around 450 nm. We discuss the experimental results with two theoretical approaches: (i) molecular calculations of oligomers in order to find the most probable optical transition energies in short chains; (ii) a phenomenological model based on the distribution of conjugated segment lengths, allowing for a better understanding of both intrachain and interchain interactions
Wang, Genwei. "Stabilité du nanotube de carbone : fabrication et comportement mécanique du composites à base des nanotubes." Cachan, Ecole normale supérieure, 2006. http://tel.archives-ouvertes.fr/tel-00136102.
Full textThe stability of carbon nanotube under self weight is analyzed by continuum method. Research results show that the critical aspect ratio can reach to 106. Double cantileveled beam model is used to study the pull in instability of two carbon nanotubes under van der waals forces. The obtained results are useful for the critical design of carbon nanotube based nanoswitch. Carbon nanotube/sic (cnt/sic) hybrid structure are fabricated by chemical vapor despositon. Different loadings of cnt/sic are added into epoxy resin to make micro/nanoscale hybrid composites. The static and dynamic compressive tests are first made to study the renforcement of different filler. Sem observation on the facture surfaces shows that both carbon nanotube and sic particle are dispersed homogeneously
Dol, Cyrielle. "Effet du nanoconfinement par des matériaux nanostructurés sur les propriétés des radicaux phénoxyle." Electronic Thesis or Diss., Aix-Marseille, 2016. http://www.theses.fr/2016AIXM4739.
Full textAbstract : The aim of this study is to explore the influence of nanoconfinement on the phenoxyl radical behavior. A new methodology allowing the traceless solid state generation of phenoxyl radical was developed. It relies on the fragmentation of a diazene moieties and no solvent nor co-reagent are needed. A spin-trapping study was used to validate this approach. A wide variety of organic-inorganic hybrid materials, like mesoporous silica (SBA-15, MCM-41) and lamellar or porous polysilsesquioxane, functionalized with various phenoxyl radical precursors was synthesized. The spectroscopic properties of the phenoxyl radical contained in these materials were studied by EPR. These materials enable an amazing increase of the phenoxyl radical lifetime, they transform transient phenoxyl radical into persistent and even stable ones. The influence of the confinement has also been observed on the radical relaxation properties. Finally, an application of these materials as polymerization photo-initiator was successfully developed
Nguyen, Thi Tuyet Mai. "Elaboration and optical properties of thermosensitive plasmonic hybrid nanostructures." Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC285.
Full textDriven by the search for hybrid multifunctional nanomaterials with interesting and unique properties, we have considered the association of thermoresponsive pNIPAM with gold nanoparticles (GNPs), which ideally combine the responsiveness of pNIPAM with the optical, catalytic or photothermal properties of GNPs. In this PhD dissertation, we addressed strong synergies between GNPs and PNIPAM in hybrid GNP@PNIPAM nanostructures, obtained from the grafting of PNIPAM brushes on lithographie GNPs arrays. Firstly, the hybrid nanostructures including gold nanorod (GNRs) arrays coated by pNIPAM allowed us to investigate properly the influence of the GNPs anisotropy and the polymer thickness on the sensitivity to the local environment. The optimization of the GNR's aspect ratio r and the pNIPAM thickness, to provide a maximum of LSP shift upon a change in temperature,is obtained for r'-2. 4-2. 6 and hPNIPAM —25 nm, respectively. Secondly, such hybrid nanostructures allowed us to measure the phase transition time of pNIPAM brushes, 160±20 Ils for a 30 nm pNIPAM layer. Particularly, we used the pNIPAM brushes as a dynamic linker in order to control the coupling of plasmonic nanoparticles and the sensitive detection of Nile blue A molecules by SERS. Such hybrid nanostructures were also applied to probe the isomerization of azobenzene derived molecules by UV-visible spectroscopy. Interestingly, we developed a new strategy for the selective plasmon-mediated chemical grafting of aryl layers derived from diazonium salts on gold nanostripe arrays. This grafting occurs specifically in the regions of maximum field enhancement of GNPs. In perspective, this strategy is expected to allow us controlling the grafting of pNIPAM brushes, and thus the binding of analyte molecules to selected locations on the GNP surface with well-defined near-field enhancement factor for quantitative SERS measurements
Vergnat, Virginie. "Matériaux hybrides organiques-inorganiques par greffage covalent de polymères sur des oxydes métalliques." Strasbourg, 2011. https://publication-theses.unistra.fr/public/theses_doctorat/2011/VERGNAT_Virginie_2011.pdf.
Full textThe objective of this thesis was to elaborate well defined polymer/metal oxide hybrid materials and to study their physical properties. These materials were prepared by the “grafting from” method, which consists in a first step to covalently graft a polymerization-initiator molecule onto the surface of the nanoparticles. In a second step, polymerization was performed from the initiator anchored on the surface of the nanoparticles. Firstly, we presented the metal oxide nanoparticles used for the preparation of hybrid materials: cobalt ferrite synthesized by coprecipitation, non-aggregated iron oxide synthesized by thermal decomposition, titanium dioxide and hematite commercially available. We focused particularly on the large-scale synthesis of non-aggregated iron oxide nanoparticles and on the evolution of the reaction medium during the synthesis, which allowed us to specify the role of each step in the process of thermal decomposition. Then, we presented the grafting of polymerization-initiator molecules onto the surface of the metal oxides. The polymerization-initiator molecules are composed of an active tertiary bromide and a phosphonic acid end group. After that, we studied the atom transfer radical polymerization of different monomers (styrene, methyl methacrylate) on the functionalized nanoparticles and several hypotheses were proposed to explain the low initiator efficiency when the polymerization is performed at the nanoparticles surfaces. Then the morphology of the hybrid materials was presented. Finally, we studied mechanical properties (by nanoindentation or nanoscratch) of the obtained hybrid materials, as well as rheological, thermal and magnetic properties
Faucheu, Jenny. "Relations microstructure-propriétés dans des films nanostructurés élaborés par voie latex." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0075/these.pdf.
Full textCe projet se centre sur le développement de revêtements respectueux de l'environnement basé sur la technologie latex. Un latex est une suspension colloïdale de particules (10nm-10µm de diamètre) de polymère dans l'eau. . . La stabilité de cette suspension est garantie par l'addition de molécules de tensioactifs (surfactant) qui portent une tête hydrophile et une queue hydrophobe. Ces molécules vont couvrir la surface des particules de latex avec leur tête hydrophile pointant vers la phase aqueuse, favorisant ainsi les forces de répulsion. Dans les conditions adéquates, ces particules coalescent après évaporation de l'eau pour former un film continu. La philosophie de ce projet est d'utiliser ces particules (dans notre cas 100nm de diamètre) en tant que brique élémentaire nanostructurée pour construire le matériau final nanostructuré à son tour. Les latex sont basés sur un copolymère acrylate, déjà bien répandu pour une application peinture intérieure. Cependant, ces propriétés ne permettent pas d'étendre son utilisation à une application peinture extérieure. Deux approches ont été considérées pour améliorer le comportement de ces revêtements. Tout d'abord, l'ajout d'une résine alkyde susceptible de réticuler au contact de l'air, et ensuite l'ajout de nanocharges minérales (argile). Le succès de l'introduction à l'échelle nanométrique de ces secondes phases repose sur une polymérisation in-situ en présence de cette seconde phase. La voie de synthèse adoptée est la polymérization par miniémulsion qui est un récent développement de la polymérisation en émulsion conventionnelle. Il a été montré que dans les eux stratégies, la nanostructuration du matériau a une influence sur la distribution du surfactant et de ce fait sur les propriétés de prise en eau. De plus la présence d'un réseau percolant de nanocharges entraîne une augmentation brutale du renforcement
Dahiya, Abhishek Singh. "Nanostructures en ZnO pour l'électronique et la récupération d'énergie." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4007/document.
Full textNanomaterials and nanotechnology has become a crucial feature in low-power electronics, energy generation/management and wireless networks, providing the opportunity to build a vision for autonomous sensors. The present thesis delivers the concept of low-temperature processable organic / inorganic hybrid systems for the realization of inexpensive electronic devices including field-effect transistors (FETs) and piezoelectric nanogenerators (PENGs) on various substrates including plastics. To achieve these objectives, this work first describes the controlled growth of single-crystalline ZnO nanostructures using high-temperature vapor-liquid-solid (VLS) and low-temperature hydrothermal approaches. For the FET devices, VLS grown ZnO nanostructures are used, owing to their high structural and optical quality. Later sections present different studies conducted to optimize the FET prototypes, includes: (i) metal-semiconductor contacts, (ii) semiconductor/insulator interface quality and (iii) organic dielectric thickness. The last section investigates the possibility to fabricate organic / inorganic hybrid systems for PENGs using hydrothermal approach. Some of the key issues, restricting the PENG performances are addressed: (i) screening effect from free charge carriers and (ii) polymer encapsulation. This work demonstrates the high potential of ZnO nanostructure for the future of electronics
David, Gabriel. "Préparation de matériaux hybrides organiques-inorganiques nanostructurés incorporant des complexes tétraazamacrocycliques de cuivre : application à l'adsorption sélective du dioxygène." Dijon, 2004. http://www.theses.fr/2004DIJOS002.
Full textErdélyi, Zoltán. "Diffusion dans des nanomatériaux et effets nanométriques sur le transport de matière : expériences et simulations." Aix-Marseille 3, 2001. http://www.theses.fr/2001AIX30053.
Full textIn this study diffusion processes taking place on nanoscale were studied by two methods: deterministic kinetic equations. These calculations gave new results on the interface shift occurring during interdiffusion in those systems in which the diffusion coefficients are strongly concentration dependent (we obtained that this shift is a linear function of the time instead of the well known parabolic one). Furthermore, we have shown that in the case of strong concentration dependent diffusion coefficient the validity limit of the continuum model in multilayers can be shifted by about one order of magnitude (A = 160 d where A is the modulation length of the multiplayer and d the interatomic distance in the direction of the diffusion) as compared to the case of concentration independent problem (A = 6-10 d). It has been shown experimentally by Auger Electron Spectroscopy that in Ni-Cu system the liner interface shift predicted by the simulation is attained. On the other hand, by using the Hwang-Balluffi method we measured silver grain-boundary diffusion in nanocrystalline cupper film. .
Chapusot, Vincent. "Synthèse et caractérisation de revêtements nanostructurés à base de nitrures de titane et de zirconium obtenus par évaporation par arc électrique sous basse pression." Vandoeuvre-les-Nancy, INPL, 2003. http://www.theses.fr/2003INPL012N.
Full textThe present study concerns the synthesis and the characterisation of zirconium and titanium nitride based nanostructured films deposited by a non-polluting surface treatment process: low pressure electric arc evaporation. In a first chapter, his technique and its related phenomena are described as well as sorne experimental observations. After a description of the experimental deviee and of sorne specifie analysis methods, we investigate the deposition conditions-properties relationship of binary titanium and zirconium nitrides. This preliminary work allowed the optimisation of the deposition conditions of this new process for the la bora tory as well as the definition of references for the following. Indeed, we present the deposition and the characterisation of titanium-zirconium nitrides coatings enriched in boron and then those of titanium ni tri de enriched in copper. The first category yields hard (51-53 Pa) Zr(Ti)-N-B/BN nanostructured coatings presenting low surface energy polar components (6,5 mJ. M-2 ) and excellent impermeability associated with a strong chemical inertia versus molten aluminium. Investigating the second category of coatings targeted to contribute to the understanding of the rather important hardness increase of composite ceramic-smooth metal
Mege-Revil, Alexandre. "Comportement à l'oxydation haute température de films nanocomposites du sytème Me-Si-N(Me=Ti, Cr) déposés par procédés sous vide sur acier." Lyon, INSA, 2008. http://theses.insa-lyon.fr/publication/2008ISAL0079/these.pdf.
Full textCoatings in the Me-Al-Si-N system were deposited on M2 steel using different vapour deposition process. SEM, TEM and XRD studies indicated in most cases that a nanocomposite structure in which Me(Al)N nanograins are embedded in an amorphous SiNx matrix was actually synthesized. A strong increase in the hardness, the oxidation resistance and the wear resistance of the coatings was then observed. Adding aluminium further improved the oxidation resistance. Environmental SEM observations allowed us to suggest a mechanism for the oxidation of PVD-deposited nanocomposite coatings. Thermal cycling tests showed the synergy between the hard, resilient TiN phase and the chemically inert but fragile SiNx phase. Finally, tribo-oxidation experiments combining wear and high temperature oxidation showed that adding Si in CrN allowed an increase of the wear resistance of a coated ball inversely related with the temperature
Renard, Laëtitia. "Nanostructured tin-based materials : sensing and optical applications." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14183/document.
Full textClass II hybrid materials were prepared from ditin hexaalkynides. Two families of precursors, including either hydrocarbon or oligothiophene-based spacers, were obtained and led by the sol-gel process to self-assembled organotin-based hybrid materials made of planes of oxide separated by organic bridges. Thus, the rigid thienyl spacer gave rise to a “pseudo-lamellar” structure that showed a monomer emission band with a rather small red-shift compared with to the emission of the precursor in solution. However more disordered thienyl xerogels led to broad emission features assigned to excimer or dimer formation. Moreover, thin films containing alkylene- and arylalkylene bridged have been prepared and showed a “pseudoparticulate” porous morphology and a short-range hierarchical order in the organic-inorganic SnOx pseudoparticles. Unexpectedly these hybrid thin films detect hydrogen gas at a temperature as low as 50 °C at the 200-10000 ppm level. From these hybrid thin films, crystalline tin dioxide (SnO2) were prepared by a thermal post-treatment. As expected, cassiterite SnO2 films detected H2 and to a less extent CO with a best operating temperature comprised between 300 and 350 °C
Basov, Sergey. "Nouvelles approches pour le design de composites multiferroïques nanostructurés de type (1-3)." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0007/document.
Full textMultiferroic materials including magnetoelectric materials that combine magnetic and ferroelectric orders have attracted great attention due to a possible strain-mediated coupling leading to potential applications in memories, sensors, detectors, spintronic and microwave devices. The number of single-phase multiferroic materials operating at room temperature being limited, we are exploring artificially designed multiferroic nanostructures consisting of ferroelectric and ferrimagnetic oxides. Current work is focused on strain-mediated magnetoelectric effect, which allows to generate a spontaneous polarization or magnetization by an applied magnetic field (direct ME effect) and electric field (converse ME effect) respectively. ME effects can be observed at room temperature through interface and strain interaction in two-phase multiferroic nanocomposites. The combination of piezoelectric materials PbZr0.52Ti0.48O3 (PZT), Ba0.7Sr0.3TiO3 (BSTO), BaTiO3 (BTO) and magnetostrictive CoFe2O4 (CFO) materials have been intensively studied in multiferroic nanocomposites. The community has been able to demonstrate large magnetoelectric coupling at room temperature in epitaxial thin films, so called 2-2 connectivity system, but a key limitation in epitaxially grown thin films is a substrate imposed clamping effect limiting thin film’s strain. Designing innovative architectures is a challenge in the field of multiferroic nanocomposites. Our work is focused on vertically aligned multiferroic nanostructures, so called (1-3) connectivity nanocomposites, where one-dimensional ferrimagnetic CoFe2O4 nanostructures (1) are embedded into three-dimensional PZT, BTO and BSTO layers (3). New routes were considered to design three kinds of materials: i) vertically aligned CFO nanowire arrays surrounded by PZT nanotubes embedded into alumina membranes; ii) vertically aligned CFO nanopillar arrays embedded in thin BTO, BSTO and PZT layers supported on Si substrates; ii) 3-D interconnected CFO nanowire networks embedded in a thick PZT matrix. The objectives of the present work are to control the oxidation of metallic CoFe2 nanowires and nanopillars to control the morphology and density of CFO nanostructures, to control the resistivity and dielectric losses of the nanocomposites at the interface region, and to increase the magnetoelectric coupling of the multiferroic nanocomposites by increasing the interfacial surface area between the two ferroic phases.The first geometry we are developing is a deposition by sol-gel dip impregnation of PZT nanotube arrays into self-supported porous alumina membranes, followed by an electrodeposition and thermal oxidation of CoFe2 nanowire arrays within PZT nanotubes. The second architecture we are focusing on is a deposition by RF magnetron sputtering of BSTO and BTO layers and by sol-gel dip coating of PZT layers onto vertically aligned CoFe2 and CoFe2O4 nanopillar arrays supported on Si substrates. The CoFe2 oxidation is conducted in-situ during the BSTO and BTO sputter deposition. Free-standing CoFe2 nanopillar arrays are obtained by electrodeposition into anodized alumina nanoporous structures and chemical dissolution of alumina templates. The last geometry is prepared using a combination of electrodeposition into self-supported porous polymer membranes and sol-gel processes. The PZT-CFO nanostructures are prepared using impregnation of thick PZT layers into self-supported CoFe2 3D nanowire networks on Si substrates by sol-gel method and their simultaneous oxidation during PZT layers crystallization. Specific attention was focused on interfaces through microstructural and morphological evaluations of nanocomposites using XRD, HRSEM, TEM and EDS characterizations. The performances of the nanocomposites were evaluated using magnetic, dielectric, ferroelectric and ME measurements, an alternating gradient magnetometer, impedance analyser, PFM and the ME susceptometer operated inside PPMS were utilized, respectively
Garnier, Jérôme. "Elaboration de latex nanostructurés à base de poly(chlorure de vinylidène) par polymérisation en émulsion." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2012. http://www.theses.fr/2012ENCM0011.
Full textFood and pharmaceutical packages should nowadays fulfill a wide range of requirements : not only should they preserve the packed products from external polluting agents, but they must also be innocuous, more energy-efficient and disposable. Barrier polymers have enabled to meet these criteria, by offering alternatives to more energy-consuming and heavier materials like glass or metals, while maintaining a low permeability to water and/or oxygen. Among the large variety of barrier polymers, poly(vinylidene chloride) (PVDC) copolymers provide a more complete protection to external contaminants, due to their extremely low permeabilities towards water and oxygen. Nonetheless, PVDC films still suffer from limitations as far as their thermal and UV stabilities are concerned. This effect is even more pronounced in the case of films obtained from latexes, due to the presence of higher amounts of additives that could take part in the polymer degradation. Therefore, the synthesis of PVDC-based latexes for use as waterborne barrier films with improved thermal and UV stabilities are of great importance. PVDC-based composite latexes were first synthesized from epoxy-functionalized seed latexes in order to enhance the polymer thermal stability. Given that hydrogen chloride displays an indirect catalytic effect on the polymer degradation, epoxy groups were indeed expected to act as thermal stabilizers by scavenging the HCl released by the polymer under thermal stress. In a first step, epoxy-functionalized seed latexes were synthesized via the emulsion copolymerization of glycidyl methacrylate (GMA) and butyl methacrylate (BMA). In a second step, the seeded emulsion copolymerization of vinylidene chloride and methyl acrylate was carried out in the presence of poly(GMA-co-BMA) seed latexes. Thermogravimetric analyses carried out on the resulting composite samples evidenced the thermal stabilization provided by epoxy groups. The second part of the project focused on the synthesis of cerium oxide-based hybrid latexes so as to improve the stability of PVDC to UV radiation. Cerium oxide (CeO2) nanoparticles are indeed very attractive as UV-stabilizers due to their high absorption of radiation in the UV range and a low photocatalytic activity. However, due to the intrinsic incompatibility between inorganic and polymer phases, the synthesis of inorganic-organic hybrid latexes often requires a preliminary step of modification of the mineral particles surface. The grafting of alkoxysilanes onto nanoceria was first attempted in order to promote the polymerization reaction at the surface of the inorganic particles. Cryo-Transmission Electron Microscopy (cryo-TEM) observations of hybrid latexes obtained via this route showed that this strategy was unsuccessful at improving the compatibility between the inorganic and polymer phases. Amphiphatic macro-RAFT agents were finally considered as reactive compatibilizing agents to direct the polymerization towards the cerium oxide surface. RAFT oligomers were first obtained by co- or terpolymerization reactions in the presence of a RAFT controlling agent. After characterizing the adsorption of amphiphatic macro-RAFT agents at the surface of nanoceria, surface-modified cerium oxide particles were then engaged in reactions of emulsion polymerization reactions. In most cases, cryo-TEM observations carried out on the resulting latexes confirmed the efficiency of the amphiphatic macro-RAFT agent route for the synthesis of hybrid structures. Therefore this route appeared so far to be the most promising for the synthesis of CeO2/PVDC hybrid latexes for use as waterborne barrier films with improved UV-stability
Shi, Yupeng. "Functionalized Silica Nanostructures : Degradation Pathways and Biomedical Application from 2D to 3D." Electronic Thesis or Diss., Sorbonne université, 2018. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2018SORUS122.pdf.
Full textSilica nanoparticles, thanks to the great easy and adaptability of particle synthesis and limited biotoxicity, is very widely studied for biomedical applications. This thesis conducted a large diversity of investigations involving silica nanomaterials. Firstly, the physicochemical properties and biodegradation properties of three types of structured silica nanoparticles were studied in a buffer, a culture medium and in contact with human dermal fibroblasts that suggest that, under these conditions, the silica nanoparticles must be mainly considered as degraded by hydrolysis and not biodegraded. Then, multifunctional silica nanoparticles which are consist of hollow silica nanoparticles and MnO2 nanosheets were synthesized. And the control drug release and imaging performance of this nanoplatforms were studied from 2D to 3D models. This approach could be used for a rapid assessment of the biofunctionality of nanoparticles before setting up in vivo experiments. Furthermore, a new 3D collagen-based nanocomposites using silica rods were studied and the relationships between the composite composition, structure and mechanical properties, emphasizing the key role of collagen-silica interactions. The influence of these parameters on the adhesion and proliferation of fibroblast cells was also investigated. In addition, we prepared and used magnetic silica nanorods to control particle orientation within the collagen network thanks to an external magnetic field. All the results bring new insights on the preparation and properties of bionanocomposites and open the route to multifunctional hydrogels
Porcher, Marina. "Matériaux nanostructurés polymères conjugués/nanotubes de carbone verticalement alignés pour la réalisation de supercondensateurs." Thesis, Tours, 2016. http://www.theses.fr/2016TOUR4025/document.
Full textThis thesis focused on the elaboration of nanostructured composite materials based on vertically aligned carbon nanotubes (aligned CNT) and π-conjugated polymers and their use as electrode materials in supercapacitor-type energy storage devices. The first part focused on aligned CNT growth by aerosol-assisted CVD on stainless steel substrates and the deposition of a SiOx ceramic sublayer. Thanks to the optimization of this growth process, long, dense, and aligned CNT carpets which can directly act as support for the electrodeposition of π-conjugated polymers were obtained. The second part focused on the electrodeposition of poly (3-methylthiophene) (P3MT) in EMITFSI ionic liquid medium on aligned CNT carpets using a “pulsed” chronopotentiometric method to produce homogeneous deposits in the depth of the carpets. An optimal P3MT mass composition of 70 %, which helped achieve a specific capacitance of 170 F.g-1 of polymer while maintaining high charge-discharge kinetics, compared with NTC/P3MT entangled composites, was determined. NTC/P3MT // P3MT/NTC symmetrical devices and CA // P3MT/NTC hybrid devices were assembled using the optimized composite materials. The hybrid device reached a voltage of 2.7 V and a system capacitance of 26 F.g-1 in EMITFSI at 25 ° C. Furthermore, a maximum energy of 23 Wh.kg-1 and a maximum power of 6.9 kW.kg-1 were obtained with only a 7 % loss after 4000 cycles. Finally, the electrodeposition of polypyrrole (Ppy) was investigated in different protic and aprotic ionic liquids. After quartz crystal microbalance studies in order to better understand the insertion mechanisms of ionic species during conjugated polymer growth and during its reversible positive doping, the electrodeposition of Ppy within the deepness of the aligned CNT carpets was optimized. Aligned CNT/Ppy nanocomposites with specific capacitances ranging between 100 and 130 F.g-1 were obtained
Bertucci, Alessandro. "Hybrid organic-inorganic interfaces for biomedical applications." Thesis, Strasbourg, 2015. http://www.theses.fr/2015STRAF008/document.
Full textThe research work presented throughout this thesis focuses on the development of novel organic-inorganichybrid materials for applications in nanotechnology, nanomedicine and diagnostics. In such a context, porous zeolite-L crystals have been used as nanocarriers to deliver either DNA or PNA in live cells, in combination with the release of guest molecules placed into the pores. Multifunctional mesoporous silica nanoparticles have been designed to treat glioblastoma, combining gene therapy with the sustained delivery of a chemotherapy agent. Biodegradable hybrid nano-shells have been furthermore created to encapsulate proteins and release them in living cells upon degradation of the outer structure in reductive environment. In the field of nucleic acid detection, photonic crystal fibers, functionalized with specific PNA probes, have been exploited as optical sensing devices to perform ultra-sensitive detection of DNA oligonucleotides or genomic DNA. Eventually, the PNA backbone has served as scaffold to synthesize fluorescent switching probes able to recognize and to detect the presence of specific target sequences
Ni, Lingli. "Photoinduced n-alkylsilsesquioxane based hybrid films : peering into corrosion protection and self-assembly." Thesis, Mulhouse, 2012. http://www.theses.fr/2012MULH7172.
Full textHybrid organic-inorganic materials have attracted tremendous attention due to their wide range of potential applications in protective coatings, micro-optics, ionic conductors, proton-exchange membrane and so on. Since the early 1990s, the development of sol-gel chemistry (“Chimie Douce”) has given birth to a new age of hybrid materials, where mild synthetic conditions allowed a simplified access to well dispersed and chemically designed nanocomposite materials. Among various sol-gel precursors, organo alkoxysilanes are very attractive because of their superior stability compared to other hybrid precursors, low toxicity and accessibility. However, their insolubility in polar solvents and water has so far limited their use in conventional classic hydrolytic sol-gel procedure.In this thesis, the combination of a UV-driven solvent-free sol-gel process simultaneously to organic photopolymerization has been introduced to form hybrid films based on simple n-alkylsilane building blocks. Based on the photogeneration of superacids under photolysis of onium salts that are conventional photoinitiators, this pathway offers a new chance to investigate alkylsilanes in metal corrosion protection (Part I) and supramolecular assembly (Part II). As the linear and hydrophobic alkyl moiety can provide barrier-properties to the penetration of water and ions, which is a key feature in the corrosion protection of metallic substrates, in part I, the effect of alkyl chain structure of the alkylsilanes as well as their proportions on the corrosion resistance properties has been studied by Salt spray tests and Electron impendence spectroscopy. Furthermore, an effort to correlate the corrosion resistance and coating structure was made as a range of characterization techniques have been implemented (Real time FTIR, 29Si solid state NMR and contact angle measurement). Secondly, alkylsilanes have the proper geometry and composition to self-assemble and generate periodically ordered nanostructures. In part II, the influence on the mesostructure, alkyl chain packing arrangement and its conformational order, which come from alkyl chain length of the silane precursors and the experimental conditions (light intensity, temperature and humidity), has been investigated depending on various characterization techniques (X ray diffraction, microscope, solid state NMR, RT-FTIR). As an application example, a patterned 3D multilayer crystalline organosilica film has been amplified via a facile photopattrerning pathway
Domenech, Trystan. "Structure et propriétés de nanocomposites polypropylène/argile lamellaire préparés par mélange à l'état fondu." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00684786.
Full textBouclé, Johann. "Elaboration et étude des propriétés électro-optiques de matériaux hybrides à base de nanocristaux de carbure de silicium." Phd thesis, Université du Maine, 2004. http://tel.archives-ouvertes.fr/tel-00007825.
Full textCarrara, Serena. "Towards new efficient nanostructured hybrid materials for ECL applications." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAF016/document.
Full textThis doctoral dissertation aim to develop new hybrid materials for ECL applications. In the field of metal complexes, the electrochemiluminescent properties of new Pt(II) and Ir(III) complexes were investigated as alternative of existing complexes. Passing to nanomaterials, the combination of labels and NCNDs bearing primary or tertiary groups on the surface as alternative co-reactant species resulted an interesting strategy to eliminate the toxic TPrA. In particular, NCNDs in covalently linked system with metal complexes is not only an innocent carrier for ECL active species, but act also as co-reactant in the ECL process, revealing itself an ECL self-enhancing platform. Finally, a real immunoassay for cardiac marker detection has been built with enhanced sensitivity and stability, which is of fundamental importance for biological and bio-medical detection applications. The same technology can be applied to a variety of other analytes opening the venue to other assays
Desseigne, Margaux. "Matériaux hybrides AU/WO3 nanostructurés pour la dégradation de polluants organiques par photocatalyse solaire. : Influence de la morphologie de l'oxyde et étude des mécanismes de dégradation." Electronic Thesis or Diss., Toulon, 2021. http://www.theses.fr/2021TOUL0009.
Full textIn order to solve the water pollution problem, the photocatalysis under solar light is one of the most studied advanced oxidation process these last decades. The work presented in this manuscript is focused on the synthesis of hybrid photocatalysts Au/WO3 leading to organic pollutant degradation under solar light irradiation. The purpose of controlling the tungsten oxide (WO3) particles morphology with loading gold (Au) nanoparticles is to improve the semiconductor response in visible range wavelengths. After preparation and characterization thanks to several advanced technics, photocatalytic tests were realized under artificial and natural solar light. The degradation results of model pollutants (rhodamine B, methylene blue or methyl orange) or a drug residue (sulfamethazine) confirmed the high efficiency of hybrid photocatalysts. The decomposition process of some pollutants was followed by liquid chromatography – mass spectrometry (LC-MS) and by scavenging experiments. The results permit to propose pollutant degradation mechanisms
Borniol, Mervyn de. "Photosensibilisation d'oxydes semi-conducteurs par des dérivés organostanniques du pérylène -3,4-dicarboximideApplication à la conversion photovoltaïque." Bordeaux 1, 2006. http://www.theses.fr/2006BOR13310.
Full textMikhaylov, Sergei. "Synthesis and investigation of nanostructured conducting polymers based nanocomposites for ammonia and amines detection." Thesis, Lille 1, 2017. http://www.theses.fr/2017LIL10036/document.
Full textThe thesis is devoted to the synthesis and investigation of properties of inorganic-organic polyaniline (PANI) and polypyrrole (PPy) based hybrid materials with TiO2 (rutile and anatase) and SnO2 nanoparticles applicable for ammonia and amines detection. The direct polymer growth on the surface of nanoparticles allowed obtaining of nanocomposite materials with a “core-shell” structure which differs from simple mechanical mixture by more uniform polymer distribution and stronger interaction between source components.The object of research is the process of formation of polyaniline and polypyrrole nanocomposites with metal oxides. The research goal is to reveal formation peculiarities and properties of nanostructured composite materials based on conducting polymers and metal oxides nanoparticles that are sensitive to ammonia and amines. Research methods include RedOx and pH monitoring, FTIR and UV-spectroscopy, SEM, TEM, thermogravimetry, liquid chromatography, conductivity measurements and sensor tests.The new approach to study kinetics of aniline polymerization process by simultaneous RedOx and pH monitoring of reaction medium was proposed. For the first time the influence of sulfonic acids and metal oxides on the aniline polymerization process and molecular characteristics of the obtained polymer was shown. For the first time a linear correlation between the nanoparticles content and reciprocal duration of separate stages of polymerization was shown. Formed "core-shell" nanocomposites have sensitivity to ammonia and amines of about 2 times higher than the pure polymer. Developed new materials can be used in the manufacturing of chemoresistive sensors' active layers
Semaan, Chantal. "Polymères nanostructurés à base de nanotubes de carbone." Thesis, Bordeaux 1, 2010. http://www.theses.fr/2010BOR14187/document.
Full textThis work is concerned with the study of carbon nanotubes (CNT) dispersions in a polymer matrix in order to obtain nanocomposite with unique properties. In the first part, we investigated the CNT wrapping by amphiphilic block copolymers to facilitate their suspension in aqueous solution. Based on the results, we could assess the effect on CNT dispersion quality of the molar mass of copolymers, the nature of the hydrophobic block and the length of hydrophilic block. In the second part, the incorporation of CNTs in polymer matrix was developed. Water or melt processing were chosen to control the distribution of CNTs in various polymer matrices (Polyethylene oxide, polyethylene and polymethyl methacrylate) through a prior wrapping of CNT. The studies of physical properties, including rheological and electrical properties, of nanocomposites were undertaken. Relationships between the state of dispersion, the nature of the coating and the method of preparation of composites were established
Gu, Tang. "Modélisation multi-échelles du comportement électrique et élasto-plastique de fils composites Cu-Nb nanostructurés et architecturés." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0017/document.
Full textNanostructured and architectured copper niobium composite wires are excellent candidates for the generation of intense pulsed magnetic fields (>90T) as they combine both high strength and high electrical conductivity. Multi-scaled Cu-Nb wires are fabricated by accumulative drawing and bundling (a severe plastic deformation technique), leading to a multiscale, architectured and nanostructured microstructure exhibiting a strong fiber crystallographic texture and elongated grain shapes along the wire axis. This thesis presents a comprehensive study of the effective electrical and elasto-plastic behavior of this composite material. It is divided into three parts: electrical, elastic and elasto-plastic multiscale modeling. In order to investigate the link between the effective material behavior and the wire microstructure, several homogenization methods are applied which can be separated into two main types: mean-field and full-field theories. As the specimens exhibit many characteristic scales, several scale transition steps are carried out iteratively from the grain scale to the macro-scale. The general agreement among the model responses allows suggesting the best strategy to estimate reliably the effective electrical and elasto-plastic behavior of Cu-Nb wires and save computational time. The electrical models are demonstrated to predict accurately the anisotropic experimental data. Moreover, the mechanical models are also validated by the available ex-situ and in-situ X-ray/neutron diffraction experimental data with a good agreement
Osso, Dominique. "Élaboration de nanocomposites alumine-métal (Fe, Cr, Ni) par mécanosynthèse." Vandoeuvre-les-Nancy, INPL, 1995. http://docnum.univ-lorraine.fr/public/INPL_T_1995_OSSO_D.pdf.
Full text