Dissertations / Theses on the topic 'Matériaux composites biosourcés'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 33 dissertations / theses for your research on the topic 'Matériaux composites biosourcés.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hadj, kacem Yosra. "Synthèse, caractérisation et propriétés des oligoesters et composites sulfonés biosourcés." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI044/document.
Full textThe research conducted in this thesis was achieved in the context of vegetal biomass valorization. It aims to develop a new family of aliphatic oligoesters from biobased monomers and incorporating into their structure sulfonated groups. This choice is justified by the following three considerations. (i) This is a contribution to the valorization of vegetal biomass. (ii) The presence of sulfonated units in the structure of this type of polymers gives them specific physicochemical properties favoring their use in various industrial sectors. (iii) These oligoesters can be subsequently used for the preparation of poly (ester-urethane) networks and ionic liquid-based composites with potentially interesting thermomechanical properties and a great tendency towards hydrolytic degradation
Ecochard, Yvan. "Élaboration de polymères 100 % biosourcés pour matériaux composites à impact environnemental réduit." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS070.
Full textDIAM Bouchage develops composites from cork flour and binder in order to produce technological cork-stoppers carried out by a molding process. To get rid of the use of isocyanates for polyurethanes synthesis, new pathways for 100% biobased polymers without the use of CMR substances are considered. As the most promising route for Non-Isocyanate PolyUrethanes (NIPUs) synthesis, Polyhydroxyurethanes (PHUs) have been chosen. The presented study concerns the synthesis, the characterization and the formulation of a new PHU binder from cyclocarbonates and amines.Among available biobased reactants and synthetic pathways, few monomers have been selected in accordance with specifications. This has led to PHUs materials and cork-stoppers development to identify the best formulations. New hybrids routes have finally been developed to overcome PHUs limitations such as reactivity and conversion. Acrylates have been used as reactive additives or cross-linkers for PHU-amino telechelic prepolymers. New cyclic carbonates monomers of low viscosity and high functionality have also been synthesized to solve process issues
Roman, Julien. "Mise en forme de matériaux carbonés biosourcés par voie liquide." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0202/document.
Full textThis work is devoted to the preparation of new bio-based carbon materials. Carbon materials, such as carbon fibers used in composites, are mainly obtained from a petroleum precursor. These precursors are expensive and not compatible with a sustainable industry. The use of a bio-based precursor available in large quantities such as lignin makes it possible to overcome limitations of petroleum based precursors. The aromatic molecular structure and high carbon content of lignin make it an ideal candidate for the production of bio-based carbon material. Lignin could be transformed into various materials such as carbon nanofibers, twisted carbon nanofibers, or carbonized composite 3D structures. These materials have been obtained from innovative techniques such as electrospinning and 3D printing. Twisting of the lignin-based-carbon nanofibers allowed for measurements of their mechanical strength. The electrochemical properties of the lignin-based twisted carbon nanofibers are interesting for potential microelectrode applications. The low microstructural order of the carbon from the carbonized lignin has been improved. Graphitization treatment or addition of carbon nanofillers contributed to this improvement. The mechanical, structural and electrical properties of nanocomposite carbon nanofibers illustrate the influence of graphene oxide on lignin. A composite effect between these two components has been observed. The 3D printing of composite inks based on lignin and graphene oxide has been reported for the first time in order to elaborate dense, organized and electrically conductive 3D carbonized structures
Musa, Corentin. "Élaboration et caractérisation de matériaux composites biosourcés à base de mucilage et de fibres de lin." Thesis, Littoral, 2019. http://www.theses.fr/2019DUNK0535.
Full textThe thesis was carried out in a context of development and valorisation of the flax through the conception of new bio-based composite materials made of mucilage and flax fibres. This work initially led to the synthesis of isosorbide epoxy and polyurethane precursors as an alternative to the conventional toxic precursors. For this, we proposed an original route for optimizing the synthesis of isosorbide diglycidyl ether (DGEI) using an ultrasonic process. Subsequently, the comparison of the conversion methods of epoxies into cyclic carbonates by the inclusion of CO₂ served as a basis for the development of an efficient protocol for converting DGEI into isosorbide cyclic carbonates (CCI) under moderate conditions of temperature and pressure. In the second part, the extraction of water-soluble compounds from the flaxseed allowed us to identify the complex structure of the mucilage and the effects of the extraction parameters on its physicochemical and thermal properties. Then, for the first time, oxidation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) mucilage was successfully performed. After that, we have highlighted the enhanced efficiency of ultrasonic assisted oxidation over the conventional method when scaling up the process. In order to improve the fibre/matrix compatibility of natural fibre-based composites, different treatments of short flax fibres led to the individualizationof the fibres and to the improvement of the oxidation of sonicated fibres.These new materials allowed to formulate a series of novel biocomposites. The DGEI have been enhanced by making an amine-crosslinked resin reinforced with long flax fibres which have a comparable performance to oil-based composites. Additionally, the sonication of short flax fibres led to the improvement of the mechanical properties of PLA/Flax composite. The use of oxidized mucilage has demonstrated the beneficial aspects of flax mucilage incorporation into lightweight, compression-resistant composites
Jaillet, Fanny. "Synthèse, formulation et caractérisation de matrices vinylester biosourcées pour l’élaboration de matériaux composites par pultrusion." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2014. http://www.theses.fr/2014ENCM0012/document.
Full textThe study presented concern the development of composite material (polymer matrix + fibres) in order to produce windows profiles by a pultrusion process. In the context of this work, several biobased vinylester polymers have been developed as matrix of the composite material. A vinylester resin is formed in two steps: firstly the synthesis of vinylester prepolymer, corresponding to a (meth)acrylated monomer carrying an ester function and having polymerizable double bonds at its ends. Next, the formulation of vinylester material is performed by mixing the vinylester prepolymer with a copolymerizable monomer, called reactive diluent. Finally, the material is crosslinked by radical polymerization, using a radical initiator.First, a model study was conducted: in the synthesis of vinylester prepolymer from a template molecule (DGEBA) to the formulation of a vinylester material by radical polymerization. Severals bioresources were then studied in order to replace the DGEBA which is from bisphenol A, compound CMR, group 2. The strategy was first to study marketed bioresources, such as vegetable oils and cardanol which is a by-product of the cashew nut shell industry. Next, a non-biobased but not listed compound, of the name of TACTIX has also been studied. Finally, bioresources not currently marketed, such as isosorbide which is a sugar derivative and phloroglucinol, which is extracted of bark of trees have also been studied for the synthesis of VE prepolymers and VE materials. The reactive diluent the most currently used is styrene, which is a very volatile and harmful compound. Several reactive diluents were tested with the VE prepolymers synthesized in order to replace the styrene by compounds with low volatility and less harmful. Finally, three composites materials reinforced with flax fibres, were made by mini-pultrusion, from the systems studied (VE prepolymer synthesized and reactive diluent)
Destaing, Fanny. "Contribution à l’étude du comportement mécanique de matériaux composites biosourcés lin/PA11 élaborés par thermocompression." Caen, 2012. http://www.theses.fr/2012CAEN2063.
Full textEco-composites are of growing interest to the research and industrial community. These new types of composites are mainly obtained by adding natural fibres to a polymeric matrix. However, the resulting materials must match or surpass the properties of “classic composites” in order to be economically viable. With this in mind, we investigated the properties of a bio-based Polyamide 11 (PA11) reinforced with flax fibres which was prepared by thermo-compression. These natural fibres were selected because their properties are closed to those of glass fibres. A preliminary study was carried out in order to assess the sustainability of both flax fibres and PA11 with the thermo compression process. The mechanical properties for temperatures ranging from -20°C up to 40°C were investigated for both components. A hydrothermal ageing process was also studied. Subsequently, process parameters for thermo-compression such as temperature and pressure were optimised by studying the mechanical properties of 0° laminates composites of PA11 reinforced flax fibres. This work also identified the optimal volume fraction of flax fibres for this composite. Finally, we focused on tensile properties and damage development of [0°-90°]4s laminates
Vo, Van Son. "Élaboration, caractérisation et simulation de nanocomposites argile-polymère : des nouveaux matériaux pour l'éco-conception." Thesis, Paris Est, 2016. http://www.theses.fr/2016PESC1162/document.
Full textClay nanoparticles (CNP) are abundantly available low-cost natural resources with numerous positive attributes such as large surface area, impermeability to gas, superior mechanical and thermal properties so that they have attracted over the last three decades significant attention, notably for the reinforcement of polymer-based materials. However, CNP suffer from incompatibility, hence weak interfacial interactions and poor dispersion with/in most of organic polymeric materials because of their intrinsic hydrophilicity and strong interlayer interactions. This limitation is one of the major reasons why polymer nanocomposites have to date remained mainly in laboratories. Thus, one of the key challenges in developing clay-based polymer nanocomposites (PCNs) with advanced thermo-mechanical, gas barrier...properties relies on the control at the molecular level of the interface properties of clay nanoplatelets-filled polymer resins. Taking into account the criteria for sustainable development, civil engineering and green economy, we have developed, in the first part of this thesis, reactive and pre-exfoliated clay nanofillers that may be further incorporated in a diverse set of biopolymer matrices and giving rise to strong energy interactions with the said matrices for improved mechanical behavior. To ensure a closer fit of these specifications we have implemented green approaches for the preparation of these generic nanofillers, namely photopolymerisation was used as a low energy consumption and fast method for the surface functionalization of native clays, solvent-free protocols were applied to prepare polymer nanocomposites, while biopolymers (starch, cellulose) or bio-based precursors (epoxidized vegetal oils) served as dispersion media. By controlling the preparation conditions, reactive clay nanofillers with adjustable interlayer spacing and chemical surface reactivity were prepared. Of particular interest is that the layered-like structure of the clay nano ller is preserved while the d-interlayer spacing can be increased though increasing the photopolymerization time, i.e. amount of polymer within the clay nanosheets. Our major results from the the first part can be summarized as follows: Morphology and reactivity of clay nanofillers are easily controlled though adjusting the photopolymerization time and selecting adequate vinyl monomer. - The newly preparation methods allow preparation of samples beyond the gram-scale. - Reactive and surface chemistry of pre-exfoliated clay nanofillers can be tuned to provide compatibility with both conventional preformed biopolymers and bio-based epoxy resins. - The mechanical properties of the resulting polymer nanocomposites are improved as compared to the neat polymeric matrices owing to the strong interface interaction between fillers and dispersion matrices
Daoud, Hajer. "Contribution à l'étude du comportement mécanique et vibratoire des composites biosourcés incorporant des matériaux fonctionnels." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1017/document.
Full textThis thesis focuses on the study of the mechanical and vibration behaviour of a flax fibre reinforced composites with and without an interleaved natural viscoelastic layer. The composite materials have been characterized experimentally using different mechanical and vibrational tests. First, both types of composites were studied using uni-axial tensile and three-points bending tests. Acoustic emission (AE) has been often used for the identification and characterization of micro failure mechanisms in composites. The results showed that these composites have very high specific characteristics. It can be used for applications currently using composites reinforced with synthetic fibres such glass, carbon…. Next, experimental and finite element vibration analyses were carried out on the composites with and without an interleaved natural viscoelastic layer. A good agreement between the two methods was obtained. It has been shown that the viscoelastic layer plays a major role in damping because it has a high level of energy dissipation. Therefore, it improves with a significant way the modal properties of the composite. Finally, nonlinear resonance tests were performed on the composites. It has been shown that the viscoelastic layer generates a nonlinear behaviour in the material. The linear and nonlinear, elastic and dissipative parameters have been calculated to deduce finally that nonlinear parameters are more sensitive to heterogeneities than those derived from linear vibration tests
Chegdani, Faissal. "Analyse multiéchelle de l'usinage des matériaux biosourcés : Application aux agrocomposites." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0043/document.
Full textNatural fibers such as flax, hemp, bamboo or miscanthus are increasingly used as fibrous reinforcement in order to reduce the weight, the cost and the environmental impact of products. They replace the conventional composites based on polymer resin and synthetic fibers. The finishing operations by machining of these biocomposite products remain a technological issue and a scientific challenge. This is mainly due to the complex structure of natural fibers composed of cellulose and extracted from plant leaf or plant stem. This research work provides a multiscale analysis of cutting behavior of these renewable materials in 2D orthogonal cutting and 3D milling processes. The primary objective is to better understand the major physical mechanisms activated by the material removal process of biocomposites. Furthermore, to identify the scale effects observed in machining, a tribo-mechanical characterization of stratified biocomposites by nanoindentation and scratch as well as specific mechanical tests were carried out. Natural fibers are distinguished from synthetic fibers by a transverse flexibility, which enable them good ability to deform upon contact with the cutting tool. Thus, the mechanical tool/material contact stiffness controls the cutting by plastic shearing of plant fibers and, consequently, it controls the quality of the biocomposite-machined surfaces. Otherwise, natural fibers, associated with a thermoplastic polymer matrix, have an elastoplastic behavior with a ductile damage when they are stressed in their transverse direction. This explains the production of continuous chips when machining biocomposites, unlike conventional synthetic composites. The mechanical and tribological behaviors of plant fibers in machining are dependent on the contact scale. This explains the multiscale cutting character of biocomposites where the machinability is intimately related to the size of the fibrous reinforcement
Moukadiri, Dounia. "Développement d'une approche numérique par la MED pour la prédiction des propriétés mécaniques des matériaux hétérogènes avec prise en compte de leur variabilité : application aux matériaux composites biosourcés." Electronic Thesis or Diss., Amiens, 2019. http://www.theses.fr/2019AMIE0061.
Full textNatural fiber composites are attracting growing interest. However, pieces made from this type of material exhibit a high variability in terms of mechanical properties, which makes them less competitive compared to conventional materials. In this work, a numerical approach, based on Discrete Element Method (DEM) and the probabilistic method Certain Generalized Stress Method (CGSM) is proposed, in order to take into account the different sources of variability. For validation purposes, a unidirectional bio-based composite material based on flax fibers is considered. The first part of this work describes the material's manufacturing, the elastic properties experimental characterization and the quantification of their variability. The DEM is then introduced to simulate the macroscopic behaviour of the material. Since the stress field obtained using DEM modelling is heterogeneous, an approach named Halo is introduced to control this dispersion. The proposed approach is tested and validated in homogeneous and heterogeneous media. Finally, the variability of elastic properties is introduced into the discrete model via a coupling approach with the probabilistic method CGSM
Méjean, Chloé. "Élaboration de nouveaux matériaux absorbants : application en chambres anéchoïques." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S153.
Full textThis thesis work focused on the study of new materials for electromagnetic absorption in anechoic chambers. This subject arose from the study of a new matrix which was never used for electromagnetic absorbers until then: the epoxy foam. This foam has many advantages compared to the matrices usually used in the trade like the possibility of cutting complex shapes out of them or trapping the charge in the core of the absorber...This matrix was associated to different carbonaceous load (carbon black, graphite and carbon fibers). The combination of epoxy foam with millimeter carbon fibers has shown better absorption performance at very low loading rates: 0.5 %wt (S11 ≈ -40 dB between 4 and 18 GHz under normal and oblique incidences). The use of different fiber lengths showed that it is possible to improve absorption performance at low frequencies using long carbon fibers. Finally, we directed our work on the creation of an absorbent material from a cork matrix. These new materials, made from bio-based materials, have shown better absorption performance than a commercial absorber, with the same dimensions in normal incidence (S11 = -54 dB and S11 = - 27 dB respectively at 4.26 GHz) and oblique incidence (S11 = -51 dB and S11 = -30 dB respectively at 4.26 GHz) and are therefore potential candidates for the replacement of existing commercial absorbent materials
Haddou, Geoffrey. "Structure et propriétés physiques de composites à matrice biosourcée/fibres naturelles continues pour applications aéronautiques." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30272/document.
Full textThe aim of this work is to propose fully bio-based composites for a potential application in the cabin interior, and compliant with the REACh regulations. The use of vegetable fibers as reinforcement into polymeric matrices is an encouraging way to decrease the environmental impact, end the weight as well. A new bio-based polyamide matrix, synthetized by Arkema - Polyamide meta-xylylene diamine 10 - was used in this work. A preliminary study on Polyamide 11/bamboo powder showed the introduction of the fillers did not modified the physical structure of the matrix. Moreover, the optimization of the mechanical properties occurs with no coupling agent. The continuous bamboo fibers/PA mXD 10 composites, which were also processed without coupling agent, present shear moduli superior than the one of the synthetic reference glass fibers/phenolic, with a gain of weight about 50%
Codou, Amandine. "La cellulose et le poly(ethylene 2,5-furandicarboxylate) comme précurseurs biosourcés de matériaux thermoplastiques et thermodurcissables : les transitions physiques des biopolymères et l'élaboration des composites." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4123/document.
Full textThe cellulose and the poly(ethylene 2,5-furandicarboxylate) (PEF) were the two main biobased polymeric precursors employed in this thesis work. Two complementary investigation pathways were explored which respectively focus on the fundamental aspects and on elaboration of composites from these precursors. First, the glass transition and both the melt/glass non-isothermal crystallization of PEF were investigated. A kinetic approach of these transitions revealed a peculiar behavior of PEF which is useful to better understand its processing. In addition, the high-temperature transition of cellulose Iβ was for the first time explored by means of complementary thermo-analytical and spectroscopic techniques. On the other hand, the controlled periodate oxidation of one single cellulose source was employed to generate thermoset-like “all-cellulose composites” marked by their high mechanical performances. Finally, combination of PEF and cellulose nanocrystals allows to obtain transparent thermoplastic composites in which the cellulosic entities might have nucleating effects
Mattlet, Agnès. "Influence de l'utilisation d'une matrice recyclée sur le comportement et les performances d'un composite lin/polypropylène lors de sa mise en oeuvre et de son vieillissement hydrothermique." Electronic Thesis or Diss., Bourgogne Franche-Comté, 2022. http://www.theses.fr/2022UBFCK079.
Full textTo respond to the growing interest in ecology, the development of eco-responsible materials has become preponderant in areas such as transportation and mobility. One potential solution is to replace synthetic fibers by natural ones and virgin polymers by recycled ones. Indeed, these materials present similar specific properties and a lesser environmental footprint. However, natural fibers are very hydrophilic, which can be a problem in long-term outdoor use. As for the polymers, they undergo modifications during recycling that can affect their compatibility with fibers. This thesis' aim is to investigate how the use of a recycled matrix affects the properties of polypropylene/flax composites and their behavior under hydrothermal and cyclic ageing. First, the influence of processing parameters (compatibilizing agent's percentage, consolidation time, temperature and pressure, cooling rate and exit temperature) on the mechanical properties of virgin matrix composites was studied in order to obtain a reference material. Then, the impact of the use of recycled matrices on the properties of the composite was studied. Finally, hydrothermal and cyclic ageing (immersion, freezing and drying) were applied to all composites (with virgin and recycled matrices). A multiscale analysis combining physicochemical, structural and mechanical characterizations was carried out during ageing to better understand the influence of the matrix on the behavior of the composites over time
Khennache, Mehdi. "Influence des conditions de culture et de transformation du lin sur les caractéristiques chimique, physique et mécanique de la fibre de lin technique pour une application en matériaux composites biosourcés." Thesis, Normandie, 2020. http://www.theses.fr/2020NORMR103.
Full textComposite materials based on natural reinforcements are constantly evolving towards products that are either the least expensive or the most efficient, and ideally both at the same time. For the sake of environmental protection and public health, their use has become a major issue and will be even more in the near future and in the long term. The automotive industry, for example, is increasingly interested in plant fibers in order to use renewable and sustainable materials, and to lighten vehicles whose mass is responsible for 75% of fuel consumption (cellulose fibers are 30 % less dense than glass fibers). It is in this context that this research work takes place, whose main objective is to study the effect of the transformation parametersof textile flax (scutching, hackling and homogenization) as well as the effect of its conditions of culture (degrees of maturity and retting) on the physicochemical and mechanical characteristics of technical flax fibers and the mechanical performance of the associated biobased flax /epoxy composite materials, produced by thermocompression. For each flax Modalities (reference, transformation and culture), technical flax fibers are characterized by Van Soest method, X-ray diffraction, pycnometry, thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy in order to determine and compare respectively their biochemical composition, crystallinity index, density, thermal stability and morphology as well as the different chemical bonds present on the surface. The tensile mechanical properties of each technical flax fiber, unidirectional veil of flax fiber and thermopressed bio-based composite material are also determined. A new method, considering temperature and relative humidity during tensile tests, is proposed to calculate the cross section of technical flax fiber. The results of the transformation campaign show that the flax hackling step can be deleted without affecting the mechanical properties of the proposed bio-based composite materials. The results of the culture campaign show a slight effect of the degrees of maturity and retting of technical flax fibers on the mechanical properties of the biobased composite materials produced. It appears that the degrees of maturity and retting of flax impact their rigidity and breaking properties, respectively
Chennouf, Nawal. "Phénomènes de transfert de chaleur et de masse dans les composites de bois de palmier dattier : comportement sous sollicitations dynamiques." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC0012.
Full textPromoting the date palm concrete in new constructions and renovating buildings requires a full hygrothermal characterization at several scales (material, wall and building). In this thesis, the hygrothermal behavior of date palm concrete was experimentally investigated, firstly at material scale then at wall scale. In the first part, the adsorption-desorption isotherms and the hysteresis effect of DPC were characterized under static conditions.The results revealed a high hygric capacity for this material compared with other classical building materials. The moisture buffer value and the effect of temperature on successive adsorption/desorption cycles were also assessed under dynamic conditions. It was found that the sorption process is highly affected by the temperature. Furthermore, this bio-based mortar was classified as hygroscopic and breathable material with excellent moisture buffer capacity. In the second part of the thesis, we have experimentally investigated the hygrothermal behavior at wall scale. The investigation was performed using a climatic chamber where the variation of temperature and relative humidity were applied on one side of the wall. These both parameters were measured at different depths of the biobased wall using sensors. Several thermo-hygric phenomena were highlighted such as the high coupling effect between the heat and moisture transfer due to the evaporation-condensation and adsorption-desorption phenomena. Besides, significant thermal and hygric inertia was observed through the DPC wall which allows mitigating overheating and reducing interstitial condensation for sustainable constructions
Hanani, Zouhair. "Conception de composite flexible céramique sans plomb/biopolymère pour des applications de stockage et de récupération d'énergie." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0288.
Full textThe existing energy storage and harvesting devices suffer from the moderate performances, low flexibility and the use of toxic compounds. This is how ceramic/polymer nanocomposite approach is highly promising for high-efficiency energy storage and harvesting applications, due to the high dielectric constant of the ceramic and the high breakdown strength, the flexibility and the ease of processing of the polymer. This thesis focuses on designing ceramic (BCZT)/polymer (PLA) nanocomposites for these applications. First, controlled syntheses of BCZT ceramics with different particle sizes, size distributions and shapes were performed and discussed. The effects of grain size and grain shape of BCZT ceramics on the dielectric properties were studied. It was found that the BCZT ceramic with near-spherical particles elaborated by low-temperature hydrothermal processing at 160 °C revealed enhanced dielectric and ferroelectric properties compared to the BCZT ceramics synthesized by other methods. Second, BCZT near-spherical particles BCZT nanorods and HZTO nanowires were embedded in the biodegradable PLA polymer matrix. The effects of the ceramic shape, arrangement, dielectric constant and aspect ratio on the dielectric constant of the nanocomposite were explored using the effective dielectric constant of the nanocomposite models. It was found that for improving the dielectric properties of the composite, it is important to control the ceramic fillers geometry rather the use of high-k ceramics. Afterwards, the energy storage properties of PLA-based nanocomposites were evaluated by D−E hysteresis loops, and high-energy storage performances were obtained in the nanocomposites based on rod-like fillers. The energy harvesting aspect was investigated by designing a bio-flexible piezoelectric nanogenerator (BF-PNG) based on BCZT/PLA nanocomposite film to convert the ambient mechanical energy to electrical energy. This BF-PNG could generate open-circuit voltage and short-circuit current of 14.4 V and 0.55 µA, respectively, and large power density of 7.54 mW/cm3 at a low resistive load of 3.5 MΩ, under gentle finger tapping. The feasibility of the BF-PNG was tested by driving commercial electronics (charging capacitors and lighting an LED). Accordingly, this work demonstrates that BCZT lead-free ceramic in combination with PLA biopolymer can lead to flexible nanocomposite with enhanced energy storage and energy harvesting performances for application in self-powered devices
Sliwa, Fabien. "Etude de nouveaux composites de source renouvelable à base de copolyamide et de farine de bois." Thesis, Pau, 2011. http://www.theses.fr/2011PAUU3020.
Full textThe physical properties and thermal stability of a new family of wood polymer composites (WPC) using a bio-based thermoplastic elastomer matrix (pebax® copolymers) were studied. The matrix is a polyether-b-amide thermoplastic elastomer which presents an important elongation at break, a melting point below 200°C which helps prevent degradation of wood fibres. The hydrophilic character of pebax® leads to a good interaction with wood fibres. We have chosen several types of wood flour as reinforcement agent, focusing on wood flour from maritime pine. Composites compounds were made using a laboratory twin screw extruder prior to injection molding to obtain tensile test samples. We have demonstrated the good quality of the interface between wood fibres and matrix, without using any specific compatibilizing agent. Most importantly, we have pointed out a strong improvement of thermal stability of composites under air atmosphere, compared with the behaviour of the matrix or wood separately. We have also characterized the mechanical properties of these composites. The resulting data show an improvement of the tensile modulus with increasing wood content and a decrease of elongation at break, with a behaviour change from elastomeric to less stretchable solid behaviour between 20% and 30% of wood content.The last part of our work was dedicated to the evaluation of water absorption of thecomposites at different wood content. We have shown an increase of water absorption withincreasing wood content and we demonstrated a Fickian diffusion process at the onset ofwater absorption
Darroman, Emilie. "Elaboration de polymères biosourcés pour application dans un matériau composite à base de farine de liège." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2014. http://www.theses.fr/2014ENCM0018.
Full textThe presented study concerns the development of a composite material (cork flour, binder and additive) in order to produce of technological cork-stoppers carried out by a molding process. As part of this work, the synthesis, the characterization and the formulation of a biobased polymer have been developed as a binder of the composite material. The strategy of this thesis was to develop a polymer obtained by polycondensation of an epoxy compound with an amine curing agent.As a first step, a thorough characterization of the binder used by DIAM Bouchage was carried out to define the specifications of the novel polymer. The study of epoxy and amine compounds led to the selection of biobased commercial and non-classified CMR precursors that meet the specifications. Novel epoxy and amine precursors were synthesized from biobased resources such as vanillin and fatty acid derivatives. The synthesis of epoxy-amine resins was performed with the selected commercial precursors and these resins were characterized thermally, mechanically and physically. Finally, different formulations of technological cork-stoppers were synthesized and characterized to evaluate their suitability with the DIAM Bouchage specifications
Reulier, Marie. "Renewable thermoplastic multiphase systems from dimer fatty acids : characterization of the "morphology-properties" relationships." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAE007.
Full textIn the context of sustainable development, renewable multiphase systems from thermoplastics based on dimers of fatty acids were prepared to develop a renewable waterproofing material for building applications. Formulations based on thermoplastics, i.e. thermoplastic polyurethane (TPU) and polyamide (DAPA), mineral micro-fillers and cellulosic fibers were prepared with a special focus on the morphology-property relationships of the multiphase systems obtained thereof. The close macromolecular architectures promote a certain degree of compatibility between the polymers. Comparable viscosities in the melt state ensure a good dispersion of the matrices within each other during processing. The mechanical properties and dimensional stability were improved with micro-fillers. The effect of the aspect ratio of the fillers on the elastic properties was investigated and micro-mechanical modelling of the Young’s Modulus was performed. The fatigue behavior of the biocomposites was also examined through loading and unloading tests. Finally, interactions and affinities between the fibers and polymers were characterized. Chemical modifications were carried out on the surface of the fibers to decrease their hydrophilic nature and improve the fiber-matrix adhesion. The effect of the chemical modification was then investigated. Step-by-step, the studies carried out ensured the selection of the optimal components for a renewable waterproofing material enabling the production of a promising prototype
Duaux, Gabriel. "Polymères biosourcés issus de LTTM {glucide polyacide carboxylique eau} : Élaboration et applications dans les matériaux carbonés réfractaires." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI119.
Full textRefractory carbon/carbon composite materials consist of carbonaceous granular fillers shaped with a carbonisable binder. Until now, the binder used has generally been coal tar pitch, which is carcinogenic and covered by REACH. In order to replace it with a product that is more respectful of the environment and of the health of handlers, we are proposing an innovative solution in this thesis work. Carbohydrates, and more particularly sugars, are carbonisable compounds with a low carbon yield. In the presence of polycarboxylic acid, they can form a low transition temperature mixtures characterised by a eutectic or a lower flow temperature than that of its constituents taken separately. This type of mixture is capable of reacting at temperatures of the order of 100°C, thus lower than those commonly required for esterification reactions. This behaviour is similar to that already described for BADES (Brønsted Acidic Deep Eutectic Solvent). Under these conditions, linear and branched (ester-co-oside) copolymers are obtained which lead to a poly(ester-co-oside) network by continuing the reaction under vacuum. By choosing the constituents and controlling the reaction time, it is possible to control the viscosity of the polymers for use as a binder in carbon/carbon composites with granular fillers. In this case, we have shown that the use of polycarboxylic acids has three advantages: i) when mixed with sugars, LTTMs (Low Transition Temperature Mixtures) that are liquid at room temperature are formed, which facilitates their use in the process, ii) they act as a reagent and catalyst for the polymerisation of sugars and iii) they make it possible to increase the carbon yield of the binders. These results are very promising for the manufacture of refractory carbon/carbon composites as an electrode for alumina electrolysis
Marrot, Laetitia. "Contribution au développement de matériaux composites à matrices thermodurcissables biosourcées et renforcées par des fibres végétales." Lorient, 2014. http://www.theses.fr/2014LORIS333.
Full textNowadays, depletion of fossil resources and climate change create a growing awareness of the limits of the environment. To be more respectful towards the environment, it is possible to replace glass fibers by vegetable fibers in the reinforcement of composite materials. Thermoset composite materials are well adapted for applications which require high performances. The purpose of this work is to help the development of thermoset composites reinforced with vegetable fibers. First, we highlighted hemp fibers characteristics and their main microstructural specificities, which make them different from flax. Consequences on hemp fibers of activities related to the harvesting steps like decorticating and retting have been investigated. Then, we found interesting results for the use of biobased epoxy and polyester resins in terms of mechanical performances and adhesion with flax fibers. It has been showed that the hardener nature of the epoxy matrix has an influence on the adhesion with a flax fiber. In the last section, we considered industrial composites reinforced with flax fibers with petrochemical and biobased epoxy matrices. We checked the specifications for the mechanical properties in automotive, railway transport and luxury furniture applications. In spite of several defects, especially porosities, the composites showed satisfying tensile and bending properties. Impact properties remained insufficient though
Tran, Thi Nguyet. "Bio-based elastomeric composites for antibacterial and antifouling applications : methodology for the synthesis and grafting of functionalized oligomers issued from natural rubber." Thesis, Le Mans, 2018. http://www.theses.fr/2018LEMA1024/document.
Full textThis manuscript presents the synthesis of new elastomeric materials based on natural rubber derived building blocks and organic monomers having antifouling and/or antibacterial properties, covalently bound to the polymer network. Original acrylate monomers bearing an organic bioactive moiety (a Guanidinium group or Zosteric acid derivates) were synthesized and co-polymerized with telechelic acrylate oligomers from polyisoprene. No significant leaching of the bioactive monomers occurred and the material resisted to long water immersions. Freestanding films prepared from acrylate oligoisoprenes also showed a weak antibiofouling activity which was drastically increased by integrating the guanidinium and the Zosteric acid monomers. The coatings were active against several strains of pathogenic bacteria among which Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis. In order to covalently graft oligoisoprenes to surfaces, new bifunctional oligoisoprenes bearing an alkoxy-silane end moiety were designed and coupled with silicon-containing materials. An alternative approach was followed by prefunctionalizing the surface with amino groups and by covalently grafting oligomers with carbonyl chain-ends. Post-polymerization from the surface free chain-ends resulted in a thick oligoisoprene coating with strong resistance to solvent immersion (water, THF). In this way, we were able to build dense and tethered molecular layers, thin films and thick coatings
Honoré, Mathilde. "Mise au point de nouveaux bio-composites verts innovants à base de roseau commun Phragmites australis : applications en plasturgie et en éco-construction pour le bâtiment." Thesis, Lorient, 2020. http://www.theses.fr/2020LORIS572.
Full textThe use of plant fibres, both in the field of plastics processing and in the building industry, makes it possible to reduce greenhouse gas emissions and therefore the environmental impact of mankind. Interest in biocomposites using plant fibres such as hemp, wood, flax and also miscanthus reed is increasing. Nowadays, there is very little work on the reed phragmites australis. However, as it does not use cultivated areas, this invasive plant is independent of agricultural issues and does not require any chemical inputs. The reed harvest is therefore part of a wetlands management approach while enhancing the value of a material with multiple properties. This work is devoted to the characterisation of the raw material phragmites australis and to the study of its eligibility as a substitute material of three reference materials, wood, miscanthus and hemp shiv, widely used as reinforcements in plastics processing and eco-construction. Composite formulations using two polymer matrices (polypropylene and polybutylene succinate) with different rates of plant fillers and coupling agent were characterised from the point of view of their mechanical properties by Charpy tensile, flexural and impact tests. The water ageing of these composites was also studied and correlated to the hydrophobic character of the reed. For the construction application, formulations based on reeds of different origins and using different binders (lime, plaster and earth) were tested in compression and with thermal conductivity measurements in order to evaluate the behaviour of the reed as a material for building use
Gourier, Clément. "Contribution à l’étude de matériaux biocomposites à matrice thermoplastique polyamide-11 et renforcés par des fibres de lin." Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS415/document.
Full textThis thesis has been carried out as part of the project Fiabilin, which includes 15 different academic and industrial partners, with an aim to develop industrial production of polyamide-11/flax biocomposite. The purpose of this work is to determine multi-scale performances of 100% biosourced composite, in order to substitute composite materials containing glass fibers and/or matrix derived from petroleum. First, we highlighted the flax fiber sensibility toward processing cycles (time and temperature), from mechanical and biochemical structure aspects. Then, we revealed the capacity of PA11-flax association to produce competitive mechanical properties compared to others usual composites. Fiber-matrix interface of the biocomposite was studied at micro and macro scales, showing a higher compatibility than some flax-thermoset resin systems. The end-of-life of the biocomposite was considered by recycling with successive grinding and injections. Then stiffness and strength at break of short fiber biocomposites thus obtained are similar to PPgMA-flax composites, whereas a strong increase of the strain at break according to the number of injection cycles was observed. A life cycle analysis of some composites production steps shows lower environmental impacts of PA11-flax when sizing was made through equivalent material stiffness
Brouard, Yoann. "Caractérisation et optimisation d'un composite biosource pour l'habitat." Thesis, Tours, 2018. http://www.theses.fr/2018TOUR4024.
Full textThe purpose of this study was to compare hygrothermal acoustical and mechanical properties ot different materials based on vegetal aggregates and clay in order to characterize the performances of different biocomposites to provide building insulation solutions with a view to valorizing agricultural waste. We first analyzed the raw materials in order to get the density, thermal and hydric properties of the vegetal aggregates in one hand and the mineralogy and gravimetric data of the selected crude earth in the other hand. Thermal behavior of earth:vegetal aggregates mixes have been investigated at different humidity rates and different density ranges. Additionally, hydric properties have been measured to produce sorption and desorption curves and moisture buffer values (MBV) in one hand and capillarity of both aggregates and biocomposites on the other hand. One of the main interests of this study is to confirm that a wide range of locally produced vegetal byproducts could be used as - bioaggregates for concretes. Local biomaterials industries could therefore emerge depending on the locally available resources at country scale
Almusawi, Aqil mousa. "Mise en œuvre et optimisation des propriétés d'une structure sandwich en matériaux biosourcés (fibres et bois de chanvre) avec une matrice en polystyrène expansé pour le bâtiment." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA009/document.
Full textDue to the rapidly improving functionality of building materials, and increasingly complicated human resource management issues, the traditional cement-based building materials of the past are becoming less and less desirable.These outdated materials are being replaced by new structures of wall that better optimize choices of materials and their layouts. In this study, we propose a multi-function structure to be the unit of a typical wall (individual house), which can be produced via the use of inexpensive materials and classic manufacturing processes. To achieve this, we chose the renewable agricultural source of the hemp plant (hemp yarns and hemp shive particles), along with recycled expanded polystyrene, to manufacture a fully recyclable composite. We established a relationship between the physical-mechanical properties of the resulting composite and the parameters of the manufacturing process, particularly in the zone of high load reinforcement, we successfully manufactured a composite of 100% hemp shive particles. In addition, we have also prepared the numerical optimization phase of an alveolar sandwich structure by modeling the process and the obtained structure
Chlela, Robert. "Durabilité d'un système composite biosourcé (matrice époxy-fibres de lin) pour applications de renforcement structural : approches expérimentale et fiabiliste." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC2076.
Full textIn France, the built heritage of civil engineering and building structures is vast and ageing. Recent reports prepared by experts highlight this alarming situation and point out the need to significantly increase the resources allocated to the rehabilitation of this heritage. In this context, structural reinforcement by externally bonded composites has become an attractive solution for the rehabilitation of structures and the extension of their lifespan. This thesis, funded by the French Research Agency (ANR), aims to develop a new composite reinforcement system with a reduced environmental footprint, on one hand, and to build an original reliability approach to estimate the lifetime of reinforcement systems and their failure probability at any time, on the other hand. In this manuscript, the main phases of development of the bio-based system are first recalled. In particular, it is recalled that the formulation of the bio-sourced epoxy matrix was based upon the specifications and characteristics of the Foreva® TFC matrix, and the criteria that guided the choice of the unidirectional flax fibre reinforcement fabric are also presented. The second part of the manuscript presents all the experimental results obtained within the framework of the durability study on the bio-based strengthening system. This test campaign relies on a Design of Experiment optimized by Hoke’s matrix. Laminated composite plates and concrete slabs reinforced with these composites were subjected to accelerated ageing under hygrothermal conditions, and to natural ageing on an outdoor exposure site in Lyon as well, for a total duration of 24 months. In a first step, the results of various physico-chemical characterizations that were periodically conducted on the bio-based composites, highlighted the relative contributions of mechanisms involved in microstructural evolutions and degradation phenomena of both the polymer matrix and fiber/matrix interfaces. In a second step, the changes in the main performance indicators related to the composite and the concrete-composite interface subjected to the various ageing environments, are presented and interpreted in the light of the previous physico-chemical characterizations. In a third step, a comparison is made between the bio-based composite system and a traditional carbon fibre strengthening system. The last part of the manuscript is devoted to the implementation of the reliability approach, relying on the experimental database previously collected for the bio-based system. A statistical analysis by the ANOVA method is first carried out on all experimental data. Two degradation models were then developed to describe the evolutions of performance indicators over time for any hygrothermal ageing condition: an analytical model with explicit terms related to quadratic effects and coupling between temperature and relative humidity, and a physical model based on Eyring's law.In a next step, these models were used to estimate the lifetime of the bio-based strengthening system under accelerated ageing conditions. End-of-life criteria were first defined based on specifications proposed by different design guidelines, in particular by ACI and AFGC reports.In order to evaluate the lifetime under actual service conditions, a specific procedure was then proposed to apply the analytical model in the case of natural ageing. Finally, a probabilization of the analytical model is carried out in order to determine the probability of failure of the bio-based strengthening system at any time during its lifetime
Ismail, Brahim. "Contribution au développement et optimisation d’un système composite biosourcé-enduit de protection pour l’isolation thermique de bâtiment." Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3112.
Full textThe research work presented in this thesis focuses on the formulation, characterization and modeling of the physical and mechanical properties of bio-composite materials based on plant aggregates (cereal straw) for thermal insulation and energy rehabilitation of buildings. The objectives of this thesis, part of the PEPITE project, are the optimization of the thermal, mechanical and hydric performances of the bio-based materials developed within the framework of previous work and the development of a protective coating for a technical solution of thermal rehabilitation. The optimization of the formulation is obtained by using additives and other biodegradable and renewable natural waste, in order to create a higher porosity and to further decrease the thermal conductivity of the materials. Based on the results of experimental characterization, three formulations were selected. These materials are highly heterogeneous media with a rather complex behaviour and for which its understanding and prediction call for numerical homogenization methods in the framework of this work. The effect of the real microstructure (morphology, orientation of heterogeneities) on the effective thermal properties and the non-linear mechanical behavior of these materials was also highlighted in this study. The comparison of numerical and experimental results confirmed the predictive capacity and the potential of the approach used to guide the formulation of materials based on thermal performance criteria. A detailed characterization of the hydric properties of the optimal formulations (water vapor permeability, sorption-desorption curves, MBV) was carried out in order to understand the relationship between the properties of these materials and the notion of hygro-thermal comfort of the building. Excellent hydric properties were obtained for the three bio-composites studied. In order to evaluate their long-term performance, the materials were exposed to accelerated ageing in the laboratory through humidification-drying and freeze-thaw tests. This environmental assessment revealed a significant reduction in mechanical properties after the cycles considered. Finally, a protective coating for bio-based materials was developed in this study with the aim of proposing a complete thermal renovation solution. The coating with optimised behaviour proposed here by combining an experimental and numerical approach was the subject of a physical and mechanical characterization in order to measure its impact on the performance of biocomposites. The characteristics obtained for the optimal formulations proposed meet perfectly the regulatory requirements relating for thermal insulation coatings
Rouch, Matthias. "Contribution à la compréhension des mécanismes de vieillissement hydrothermique de matériaux composites unidirectionnels polyester insaturé/fibre de lin." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC210/document.
Full textA great number of plant fiber – reinforced polymer composites allowed substantial lightening of structures in various fields of application. However, the question remains about the durability of these parts in service, mainly for lack of knowledge about the aging of plant fibers, their interactions with the polymer matrix and the hydrothermal behavior of biosourced composites over time. In this work, water absorption mechanisms and kinetics by the composite material are studied in order to understand the hydric behavior during hydrothermal aging by immersion in deionized water at 23°C or 70°C. The results show that water absorption by the composite is characterized by a high water uptake and an anisotropic swelling. It also allowed the identification of the degradation mechanisms of flax fibers; the very harmful role of bark residues recalls the importance of retting and decortication on the performance of these fibers.The investigation of the behaviors of the constituents and the composite under hydrothermal aging was then undertaken with the aim to identify and quantify the influence of each on the constituent materials, as well as their synergy. It shows that the deterioration of the flax fibers is the main cause of the reduction of the mechanical properties of the composite. If immersion at 23 ° C for 70 days has little effect on the mechanical properties, raising the temperature to 70 ° C induces significant damage from 14 days of immersion. The destruction of the cell walls and the degradation of the fiber/matrix interfaces due to water deteriorate the load transfer efficiency by the fiber/matrix interface. The correlation between accelerated and natural aging showed a similarity between holding for 70 days in water at 23 ° C and exposure to natural conditions for 24 months; immersion at 70 ° C is too severe. An improvement solution would be to increase the retting of the fibers in order to further remove the pectic compounds from the middle lamella and the primary wall. The elimination of these compounds easily hydrolysable by water would claim to a better quality of the fiber / matrix interface throughout aging
Gamon, Guillaume. "Incorporation de fibres végétales dans des matrices thermoplastiques biosourcées et biodégradables par extrusion bi-vis pour la production de matériaux biocomposites moulés par injection." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0029.
Full textIncorporation of vegetal fibres, differing by their source, their chemical composition and their shape, have been performed by twin screw extrusion in two thermoplastic matrices: the poly(lactic acid) and the thermoplastified wheat flour. These two biobased and biodegradable matrices have also different chemical character and thermo-mechanical properties. Fibre incorporation up to 40 % in weight considerably modified both matrix properties and improved several weaknesses (thermal stability, lack of stiffness…). Miscanthus fibres have been selected as best improvers for properties of both matrices. Materials properties were adjusted with a formulating work (addition of plasticizers) and whole process optimization, until injection-molding. Fibre incorporation in a compatibilized blend of the two matrices was also tested and performed in a one step extrusion process, including flour thermoplasticization, polymer blending and fibre dispersion
Quitadamo, Alessia. "Influence of wood flour and cellulose on the properties and the stability of formulations based on polyolefins and bio-based polymers." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI015.
Full textThe objective of this research is the development of high-added value materials, with high amount of bio-derived fillers, resulting in a more eco-friendly product. The pursued strategy is based on both the introduction of natural fibres and the use of oil-based and bio-derived polymer blends as matrices, reducing the non-biodegradable amount in the material. The thesis project is based on the development of HDPE/PLA blends filled with natural fillers, such as wood flour and recycled paper fibres. High-density polyethylene has been chosen because it is one of the most representative recycled polymers on the market. Poly(lactic) acid has been selected as it is an important bio-degradable polymer on the market. The methodology developed here can be extended to other bio-degradable polymers, such as Soy Protein Isolate (SPI). Wood flour is a diffuse waste material, that can be used for production of Wood Plastic Composites. Recycled paper fibres are derived from industrial paper waste, which cannot be subjected to traditional recycling processes. Additives have been introduced in order to face the problem of different hydrophilicity between oil-based/bio-derived polymers with natural fillers. The optimal composition and production processes are challenges, not only for the use of these materials, but also for their disposal. The end-of-life of these samples can be evaluated through controlled bio-degradability and compostability, correlating material structure with the ability to biodegrade. The production of a material at reduced environmental impact with properties consistent with their applications is a first environmental advantage. Obtaining a controlled biodegradability, as a function of the applications, would give enhanced value to our materials. Several characterizations have been performed in order to analyse the effect of different compatibilizers and treatments such as: tensile tests, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analyses, infrared spectroscopy, size exclusion chromatography and composting tests
Soulama, Sagnaba. "Caractérisation mécanique et thermique de biocomposites à matrice polystyrène recyclé renforcée par des coques de cotonnier (Gossypium Hitsutum L.) ou des particules de bois de Kénaf (Hibiscus Cannabinus L.)." Thesis, Belfort-Montbéliard, 2014. http://www.theses.fr/2014BELF0243/document.
Full textIn the current context marked by a large emergence of environmental issues, the circular economy and sustainable development, the development of eco-materials represents a major challenge which offers an alternative to plastics recycled at end of life cycles.The objective of this work is to contribute to the development of two eco-materials from plant biomass non-cultivable food available, associated with synthetic polymers recycled at end of life cycles.It is a part, to develop a biosourced material constitutes of recycled polystyrene, strengthened of hulls of cotton. This material will be likely to be a substitute for polystyrene in areas of various applications such as the manufacture of parts for thermal insulation, interior trim from cars, the hulls of cellular mobile, computers, photocopiers, and various packaging.On the other hand, to develop particle board in wood of cotton stems and stalks of kenaf associated with a binder natural (the glue of bone) for use in the area of the thermal insulation of interior in replacing the panels of particles prepared with glue urea formaldehyde.The influence of the parameters for the development for each of the two materials was analyzed. After optimization of conditions of implementation for each material, the holding mechanical, thermal properties and the microstructure have been determined and optimized in each case