Academic literature on the topic 'Materials Spectra'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Materials Spectra.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Materials Spectra"
Ilehag, Rebecca, Andreas Schenk, Yilin Huang, and Stefan Hinz. "KLUM: An Urban VNIR and SWIR Spectral Library Consisting of Building Materials." Remote Sensing 11, no. 18 (September 15, 2019): 2149. http://dx.doi.org/10.3390/rs11182149.
Full textLatvels, Janis, Raitis Grzibovskis, Aivars Vembris, and Dagnija Blumberga. "Improvement of Solar PV Efficiency. Potential Materials for Organic Photovoltaic Cells." Scientific Journal of Riga Technical University. Environmental and Climate Technologies 12, no. 1 (December 1, 2013): 28–33. http://dx.doi.org/10.2478/rtuect-2013-0013.
Full textMyers, Daryl R., Keith Emery, and C. Gueymard. "Revising and Validating Spectral Irradiance Reference Standards for Photovoltaic Performance Evaluation." Journal of Solar Energy Engineering 126, no. 1 (February 1, 2004): 567–74. http://dx.doi.org/10.1115/1.1638784.
Full textKuzmina, D. A., E. Yu Mendosa, E. E. Maiorov, N. S. Narusak, A. I. Sakerina, and L. I. Shalamay. "Experimental studies of optical properties of hard tissues of anterior teeth and modern synthetic filling materials." Stomatology for All / International Dental review, no. 2020 4 (93) (December 2020): 58–62. http://dx.doi.org/10.35556/idr-2020-4(93)58-62.
Full textKuzmina, D. A., E. Yu Mendosa, E. E. Maiorov, N. S. Narusak, A. I. Sakerina, and L. I. Shalamay. "Experimental studies of optical properties of hard tissues of anterior teeth and modern synthetic filling materials." Stomatology for All / International Dental review, no. 2020 4 (93) (December 2020): 58–62. http://dx.doi.org/10.35556/idr-2020-4(93)58-62.
Full textSchmitt, J. M., and G. Kumar. "Spectral Distortions in Near-Infrared Spectroscopy of Turbid Materials." Applied Spectroscopy 50, no. 8 (August 1996): 1066–73. http://dx.doi.org/10.1366/0003702963905295.
Full textAvdic, Senada, Roumiana Chakarova, and Imre Pazsit. "Analysis of the experimental positron lifetime spectra by neural networks." Nuclear Technology and Radiation Protection 18, no. 1 (2003): 16–21. http://dx.doi.org/10.2298/ntrp0301016a.
Full textShi, Chenjun, Ji Zhu, Mingqian Xu, Xu Wu, and Yan Peng. "An Approach of Spectra Standardization and Qualitative Identification for Biomedical Materials Based on Terahertz Spectroscopy." Scientific Programming 2020 (October 21, 2020): 1–8. http://dx.doi.org/10.1155/2020/8841565.
Full textГирсова, М. А., Т. В. Антропова, Г. Ф. Головина, И. Н. Анфимова, and Л. Н. Куриленко. "Влияние химического состава пористой матрицы и атмосферы спекания на люминесцентные свойства висмутсодержащих композиционных материалов." Оптика и спектроскопия 131, no. 1 (2023): 84. http://dx.doi.org/10.21883/os.2023.01.54542.4040-22.
Full textYamamoto, T., H. Matsuoka, and K. Hisano. "Raman spectra of some ferroelectric materials." Ferroelectrics 96, no. 1 (August 1989): 245–49. http://dx.doi.org/10.1080/00150198908216780.
Full textDissertations / Theses on the topic "Materials Spectra"
Bowmar, Paul. "Optical spectroscopy of novel materials." Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259758.
Full textArshad, Khubaib, and Muhammad Mujahid. "Biodegradation of Textile Materials." Thesis, Högskolan i Borås, Institutionen Textilhögskolan, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-20862.
Full textProgram: Master Programme in Textile Technology
Whittam, Anne J. "Optically nonlinear materials." Thesis, Cranfield University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391585.
Full textMayfield, Angela Raye. "Characterization of textile materials by near-infrared relectance spectroscopy." Thesis, Georgia Institute of Technology, 1989. http://hdl.handle.net/1853/8616.
Full textSalisbury, Brian Eugene. "Mass spectroscopic characterization of small nanoclusters." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30359.
Full textNarula, Rohit. "Double resonance Raman spectra of graphene : a full 2D calculation." Thesis, Massachusetts Institute of Technology, 2007. http://hdl.handle.net/1721.1/42161.
Full textIncludes bibliographical references (leaves 85-87).
Visible range Raman spectra of graphene are generated based on the double resonant process employing a full two-dimensional numerical calculation applying second-order perturbation theory. Tight binding expressions for both the TO phonon dispersion and the [pi] - [pi]* electronic bands are used, which are then fit to experimental or ab-initio results. We are able to reproduce the single-peak D mode of graphene at ~ 1380 cm-1 that is identical to experiment. A near linear shift in the D mode peak with changing incoming laser energy of 33 cm-1/eV is calculated. Our shift marginally underestimates the experimental shifts as most of the literature features specimens that contain a few or more layers of graphene through to graphite that ought to subtly alter their electronic and phonon dispersions. However, our approach is readily applicable to such homologous forms of graphene once we have available their electronic band structure and phonon dispersions.
by Rohit Narula.
S.M.
Tsagli, Kelvin Xorla. "Temperature Dependence of Photoluminescence Spectra in Polystyrene." University of Akron / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=akron1625744248503334.
Full textGraham, Daniel J. "Multivariate analysis of TOF-SIMS spectra from self-assembled monolayers /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/8003.
Full text蘇振強 and Chun-keung So. "Defect study of zinc oxide bulk materials by positron lifetime spectroscopy." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B39558691.
Full textPatrick, Christopher Edward. "Photoemission spectra of nanostructured solar cell interfaces from first principles." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:fa2333ea-7016-4d6f-8d55-aee4178482a6.
Full textBooks on the topic "Materials Spectra"
H, Clark R. J., and Hester R. E, eds. Spectroscopy of advanced materials. Chichester: Wiley, 1991.
Find full textEric, Faulques, Perry Dale L, Yeremenko Andrei V, and North Atlantic Treaty Organization. Scientific Affairs Division., eds. Spectroscopy of emerging materials. Dordrecht: Kluwer Academic Publishers, 2004.
Find full textde, Frutos José, and García Jorge, eds. Solid state spectroscopies: Basic principles and applications. River Edge, N.J: World Scientific, 2002.
Find full textSolid-state spectroscopy: An introduction. Berlin: Springer Verlag, 1998.
Find full text1942-, Weber Willes H., and Merlin R. 1950-, eds. Raman scattering in materials science. Berlin: Springer, 2000.
Find full textKrasovit͡skiĭ, B. M. Organic luminescent materials. Weinheim: VCH, 1988.
Find full textGaft, Michael. Modern luminescence spectroscopy of minerals and materials. Berlin: Springer, 2005.
Find full textRenata, Reisfeld, and Panczer Gérard 1960-, eds. Modern luminescence spectroscopy of minerals and materials. Berlin: Springer, 2005.
Find full textMicrowave dielectric spectroscopy of ferroelectrics and related materials. Australia: Gordon and Breach, 1996.
Find full textZhang, Jin Z. Optical properties and spectroscopy of nanomaterials. Hackensack, N.J: World Scientific, 2009.
Find full textBook chapters on the topic "Materials Spectra"
De Giovannini, Umberto. "Pump-Probe Photoelectron Spectra." In Handbook of Materials Modeling, 293–311. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-44677-6_5.
Full textDe Giovannini, Umberto. "Pump-Probe Photoelectron Spectra." In Handbook of Materials Modeling, 1–19. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-42913-7_5-1.
Full textMiller, Foil A. "Infrared Spectra of Inorganic Materials." In Course Notes on the Interpretation of Infrared and Raman Spectra, 297–354. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471690082.ch11.
Full textFaulques, Eric. "Raman Spectra of Unconventional Superconductors." In Materials Synthesis and Characterization, 61–102. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-0145-3_3.
Full textLazarević, Z. Ž., N. Ž. Romčević, M. J. Romčević, and B. D. Stojanović. "Raman Spectra of Bismuth Titanate Ceramics." In Materials Science Forum, 243–47. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-441-3.243.
Full textSikula, Josef, J. Majzner, P. Sedlak, and Yasuhiko Mori. "Electromagnetic and Acoustic Emission Fine Spectra." In Advanced Materials Research, 169–74. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-420-0.169.
Full textVillo-Perez, I., Z. L. Mišković, and N. R. Arista. "Plasmon Spectra of Nano-Structures: A Hydrodynamic Model." In Engineering Materials, 217–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12070-1_10.
Full textLichtenstein, A., and A. Liebsch. "Quasi-particle Spectra of Sr2RuO4." In Ruthenate and Rutheno-Cuprate Materials, 76–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45814-x_6.
Full textCossairt, J. Donald, and Matthew Quinn. "Shielding Materials and Neutron Energy Spectra." In Accelerator Radiation Physics for Personnel and Environmental Protection, 149–68. Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429491634-6.
Full textAroca, R., M. Nazri, T. Lemma, A. Rougier, and G. A. Nazri. "Raman Spectra of Anode and Cathode Materials." In Materials for Lithium-Ion Batteries, 327–39. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4333-2_14.
Full textConference papers on the topic "Materials Spectra"
Tsutaoka, Takanori, Teruhiro Kasagi, Kenichi Hatakeyama, and Kyouhei Fujimoto. "Negative Permeability Spectra of Magnetic Materials." In 2008 International Workshop on Antenna Technology "Small Antennas and Novel Metamaterials" (iWAT). IEEE, 2008. http://dx.doi.org/10.1109/iwat.2008.4511336.
Full textCunningham, Stephen, and A. Louise Bradley. "Large Reversible Plasmon Shift with Au Nanodisc Dimers on Thin film VO2." In Novel Optical Materials and Applications. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/noma.2022.noth2e.1.
Full textKuzmany, H. "Quantum oscillations for the spectral moments of Raman spectra from SWCNT." In NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems. AIP, 2001. http://dx.doi.org/10.1063/1.1420062.
Full textBhatt, Kapil, Chetan Gurada, H. H. Joshi, D. C. Kothari, Amitabha Ghoshray, and Bilwadal Bandyopadhyay. "Temperature And Frequency Spectra Of Ni-Bi Ferrite." In MAGNETIC MATERIALS: International Conference on Magnetic Materials (ICMM-2007). AIP, 2008. http://dx.doi.org/10.1063/1.2928954.
Full textNaumenko, Antonina. "The peculiarities of Raman spectra of carbon materials." In The 15th international conference on spectral line shapes. AIP, 2001. http://dx.doi.org/10.1063/1.1370696.
Full textMedicherla, V. R. R., S. K. Parida, Pallab Bag, Rajeev Rawat, T. Shripathi, Nishaina Sahadev, Deepnarayan Biswas, Ganesh Adhikary, and K. Maiti. "Core level spectra of disordered Cu-Ni alloys." In FUNCTIONAL MATERIALS: Proceedings of the International Workshop on Functional Materials (IWFM-2011). AIP, 2012. http://dx.doi.org/10.1063/1.4736903.
Full textAleksa, V., D. Ozerenskis, M. Pucetaite, C. Cotter, G. A. Guirgis, and V. Sablinskas. "Infrared and Raman spectra, DFT-calculations and spectral assignments of germacyclohexane." In 4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914201.
Full textDénès, Georges, M. Cecilia Madamba, and Abdualhafed Muntasar. "Doublet asymmetry in divalent tin Mössbauer spectra." In MÖSSBAUER SPECTROSCOPY IN MATERIALS SCIENCE 2016. Author(s), 2016. http://dx.doi.org/10.1063/1.4966003.
Full textMerkle, Larry D., Tigran Sanamyan, Lindsay K. Hussey, and Mark Dubinskiy. "Spectra and laser cross sections of ceramic Er3+:AlN." In Advances in Optical Materials. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/aiom.2012.iw3d.3.
Full textAmerov, Airat K., Tatyana V. Lisenko, Nicolai M. Pokrasion, Vladimir L. Strizshevskii, and Elena G. Sulima. "Determination of blood components by optical reflection spectra." In Holography, Correlation Optics, and Recording Materials, edited by Oleg V. Angelsky. SPIE, 1993. http://dx.doi.org/10.1117/12.165438.
Full textReports on the topic "Materials Spectra"
Hasan, Z. U. Ultra-High Density Spectral Storage Materials. Fort Belvoir, VA: Defense Technical Information Center, July 2002. http://dx.doi.org/10.21236/ada406345.
Full textAlfano, R. R., and Anshel Gorokhovksy. Material for Spectral Hole Burning Storage. Fort Belvoir, VA: Defense Technical Information Center, May 1996. http://dx.doi.org/10.21236/ada309672.
Full textHutcheson, R. L., and R. Cone. Materials for Spectral Hole Burning Research. Phase 1. Fort Belvoir, VA: Defense Technical Information Center, March 1994. http://dx.doi.org/10.21236/ada278480.
Full textPsaltis, Demetri. Large Scale Spectral Hole Burning Memory in Organic Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2002. http://dx.doi.org/10.21236/ada408171.
Full textGreenwood, L. R., and R. K. Smither. SPECTER: neutron damage calculations for materials irradiations. Office of Scientific and Technical Information (OSTI), January 1985. http://dx.doi.org/10.2172/6022143.
Full textRingel, Steven A. Lattice-Engineered Materials and Vertically-Integrated Multijunctions for Multi-Spectral Photodetectors. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada563602.
Full textKachru, Ravinder, and Yiping Zhang. Diagnostics and Storage of Turbulence Distorted Wavefronts by Using Spectral Hole Burning Materials. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada351776.
Full textCone, Rufus L. Materials for Optical Routers, Signal Processors, and Memories Based on Persistent Spectral Hole Burning. Fort Belvoir, VA: Defense Technical Information Center, January 2001. http://dx.doi.org/10.21236/ada399509.
Full textPanfil, Yossef E., Meirav Oded, Nir Waiskopf, and Uri Banin. Material Challenges for Colloidal Quantum Nanostructures in Next Generation Displays. AsiaChem Magazine, November 2020. http://dx.doi.org/10.51167/acm00008.
Full textWhite, H. P., W. Chen, and S G Leblanc. Satellite observations for detection of dust from mining activities in a caribou habitat, Northwest Territories and Nunavut. Natural Resources Canada/CMSS/Information Management, 2022. http://dx.doi.org/10.4095/330548.
Full text