Academic literature on the topic 'Material'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Material.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Material"
Maugin, Gérard. ""Material" mechanics of materials." Theoretical and Applied Mechanics, no. 27 (2002): 1–12. http://dx.doi.org/10.2298/tam0227001g.
Full textTAKATORI, Eiichi. "Material Recycling of Polymer Materials and Material Properties of the Recycled Materials." NIPPON GOMU KYOKAISHI 87, no. 11 (2014): 441–46. http://dx.doi.org/10.2324/gomu.87.441.
Full textTakatori, E. "Material Recycling of Polymer Materials & Material Properties of the Recycled Materials." International Polymer Science and Technology 42, no. 7 (July 2015): 9–14. http://dx.doi.org/10.1177/0307174x1504200702.
Full textLurie, K. A. "MATERIAL OPTIMIZATION AND DYNAMIC MATERIALS." Cybernetics and Physics, Volume 10, 2021, Number 2 (October 1, 2021): 84–87. http://dx.doi.org/10.35470/2226-4116-2021-10-2-84-87.
Full textSaakes, Daniel. "Material light: exploring expressive materials." Personal and Ubiquitous Computing 10, no. 2-3 (October 21, 2005): 144–47. http://dx.doi.org/10.1007/s00779-005-0021-z.
Full textMoreno, A., E. Bou, María C. Navarro, and J. García. "Influencia de los materiales plásticos sobre las características de los engobes. I Tipo de material arcilloso." Boletín de la Sociedad Española de Cerámica y Vidrio 39, no. 5 (October 30, 2000): 617–21. http://dx.doi.org/10.3989/cyv.2000.v39.i5.778.
Full textPaton, B. E., and V. I. Trefilov. "Proposals for the ISS: Production of new unique materials in space («Material» Project)." Kosmìčna nauka ì tehnologìâ 6, no. 4 (July 30, 2000): 20–21. http://dx.doi.org/10.15407/knit2000.04.020.
Full textYoshitake, Michiko. "Materials Curation: Material Design by Multi-Disciplinary Use of Material Information." Journal of the Japan Institute of Metals 80, no. 10 (2016): 603–11. http://dx.doi.org/10.2320/jinstmet.j2016035.
Full textKishimoto, Satoshi, and Norio Shinya. "Fabrication of Metallic Closed Cellular Materials for Multi-functional Materials(International Workshop on Smart Materials and Structural Systems, W03 Jointly organized by Material & Processing Division, Material & Mechanics Division, Dynamics & Control Division and Space Engineering Division.)." Reference Collection of Annual Meeting 2004.8 (2004): 314–15. http://dx.doi.org/10.1299/jsmemecjsm.2004.8.0_314.
Full textRudolph, Matthias, Oleg Lobkis, and Dale E. Chimenti. "Effizient Material charakterisieren / Efficient Materials Characterisation." Materials Testing 40, no. 9 (September 1, 1998): 346–49. http://dx.doi.org/10.1515/mt-1998-400905.
Full textDissertations / Theses on the topic "Material"
Braconnier, Daniel J. "Materials Informatics Approach to Material Extrusion Additive Manufacturing." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/204.
Full textStochero, Naiane Paiva. "Desenvolvimento de cerâmica refratária com fibra de aço e sílica residual proveniente da queima da casca de arroz." Universidade Federal do Pampa, 2015. http://dspace.unipampa.edu.br:8080/xmlui/handle/riu/782.
Full textApproved for entry into archive by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-26T11:18:41Z (GMT) No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de cerâmica refratária com fibra de aço e sílica residual proveniente da queima da casca de arroz.pdf: 5761236 bytes, checksum: a142f60a2f92e30742027abc659f21f3 (MD5)
Made available in DSpace on 2017-01-26T11:18:41Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de cerâmica refratária com fibra de aço e sílica residual proveniente da queima da casca de arroz.pdf: 5761236 bytes, checksum: a142f60a2f92e30742027abc659f21f3 (MD5) Previous issue date: 2015-02-05
O Estado do Rio Grande do Sul apresenta um dos maiores índices de produção de arroz do país, e Alegrete é um dos municípios que lidera esta estatística. A casca de arroz é um dos subprodutos originados do beneficiamento do arroz, e é muito utilizada como fonte de energia térmica para a geração de energia elétrica. Após a queima é gerada a cinza da casca do arroz, rica em sílica. Sendo assim, o objetivo deste trabalho é diversificar o aproveitamento deste resíduo como matéria-prima alternativa para materiais cerâmicos refratários e agregar valor a este subproduto. Outro objetivo é aumentar as propriedades mecânicas de matrizes frágeis, que possuem uma tendência a falhar por fadiga e choque térmico, limitando a sua aplicabilidade. Foram fabricados materiais cerâmicos refratários com 80% de argila caulim, 20% de sílica da casca de arroz e fibras de aço em teores volumétricos de 3%, 6% e 9%. Realizaram-se ensaios de absorção de água, densidade aparente, porosidade aparente, resistência à compressão, tração direta, flexão em três pontos, ensaio de choque térmico e análise de microestrutura do material. Com a substituição de argila pela sílica, foram obtidas maior resistência mecânica, e maior tenacidade, possivelmente devido à diminuição da porosidade e pelo aumento do nível de vitrificação. A cerâmica com 9% de fibra obteve o melhor desempenho em relação à ductilidade, em razão do maior grau de deformação do material até o momento de ruptura. As cerâmicas com 3% de fibra e 6% de fibra apresentaram os melhores desempenhos frente ao choque térmico. Na análise da mineralogia do material após a sinterização, observou-se a formação de picos de mulita. Com a substituição da argila pela sílica foram identificados picos de cristobalita.
The State of Rio Grande do Sul presents one of the highest indices of rice production in the Country, and Alegrete is one of the towns that leads this statistics. Rice husk, is one of the byproducts originated from processing of rice, and is very used as thermal energy source to generate electricity. After firing generated rice husk ash, rich in silica. Thus, the aim of this work is to diversify the use of this waste as an alternative raw material for refractory ceramic materials and add value to this byproduct. Another objectiveis to increase the mechanical properties of brittle matrices that have tendency to fail by fatigue and thermal shock, limiting its applicability. Were manufactured refractory ceramic materials with 80% of kaolin clay, 20% rice husk silica, and steel fibers in volumetric concentrations of 3%, 6% and 9%. Tests about water absorption were done, apparent density, apparent porosity, compressive strength, direct traction, three points flexion, thermal shock test and analysis of the microstructure of the material. Replacing the clay by silica, was obtained greater strength, and greater toughness, possibly due to the decrease of the porosity and increasing the level of vitrifying. The ceramic with 9% fiber obtained the better performance relative for ductility, due to the higher degree of deformation of the material until the moment of rupture. The ceramic with 3% fiber and 6% fiber showed better performance front thermal shock. In mineralogical analysis of the material showed the formation of mullite peaks. With substituting the clay by silica cristobalite peak was identified.
Sobrosa, Fabiano Zanini. "Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz." Universidade Federal do Pampa, 2014. http://dspace.unipampa.edu.br:8080/xmlui/handle/riu/767.
Full textApproved for entry into archive by Cátia Araújo (catia.araujo@unipampa.edu.br) on 2017-01-25T12:37:45Z (GMT) No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5)
Made available in DSpace on 2017-01-25T12:37:45Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Desenvolvimento de materiais cerâmicos refratários com adição da sílica residual proveniente da queima da casca de arroz.pdf: 10705111 bytes, checksum: f3dc853aa0f1b672236697852c098384 (MD5) Previous issue date: 2014-03-20
Com a intenção de agregar valor à cinza da casca de arroz, subproduto da indústria orizícola, e colaborar para um desenvolvimento sustentável do país, esta pesquisa buscou desenvolver materiais cerâmicos refratários com a substituição parcial da argila pela sílica de casca de arroz (SCA) produzida a partir da geração de energia elétrica. Atualmente, na região da fronteira oeste do Estado do Rio Grande do Sul, existem várias usinas termoelétricas de biomassa para geração de energia elétrica através da queima da casca de arroz. Essa tecnologia vem ao encontro da necessidade de diversificação da matriz energética no país. A indústria orizícola produz no Brasil aproximadamente 12 milhões de toneladas por ano de arroz, e aproximadamente 2,5 milhões de toneladas por ano são convertidos em casca. Caso toda esta casca fosse queimada, gerar-se-iam aproximadamente 500 mil toneladas de cinza, a qual é rica em sílica. Portanto, viabilizar seu aproveitamento tende a reduzir o passivo ambiental, além dos benefícios econômicos. No presente trabalho foi analisado o efeito da substituição parcial da argila refratária por sílica da casca de arroz (SCA) nas propriedades mecânicas e termomecânicas dos materiais cerâmicos refratários produzidos, em percentuais de 5, 10 e 20%. Foram analisadas as propriedades mecânicas desses materiais através de ensaios de resistência à compressão, tração direta, flexão em três pontos e dureza superficial Vickers. Analisaram-se também a retração linear, absorção de água, porosidade aparente e resistência ao choque térmico. Conforme se aumentou a substituição parcial de argila refratária por SCA, foi obtido um melhor empacotamento da mistura granular e, consequentemente, ocorreu uma melhora nas propriedades mecânicas das amostras. Por outro lado, o material apresentou-se mais frágil, com menor resistência ao choque térmico. Não foi encontrada variação na retração linear após a queima, já a absorção de água e porosidade aparente diminuíram conforme se aumentou a substituição da argila pela SCA. A microestrutura do material foi analisada através de análise por microscopia eletrônica de varredura (MEV) e difração de raios-x, onde se identificaram as fases cristalinas na mineralogia do material resultante. Na análise da mineralogia do material observou-se um aumento de pico de cristobalita conforme se aumentou o teor de SCA na mistura, em função da cristalização da sílica livre. Um menor volume de porosidade foi encontrado conforme se aumentou o teor de substituição de argila pela SCA.
With the intention of adding value to rice husk ash, a byproduct of paddy industry, and contribute to sustainable development of the country, this research sought to develop refractory ceramic materials with refractory partial replacement of clay by silica from rice husk (SCA) produced from electricity generation. Currently on the western border of the State of Rio Grande do Sul, there are several biomass power plants for generating electricity by burning rice husk. This technology comes against the need for diversification of energy sources in the country. The paddy industry in Brazil produces approximately 12 million tons of rice per year, of which approximately 2.5 million tons per year are converted into shell. If all this bark was burned, it would generate approximately 500 tons of ash, which is rich in silica. Thus enabling its use tends to reduce the environmental liability beyond economic benefits. In the present work, the effect of partial replacement of silica refractory clay for rice husk (SCA) on the mechanical and thermomechanical properties of refractory ceramic materials was analyzed for percentages of 5, 10 and 20%. The mechanical properties of these materials were analyzed by testing compressive strength, direct-drive, three point bending and superficial hardness. We also analyzed the linear shrinkage, water absorption, apparent porosity and resistance to thermal shock. As increased the partial replacement of refractory clay for SCA in the mixture was obtained a better packing of the granular mixture and, consequently, better results in mechanical properties were found. On the other hand, the material appeared more brittle, with a lower thermal shock resistance. Was not found in the linear shrinkage after firing, the water absorption and apparent porosity decreased as the clay was increased by replacement SCA. The microstructure of the material was analyzed by scanning electron microscopy (MEV) and x-ray diffraction where the crystalline phases identified in the mineralogy of the resulting material. The analysis of the mineralogy of the material was observed an increase of cristobalite peak was increased as the content of SCA, depending on the crystallization of the free silica. A smaller volume of porosity is found according to the increased content of clay replacement SCA.
Skerry, Nathaniel S. (Nathaniel Standish) 1971. "Transformed materials : a material research center in Milan, Italy." Thesis, Massachusetts Institute of Technology, 2002. http://hdl.handle.net/1721.1/70358.
Full textIncludes bibliographical references (p. 74-75).
[Transformed Materials] is an exploration into today's design methodologies of architecture production. The emergence of architectural form is questioned in relation to the temporal state of design intent and the physical material construct. At a time when there is an increased awareness of the current state of technology, material innovation and methods of fabrication, there are new speculations of what materiality is and can be. This thesis will propose an architecture that emerges through an exploration of the material concept that directly informs and expresses the fundamental ideas of the project. Building methods have changed widely over time, and are co-responsible for creating a dialog between functional requirements, technological invention, and material implication that reflects the current cultural state. Today's architectural products have in a sense reverted back to thin surfaces. Current cultural issues such as socioeconomic, environmental impact, transportability, efficiency, lightness, storability, technology, and mass production, have over time created a state of "thinness ". This project tries to offset the current trend of building by accepting the norms of architectural products, and reinventing their role within a contemporary language that explores more deeply the material qualities and properties associates with it. This thesis will use steel as the primary building material. Steel is a material that has become standardized in how it is shaped and formed, thus its ability to produce an architecture has been reduced purely to a dogmatiC approach of engineered solutions or preconceived results. Steel, is artificial by nature; if we suspend our preconceptions of steel, could the material be designed such that its role is critical in defining space, structure and program in a tectonic system? The area of research and examination will be focused on the design of a Material Research Center (mRC). located in Milan, Italy.
by Nathaniel S. Skerry.
M.Arch.
Martin, Luke Andrew. "A Novel Material Modulus Function for Modeling Viscoelastic Materials." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/26891.
Full textPh. D.
Samsonow, Emily L. "Material Celebration: Exploring the Architectural Potential of Waste Materials." University of Cincinnati / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1306501078.
Full textStåhl, Daniel. "Material Library : A sense of material." Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Maskinteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-25076.
Full textKarlsson, Johan. "Composite material in car hood : Investigation of possible sandwich materials." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45633.
Full textWretborn, Joel. "Modelling cracks in solid materials using the Material Point Method." Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-136797.
Full textFrank, Jenny. "Material för utomhusundervisning : Lärarens förhållningssätt och användning av materialet." Thesis, Högskolan i Gävle, Avdelningen för elektroteknik, matematik och naturvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-36837.
Full textBooks on the topic "Material"
Materia, ed. Material index 2009: [inspirational materials selected by Materia. The Netherlands: Jeroen van Oostveen, 2009.
Find full textPrasad, N. Eswara, and R. J. H. Wanhill, eds. Aerospace Materials and Material Technologies. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2134-3.
Full textPrasad, N. Eswara, and R. J. H. Wanhill, eds. Aerospace Materials and Material Technologies. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-2143-5.
Full textSundarkrishnaa, K. L. Friction Material Composites: Materials Perspective. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full text1981-, Laughlin Zoe, ed. Material matters: New materials in design. London: Black Dog Pub., 2012.
Find full textCzech Republic) International Triennial of Glass & Jewellery (2020 Jablonec nad Nisou. Materiál: Sklo - architektura = Material : glass - architecture. Jablonec nad Nisou: Muzeum skla a bižuterie v Jablonci nad Nisou, 2020.
Find full textSobrino, Andrés. Material. Ciudad Autónoma de Buenos Aires: Excursiones, 2019.
Find full textStoller, Roger E., Rudy J. M. Konings, Todd R. Allen, and Shinsuke Yamanaka. Comprehensive nuclear materials: Material performance and corrosion/waste materials. Amsterdam: Elsevier, 2012.
Find full textLloyd, Thomas Katie, ed. Material matters: Architecture and material practice. London: Routledge, 2007.
Find full textLloyd, Thomas Katie, ed. Material matters: Architecture and material practice. London: Routledge, 2007.
Find full textBook chapters on the topic "Material"
Fraleigh, Sondra. "Material/Material." In Geographies of Us, 75–103. London: Routledge, 2024. http://dx.doi.org/10.4324/9781003390985-6.
Full textMulder, Marcel. "Materials and Material Properties." In Basic Principles of Membrane Technology, 17–53. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-017-0835-7_2.
Full textYucel, Taner, Esra Yildiz, and Ugur Erdemir. "Material Selection: Restorative Materials." In Esthetic and Functional Management of Diastema, 185–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-24361-0_13.
Full textMulder, Marcel. "Materials and Material Properties." In Basic Principles of Membrane Technology, 22–70. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-1766-8_2.
Full textSchoenung, Julie M., and Carl W. Lam. "Hazardous Materials hazardous material Characterization hazardous material characterization and Assessment hazardous material assessment." In Encyclopedia of Sustainability Science and Technology, 4846–65. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4419-0851-3_91.
Full textMaugin, Gérard A. "Material forces in anelastic materials." In Material Inhomogeneities in Elasticity, 234–47. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-4481-8_10.
Full textGhoddusi, Jamileh. "Material Modifications and Related Materials." In Mineral Trioxide Aggregate in Dentistry, 131–49. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-55157-4_7.
Full textBirch, Emily, Martyn Dade-Robertson, Ben Bridgens, and Meng Zhang. "Material Ecology 3—Smart Materials." In The Routledge Companion to Ecological Design Thinking, 293–98. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003183181-27.
Full textElGhazi, Yomna, Neveen Hamza, and Martyn Dade-Robertson. "Material Ecology 3—Smart Materials." In The Routledge Companion to Ecological Design Thinking, 276–84. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003183181-25.
Full textHolstov, Artem, Ben Bridgens, and Graham Farmer. "Material Ecology 3—Smart Materials." In The Routledge Companion to Ecological Design Thinking, 285–92. New York: Routledge, 2022. http://dx.doi.org/10.4324/9781003183181-26.
Full textConference papers on the topic "Material"
Boehme, Bjoern, K. M. B. Jansen, Sven Rzepka, and Klaus-Juergen Wolter. "Comprehensive material characterization of organic packaging materials." In 2009 10th International Conferene on Thermal, Mechanical and Multi-Physics simulation and Experiments in Microelectronics and Microsystems (EuroSimE). IEEE, 2009. http://dx.doi.org/10.1109/esime.2009.4938431.
Full textO'Neill, Feidhlim T., John T. Sheridan, and Justin R. Lawrence. "Nonlocal material response of photopolymer holographic materials." In OPTO Ireland, edited by Thomas J. Glynn. SPIE, 2003. http://dx.doi.org/10.1117/12.474748.
Full textAllen, Emily A., Lee D. Taylor, and John P. Swensen. "Smart Material Composites for Discrete Stiffness Materials." In ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/smasis2018-8203.
Full textKathuria, Yash P. "Laser material interaction technologies for materials processing." In OPTIKA '98: Fifth Congress on Modern Optics, edited by Gyorgy Akos, Gabor Lupkovics, and Andras Podmaniczky. SPIE, 1998. http://dx.doi.org/10.1117/12.320983.
Full textOates, William, and Robert Sierakowski. "A Unified Material Model for Smart Materials." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2656.
Simkhovich, Boris, and Guy Bartal. "Material Loss Omits Nonlinearity in Optically Thick Materials." In Frontiers in Optics. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/fio.2017.ftu4d.2.
Full textTappan, Alexander, Gregory Long, Anita Renlund, and Stanley Kravitz. "Microenergetic Materials - Microscale Energetic Material Processing and Testing." In 41st Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-242.
Full textTanaka, Fumiaki, Hiroshi Sato, Naoki Yoshii, and Hidefumi Matsui. "Materials Informatics for Process and Material Co-optimization." In 2018 International Symposium on Semiconductor Manufacturing (ISSM). IEEE, 2018. http://dx.doi.org/10.1109/issm.2018.8651132.
Full textJiang, Chenfanfu, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. "The material point method for simulating continuum materials." In SIGGRAPH '16: Special Interest Group on Computer Graphics and Interactive Techniques Conference. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897826.2927348.
Full textNg, Tang-Tat. "Gravitational Effect on Material Response of Granular Materials." In 12th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments; and Fourth NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41096(366)12.
Full textReports on the topic "Material"
Smalley, A. J. TR-97-5 Epoxy Chock Material Creep Tests. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), December 1997. http://dx.doi.org/10.55274/r0012047.
Full textGardea, Andrew D., Ryan Nishimoto, Nancy Y. C. Yang, Alfredo Martin Morales, Scott A. Whalen, Jeffrey M. Chames, and W. Miles Clift. Material compatibility and thermal aging of thermoelectric materials. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/986608.
Full textClement, Michael, Sage Broderick, and Marty Garton. Toxic Industrial Chemical / Material Intelligence Tool (TICMINT) user guide. Engineer Research and Development Center (U.S.), November 2023. http://dx.doi.org/10.21079/11681/47924.
Full textDahal, Sachindra, and Jeffery Roesler. Passive Sensing of Electromagnetic Signature of Roadway Material for Lateral Positioning of Vehicle. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-039.
Full textBerkowitz, Jacob F., Christine M. VanZomeren, Jaybus J. Price, and Anthony M. Priestas. Incorporating Color Change Propensity into Dredged Material Management to Increase Beneficial Use Opportunities. Engineer Research and Development Center (U.S.), December 2020. http://dx.doi.org/10.21079/11681/39261.
Full textMedina Bejarano, Edwin Gilberto, Danila Michel Garzón Peralta, and Camilo Romero Espinosa. Caracterización mecánica de propiedades de un material compuesto por resina poliéster y fibras de preferencia natural. Escuela Tecnológica Instituto Técnico Central, 2023. http://dx.doi.org/10.55411/2023.11.
Full textMinchin, Carol. Material Origins. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.7040.
Full textCao, Larry. Introductory Material. CFA Institute Research Foundation, March 2023. http://dx.doi.org/10.56227/23.1.6.
Full textGutiérrez Aguilera, Pedro Alexander. Características del acero como material estructural. Ediciones Universidad Cooperativa de Colombia, October 2023. http://dx.doi.org/10.16925/gcnc.73.
Full textRochel Ortega, Elizabeth, Jefersson Andrés Rodríguez Blandón, Pedro David Suárez Villota, and Jorge Andrés Castillo. Taxonomía y material genético: propagación de material vegetal. Corporación colombiana de investigación agropecuaria - AGROSAVIA, 2021. http://dx.doi.org/10.21930/agrosavia.infografia.2021.26.
Full text