To see the other types of publications on this topic, follow the link: Materiais multiresponsivos.

Journal articles on the topic 'Materiais multiresponsivos'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Materiais multiresponsivos.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Shi, Chen, Xuebin Hou, Xiuyu Shen, Yanan Zhu, Xiaoqiang Li, Zengyuan Pang, Mingqiao Ge, and Milad Abolhasani. "Multiresponsive Luminescence Materials: Richer Color Than Chameleon Materials." Advanced Optical Materials 8, no. 12 (April 15, 2020): 2000007. http://dx.doi.org/10.1002/adom.202000007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Santiago, Sara, Pablo Giménez-Gómez, Xavier Muñoz-Berbel, Jordi Hernando, and Gonzalo Guirado. "Solid Multiresponsive Materials Based on Nitrospiropyran-Doped Ionogels." ACS Applied Materials & Interfaces 13, no. 22 (May 31, 2021): 26461–71. http://dx.doi.org/10.1021/acsami.1c04159.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gopishetty, Venkateshwarlu, Yuri Roiter, Ihor Tokarev, and Sergiy Minko. "Multiresponsive Biopolyelectrolyte Membrane." Advanced Materials 20, no. 23 (December 2, 2008): 4588–93. http://dx.doi.org/10.1002/adma.200801610.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Herbert, Katie M., Stephen Schrettl, Stuart J. Rowan, and Christoph Weder. "50th Anniversary Perspective: Solid-State Multistimuli, Multiresponsive Polymeric Materials." Macromolecules 50, no. 22 (November 2, 2017): 8845–70. http://dx.doi.org/10.1021/acs.macromol.7b01607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Cui-Li, Ya-Xin Zheng, Le Chen, Cai-Yong Zhu, Wei Gao, Peng Li, Liu Jie-Ping, and Xiu-Mei Zhang. "The construction of a multifunctional luminescent Eu-MOF for the sensing of Fe3+, Cr2O72− and amines in aqueous solution." CrystEngComm 23, no. 43 (2021): 7581–89. http://dx.doi.org/10.1039/d1ce01192h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zou, Chengjun, Cristina Amaya, Stefan Fasold, Alexander A. Muravsky, Anatoli A. Murauski, Thomas Pertsch, and Isabelle Staude. "Multiresponsive Dielectric Metasurfaces." ACS Photonics 8, no. 6 (June 1, 2021): 1775–83. http://dx.doi.org/10.1021/acsphotonics.1c00371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Otsuka, Issei, Xuewei Zhang, and Françoise M. Winnik. "Phototropic Multiresponsive Active Nanogels." Macromolecular Rapid Communications 40, no. 24 (November 10, 2019): 1900479. http://dx.doi.org/10.1002/marc.201900479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Saha, Subhadeep, Jürgen Bachl, Tanay Kundu, David Díaz Díaz, and Rahul Banerjee. "Amino acid-based multiresponsive low-molecular weight metallohydrogels with load-bearing and rapid self-healing abilities." Chem. Commun. 50, no. 23 (2014): 3004–6. http://dx.doi.org/10.1039/c3cc49869g.

Full text
Abstract:
A unique low-molecular weight metallohydrogel (ZAVP) has been synthesized from zinc acetate and an amino acid derived ligand which shows efficient load-bearing and self-healing properties. The material also shows an uncommon multiresponsive behavior.
APA, Harvard, Vancouver, ISO, and other styles
9

Amjadi, Morteza, and Metin Sitti. "High-Performance Multiresponsive Paper Actuators." ACS Nano 10, no. 11 (October 18, 2016): 10202–10. http://dx.doi.org/10.1021/acsnano.6b05545.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Jun, Ning-Ning Chen, Jin Qian, Xuan-Rong Chen, Xin-Yue Zhang, and Liming Fan. "Multi-responsive chemosensing and photocatalytic properties of three luminescent coordination polymers derived from a bifunctional 1,1′-di(4-carbonylphenyl)-2,2′-biimidazoline ligand." CrystEngComm 22, no. 37 (2020): 6195–206. http://dx.doi.org/10.1039/d0ce00814a.

Full text
Abstract:
Three 3D ZnII/CdII CPs were synthesized to act as multiresponsive luminescent sensors for Fe3+, Cr2O72− and NZF antibiotic. The photocatalytic studies indicate that the CPs 1–3 have good photocatalytic capability in degradation of MB.
APA, Harvard, Vancouver, ISO, and other styles
11

Alkanawati, Mohammad Shafee, Marina Machtakova, Katharina Landfester, and Héloïse Thérien-Aubin. "Bio-Orthogonal Nanogels for Multiresponsive Release." Biomacromolecules 22, no. 7 (June 15, 2021): 2976–84. http://dx.doi.org/10.1021/acs.biomac.1c00378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Döbbelin, Markus, Ramon Tena-Zaera, Rebeca Marcilla, Jagoba Iturri, Sergio Moya, Jose A. Pomposo, and David Mecerreyes. "Multiresponsive PEDOT-Ionic Liquid Materials for the Design of Surfaces with Switchable Wettability." Advanced Functional Materials 19, no. 20 (October 23, 2009): 3326–33. http://dx.doi.org/10.1002/adfm.200900863.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Pérez-Chávez, Néstor A., Alberto G. Albesa, and Gabriel S. Longo. "Thermodynamic Theory of Multiresponsive Microgel Swelling." Macromolecules 54, no. 6 (March 12, 2021): 2936–47. http://dx.doi.org/10.1021/acs.macromol.0c02885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Meng, Zhiyong, Grant R. Hendrickson, and L. Andrew Lyon. "Simultaneous Orthogonal Chemoligations on Multiresponsive Microgels." Macromolecules 42, no. 20 (October 27, 2009): 7664–69. http://dx.doi.org/10.1021/ma9013719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Cheng, Jiayi, Danye Han, Fuzhi Chen, Yuting Wang, Run Liu, and Yuqing Liu. "A multiresponsive flexible actuator based on BOPP/paper/RGO/PEDOT: PSS composites." Vibroengineering Procedia 50 (September 21, 2023): 187–93. http://dx.doi.org/10.21595/vp.2023.23408.

Full text
Abstract:
Graphene possesses not only excellent optical, electrical and thermal properties but also outstanding thermoelectric and photothermal conversion capabilities. The application of graphene with functional responses plays a vital role in the development of intelligent materials intended for flexible actuators and intelligent robots. Cellulose paper is foldable and is a hydrophilic network comprised of porous cellulose fibres. In this paper, graphene composites as well as cellulose paper were taken as basic materials, which were further combined with other polymer materials (biaxially oriented polypropylene film (BOPP) and poly (3, 4-ethylenedioxythiophene/polystyrene sulfonate) (PEDOT: PSS). PEDOT: PSS solution can penetrate into the porous network of the paper to form a high-strength nanocomposite structure. A flexible thin film driver capable of multiple stimuli under light, heat and humidity was produced. Through characterization, it was found that the bending ability of the composite film was significantly improved in response to stimulation.
APA, Harvard, Vancouver, ISO, and other styles
16

Chollet, Benjamin, Loïc D’Eramo, Ekkachai Martwong, Mengxing Li, Jennifer Macron, Thuy Quyen Mai, Patrick Tabeling, and Yvette Tran. "Tailoring Patterns of Surface-Attached Multiresponsive Polymer Networks." ACS Applied Materials & Interfaces 8, no. 37 (September 7, 2016): 24870–79. http://dx.doi.org/10.1021/acsami.6b07189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Li, Guangyong, Guo Hong, Dapeng Dong, Wenhui Song, and Xuetong Zhang. "Multiresponsive Graphene-Aerogel-Directed Phase-Change Smart Fibers." Advanced Materials 30, no. 30 (June 14, 2018): 1801754. http://dx.doi.org/10.1002/adma.201801754.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Liao, Junlong, Cun Zhu, Bingbing Gao, Ze Zhao, Xiaojiang Liu, Lei Tian, Yi Zeng, Xinlian Zhou, Zhuoying Xie, and Zhongze Gu. "Multiresponsive Nanoparticles: Multiresponsive Elastic Colloidal Crystals for Reversible Structural Color Patterns (Adv. Funct. Mater. 39/2019)." Advanced Functional Materials 29, no. 39 (September 2019): 1970271. http://dx.doi.org/10.1002/adfm.201970271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Zhang, Qiang Matthew, Wenda Wang, Ya-Qiong Su, Emiel J. M. Hensen, and Michael J. Serpe. "Biological Imaging and Sensing with Multiresponsive Microgels." Chemistry of Materials 28, no. 1 (December 17, 2015): 259–65. http://dx.doi.org/10.1021/acs.chemmater.5b04028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Pasale, Sharad K., Barbara Cerroni, Shivkumar V. Ghugare, and Gaio Paradossi. "Multiresponsive Hyaluronan-p(NiPAAm) “Click”-Linked Hydrogels." Macromolecular Bioscience 14, no. 7 (April 6, 2014): 1025–38. http://dx.doi.org/10.1002/mabi.201400021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wagner, Maximilian, Anja Krieger, Martin Minameyer, Benjamin Hämisch, Klaus Huber, Thomas Drewello, and Franziska Gröhn. "Multiresponsive Polymer Nanoparticles Based on Disulfide Bonds." Macromolecules 54, no. 6 (March 8, 2021): 2899–911. http://dx.doi.org/10.1021/acs.macromol.1c00299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Hendrickson, Grant R., Michael H. Smith, Antoinette B. South, and L. Andrew Lyon. "Design of Multiresponsive Hydrogel Particles and Assemblies." Advanced Functional Materials 20, no. 11 (May 11, 2010): 1697–712. http://dx.doi.org/10.1002/adfm.200902429.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bütün, Vural, Ahmet Atay, Cansel Tuncer, and Yasemin Baş. "Novel Multiresponsive Microgels: Synthesis and Characterization Studies." Langmuir 27, no. 20 (October 18, 2011): 12657–65. http://dx.doi.org/10.1021/la2026544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Fa, Shi-Xin, Xu-Dong Wang, Qi-Qiang Wang, Yu-Fei Ao, De-Xian Wang, and Mei-Xiang Wang. "Multiresponsive Vesicles Composed of Amphiphilic Azacalix[4]pyridine Derivatives." ACS Applied Materials & Interfaces 9, no. 12 (March 14, 2017): 10378–82. http://dx.doi.org/10.1021/acsami.7b01815.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Sessini, Valentina, Jean-Marie Raquez, Giada Lo Re, Rosica Mincheva, José Maria Kenny, Philippe Dubois, and Laura Peponi. "Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch." ACS Applied Materials & Interfaces 8, no. 30 (July 21, 2016): 19197–201. http://dx.doi.org/10.1021/acsami.6b06618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Liang, Shumin, Xiaxin Qiu, Jun Yuan, Wei Huang, Xuemin Du, and Lidong Zhang. "Multiresponsive Kinematics and Robotics of Surface-Patterned Polymer Film." ACS Applied Materials & Interfaces 10, no. 22 (May 14, 2018): 19123–32. http://dx.doi.org/10.1021/acsami.8b04829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wong, Cheok-Lam, Chun-Ting Poon, and Vivian Wing-Wah Yam. "Photoresponsive Organogelator: Utilization of Boron(III) Diketonate as a Building Block To Construct Multiresponsive Materials." Organometallics 36, no. 14 (June 12, 2017): 2661–69. http://dx.doi.org/10.1021/acs.organomet.7b00274.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Mayorga-Burrezo, Paula, Jose Muñoz, Dagmar Zaoralová, Michal Otyepka, and Martin Pumera. "Multiresponsive 2D Ti3C2Tx MXene via Implanting Molecular Properties." ACS Nano 15, no. 6 (June 14, 2021): 10067–75. http://dx.doi.org/10.1021/acsnano.1c01742.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Sautaux, Julien, Lucas Montero de Espinosa, Sandor Balog, and Christoph Weder. "Multistimuli, Multiresponsive Fully Supramolecular Orthogonally Bound Polymer Networks." Macromolecules 51, no. 15 (July 26, 2018): 5867–74. http://dx.doi.org/10.1021/acs.macromol.8b00555.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Chang, Junxia, Qiuhua Zhao, Le Kang, Haimei Li, Meiran Xie, and Xiaojuan Liao. "Multiresponsive Supramolecular Gel Based on Pillararene-Containing Polymers." Macromolecules 49, no. 7 (March 18, 2016): 2814–20. http://dx.doi.org/10.1021/acs.macromol.6b00270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Rickhoff, Jonas, Nicolas V. Cornelissen, Thomas Beuse, Andrea Rentmeister, and Bart Jan Ravoo. "Multiresponsive hydrogels and organogels based on photocaged cysteine." Chemical Communications 57, no. 48 (2021): 5913–16. http://dx.doi.org/10.1039/d1cc01363g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pinheiro, Carlos, A. Jorge Parola, César A. T. Laia, António Câmara, and Fernando Pina. "Multiresponsive chromogenic systems operated by light and electrical inputs." New Journal of Chemistry 33, no. 10 (2009): 2144. http://dx.doi.org/10.1039/b9nj00298g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ma, Qianmin, Meng Zhang, Xihan Xu, Ke Meng, Chi Yao, Yufei Zhao, Jie Sun, Yaping Du, and Dayong Yang. "Multiresponsive Supramolecular Luminescent Hydrogels Based on a Nucleoside/Lanthanide Complex." ACS Applied Materials & Interfaces 11, no. 50 (November 25, 2019): 47404–12. http://dx.doi.org/10.1021/acsami.9b17236.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Qin, Chengqun, Yiyu Feng, Haoran An, Junkai Han, Chen Cao, and Wei Feng. "Tetracarboxylated Azobenzene/Polymer Supramolecular Assemblies as High-Performance Multiresponsive Actuators." ACS Applied Materials & Interfaces 9, no. 4 (January 20, 2017): 4066–73. http://dx.doi.org/10.1021/acsami.6b15075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Wang, Yang, Jinshan Nie, Baisong Chang, Yangfei Sun, and Wuli Yang. "Poly(vinylcaprolactam)-Based Biodegradable Multiresponsive Microgels for Drug Delivery." Biomacromolecules 14, no. 9 (August 19, 2013): 3034–46. http://dx.doi.org/10.1021/bm401131w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ren, Yanrong, Xuesong Jiang, and Jie Yin. "Poly(ethertert-amine): A novel family of multiresponsive polymer." Journal of Polymer Science Part A: Polymer Chemistry 47, no. 5 (March 1, 2009): 1292–97. http://dx.doi.org/10.1002/pola.23235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Bousquet, Antoine, Emmanuel Ibarboure, ValÉRie HÉRoguez, Eric Papon, Christine Labrugere, and Juan Rodríguez-Hernández. "Single-step process to produce functionalized multiresponsive polymeric particles." Journal of Polymer Science Part A: Polymer Chemistry 48, no. 16 (July 8, 2010): 3523–33. http://dx.doi.org/10.1002/pola.24112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Tokarev, Ihor, and Sergiy Minko. "Multiresponsive, Hierarchically Structured Membranes: New, Challenging, Biomimetic Materials for Biosensors, Controlled Release, Biochemical Gates, and Nanoreactors." Advanced Materials 21, no. 2 (January 12, 2009): 241–47. http://dx.doi.org/10.1002/adma.200801408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Miao, Liqin Chen, Yifeng Zhou, Tao Yi, Fuyou Li, and Chunhui Huang. "Multiresponsive self-assembled liquid crystals with azobenzene groups." Journal of Colloid and Interface Science 326, no. 2 (October 2008): 496–502. http://dx.doi.org/10.1016/j.jcis.2008.07.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Borodina, Lyubov’, Vladimir Borisov, Kirill Annas, Aliaksei Dubavik, Andrey Veniaminov, and Anna Orlova. "Nanostructured Luminescent Gratings for Sensorics." Materials 15, no. 22 (November 18, 2022): 8195. http://dx.doi.org/10.3390/ma15228195.

Full text
Abstract:
Two-dimensional holographic structures based on photopolymer compositions with luminescent nanoparticles, such as quantum dots, are promising candidates for multiresponsive luminescence sensors. However, their applicability may suffer from the incompatibility of the components, and hence aggregation of the nanoparticles. We showed that the replacement of an organic shell at the CdSe/ZnS quantum dots’ surface with monomer molecules of the photopolymerizable medium achieved full compatibility with the surrounding medium. The effect was demonstrated by luminescence spectroscopy, and steady-state and time-resolved luminescent laser scanning microscopy. We observed the complete spectral independence of local photoluminescence decay, thus proving the absence of even nanoscale aggregation, either in the liquid composition or in the nodes and antinodes of the grating. Therefore, nanostructured luminescent photopolymer gratings with monomer-covered quantum dots can act as hybrid diffractive–luminescent sensor elements.
APA, Harvard, Vancouver, ISO, and other styles
41

Hackelbusch, Sebastian, Torsten Rossow, Hendrik Becker, and Sebastian Seiffert. "Multiresponsive Polymer Hydrogels by Orthogonal Supramolecular Chain Cross-Linking." Macromolecules 47, no. 12 (June 12, 2014): 4028–36. http://dx.doi.org/10.1021/ma5008573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Jing, Benxin, Donghua Xu, Xiaorong Wang, and Yingxi Zhu. "Multiresponsive, Critical Gel Behaviors of Polyzwitterion–Polyoxometalate Coacervate Complexes." Macromolecules 51, no. 22 (November 14, 2018): 9405–11. http://dx.doi.org/10.1021/acs.macromol.8b01759.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Yang, Ning-Ning, Jia-Jia Fang, Qi Sui, and En-Qing Gao. "Incorporating Electron-Deficient Bipyridinium Chromorphores to Make Multiresponsive Metal–organic Frameworks." ACS Applied Materials & Interfaces 10, no. 3 (January 11, 2018): 2735–44. http://dx.doi.org/10.1021/acsami.7b17381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sciortino, Flavien, Sajjad Husain Mir, Amir Pakdel, Anjaneyulu Oruganti, Hideki Abe, Agnieszka Witecka, Dayangku Noorfazidah Awang Shri, Gaulthier Rydzek, and Katsuhiko Ariga. "Saloplastics as multiresponsive ion exchange reservoirs and catalyst supports." Journal of Materials Chemistry A 8, no. 34 (2020): 17713–24. http://dx.doi.org/10.1039/d0ta05901c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Flemming, Patricia, Andreas Janke, Frank Simon, Andreas Fery, Alexander S. Münch, and Petra Uhlmann. "Multiresponsive Transitions of PDMAEMA Brushes for Tunable Surface Patterning." Langmuir 36, no. 50 (December 11, 2020): 15283–95. http://dx.doi.org/10.1021/acs.langmuir.0c02711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Wang, Jianying, Yuandu Hu, Renhua Deng, Ruijing Liang, Weikun Li, Shanqin Liu, and Jintao Zhu. "Multiresponsive Hydrogel Photonic Crystal Microparticles with Inverse-Opal Structure." Langmuir 29, no. 28 (July 2013): 8825–34. http://dx.doi.org/10.1021/la401540s.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Liao, Junlong, Cun Zhu, Bingbing Gao, Ze Zhao, Xiaojiang Liu, Lei Tian, Yi Zeng, Xinlian Zhou, Zhuoying Xie, and Zhongze Gu. "Multiresponsive Elastic Colloidal Crystals for Reversible Structural Color Patterns." Advanced Functional Materials 29, no. 39 (July 4, 2019): 1902954. http://dx.doi.org/10.1002/adfm.201902954.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Yuan, Sixiang, Xueting Li, Xiaodi Shi, and Xihua Lu. "Preparation of multiresponsive nanogels and their controlled release properties." Colloid and Polymer Science 297, no. 4 (February 13, 2019): 613–21. http://dx.doi.org/10.1007/s00396-019-04481-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

G. S. Santos, João, Marcio A. Correa, Armando Ferreira, Bruno R. Carvalho, Rodolfo B. da Silva, Felipe Bohn, Senendxu Lanceiros-Méndez, and Filipe Vaz. "Magnetic Response Dependence of ZnO Based Thin Films on Ag Doping and Processing Architecture." Materials 13, no. 13 (June 29, 2020): 2907. http://dx.doi.org/10.3390/ma13132907.

Full text
Abstract:
Multifunctional and multiresponsive thin films are playing an increasing role in modern technology. This work reports a study on the magnetic properties of ZnO and Ag-doped ZnO semiconducting films prepared with a zigzag-like columnar architecture and their correlation with the processing conditions. The films were grown through Glancing Angle Deposition (GLAD) co-sputtering technique to improve the induced ferromagnetism at room temperature. Structural and morphological characterizations have been performed and correlated with the paramagnetic resonance measurements, which demonstrate the existence of vacancies in both as-cast and annealed films. The magnetic measurements reveal changes in the magnetic order of both ZnO and Ag-doped ZnO films with increasing temperature, showing an evolution from a paramagnetic (at low temperature) to a diamagnetic behavior (at room temperature). Further, the room temperature magnetic properties indicate a ferromagnetic order even for the un-doped ZnO film. The results open new perspectives for the development of multifunctional ZnO semiconductors, the GLAD co-sputtering technique enables the control of the magnetic response, even in the un-doped semiconductor materials.
APA, Harvard, Vancouver, ISO, and other styles
50

Ma, Tian, Jiahao Ma, Chao Yang, Junying Zhang, and Jue Cheng. "Robust, Multiresponsive, Superhydrophobic, and Oleophobic Nanocomposites via a Highly Efficient Multifluorination Strategy." ACS Applied Materials & Interfaces 13, no. 24 (June 9, 2021): 28949–61. http://dx.doi.org/10.1021/acsami.1c07048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography