To see the other types of publications on this topic, follow the link: MAT/09 Ricerca operativa.

Dissertations / Theses on the topic 'MAT/09 Ricerca operativa'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'MAT/09 Ricerca operativa.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Krejčí, Jana. "MCDM methods based on pairwise comparison matrices and their fuzzy extension." Doctoral thesis, Università degli studi di Trento, 2017. https://hdl.handle.net/11572/369186.

Full text
Abstract:
Methods based on pairwise comparison matrices (PCMs) form a significant part of multi-criteria decision making (MCDM) methods. These methods are based on structuring pairwise comparisons (PCs) of objects from a finite set of objects into a PCM and deriving priorities of objects that represent the relative importance of each object with respect to all other objects in the set. However, the crisp PCMs are not able to capture uncertainty stemming from subjectivity of human thinking and from incompleteness of information about the problem that are often closely related to MCDM problems. That is why the fuzzy extension of methods based on PCMs has been of great interest. In order to derive fuzzy priorities of objects from a fuzzy PCM (FPCM), standard fuzzy arithmetic is usually applied to the fuzzy extension of the methods originally developed for crisp PCMs. %Fuzzy extension of the methods based on PCMs usually consists in simply replacing the crisp PCs in the given model by fuzzy PCs and applying standard fuzzy arithmetic to obtain the desired fuzzy priorities. However, such approach fails in properly handling uncertainty of preference information contained in the FPCM. Namely, reciprocity of the related PCs of objects in a FPCM and invariance of the given method under permutation of objects are violated when standard fuzzy arithmetic is applied to the fuzzy extension. This leads to distortion of the preference information contained in the FPCM and consequently to false results. Thus, the first research question of the thesis is: ``Based on a FPCM of objects, how should fuzzy priorities of these objects be determined so that they reflect properly all preference information available in the FPCM?'' This research question is answered by introducing an appropriate fuzzy extension of methods originally developed for crisp PCMs. That is, such fuzzy extension that does not violate reciprocity of the related PCs and invariance under permutation of objects, and that does not lead to a redundant increase of uncertainty of the resulting fuzzy priorities of objects. Fuzzy extension of three different types of PCMs is examined in this thesis - multiplicative PCMs, additive PCMs with additive representation, and additive PCMs with multiplicative representation. In particular, construction of PCMs, verifying consistency, and deriving priorities of objects from PCMs are studied in detail for each type of these PCMs. First, well-known and in practice most often applied methods based on crisp PCMs are reviewed. Afterwards, fuzzy extensions of these methods proposed in the literature are reviewed in detail and their drawbacks regarding the violation of reciprocity of the related PCs and of invariance under permutation of objects are pointed out. It is shown that these drawbacks can be overcome by properly applying constrained fuzzy arithmetic instead of standard fuzzy arithmetic to the computations. In particular, we always have to look at a FPCM as a set of PCMs with different degrees of membership to the FPCM, i.e. we always have to consider only PCs that are mutually reciprocal. Constrained fuzzy arithmetic allows us to impose the reciprocity of the related PCs as a constraint on arithmetic operations with fuzzy numbers, and its appropriate application also guarantees invariance of the methods under permutation of objects. Finally, new fuzzy extensions of the methods are proposed based on constrained fuzzy arithmetic and it is proved that these methods do not violate the reciprocity of the related PCs and are invariant under permutation of objects. Because of these desirable properties, fuzzy priorities of objects obtained by the methods proposed in this thesis reflect the preference information contained in fuzzy PCMs better in comparison to the fuzzy priorities obtained by the methods based on standard fuzzy arithmetic. Beside the inability to capture uncertainty, methods based on PCMs are also not able to cope with situations where it is not possible or reasonable to obtain complete preference information from DMs. This problem occurs especially in the situations involving large-dimensional PCMs. When dealing with incomplete large-dimensional PCMs, compromise between reducing the number of PCs required from the DM and obtaining reasonable priorities of objects is of paramount importance. This leads to the second research question: ``How can the amount of preference information required from the DM in a large-dimensional PCM be reduced while still obtaining comparable priorities of objects?'' This research question is answered by introducing an efficient two-phase method. Specifically, in the first phase, an interactive algorithm based on weak-consistency condition is introduced for partially filling an incomplete PCM. This algorithm is designed in such a way that minimizes the number of PCs required from the DM and provides sufficient amount of preference information at the same time. The weak-consistency condition allows for providing ranges of possible intensities of preference for every missing PC in the incomplete PCM. Thus, at the end of the first phase, a PCM containing intervals for all PCs that were not provided by the DM is obtained. Afterward, in the second phase, the methods for obtaining fuzzy priorities of objects from fuzzy PCMs proposed in this thesis within the answer to the first research question are applied to derive interval priorities of objects from this incomplete PCM. The obtained interval priorities cover all weakly consistent completions of the incomplete PCM and are very narrow. The performance of the method is illustrated by a real-life case study and by simulations that demonstrate the ability of the algorithm to reduce the number of PCs required from the DM in PCMs of dimension 15 and greater by more than 60\% on average while obtaining interval priorities comparable with the priorities obtainable from the hypothetical complete PCMs.
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Hong Thuy. "The algebraic representation of OWA functions in the binomial decomposition framework and its applications in large-scale problems." Doctoral thesis, Università degli studi di Trento, 2019. https://hdl.handle.net/11572/367977.

Full text
Abstract:
In the context of multicriteria decision making, the ordered weighted averaging (OWA) functions play a crucial role in aggregating multiple criteria evaluations into an overall assessment to support decision makers reaching a decision. The determination of OWA weights is, therefore, an important task in this process. Solving real-life problems with a large number of OWA weights, however, can be very challenging and time consuming. In this research we recall that OWA functions correspond to the Choquet integrals associated with symmetric capacities. The problem of defining all Choquet capacities on a set of n criteria requires 2^n real coefficients. Grabisch introduced the k-additive framework to reduce the exponential computational burden. We review the binomial decomposition framework with a constraint on k-additivity whereby OWA functions can be expressed as linear combinations of the first k binomial OWA functions and the associated coefficients of the binomial decomposition framework. In particular, we investigate the role of k-additivity in two particular cases of the binomial decomposition of OWA functions, the 2-additive and 3-additive cases. We identify the relationship between OWA weights and the associated coefficients of the binomial decomposition of OWA functions. Analogously, this relationship is also studied for two well-known parametric families of OWA functions, namely the S-Gini and Lorenzen welfare functions. Finally, we propose a new approach to determine OWA weights in large-scale problems by using the binomial decomposition of OWA functions with natural constraints on k-additivity to control the complexity of the OWA weight distributions.
APA, Harvard, Vancouver, ISO, and other styles
3

Partinico, Mariangela <1974&gt. "politiche di famiglia - ricerca azione: doposcuola Don Bosco ai salesiani di Venezia." Master's Degree Thesis, Università Ca' Foscari Venezia, 2014. http://hdl.handle.net/10579/4000.

Full text
Abstract:
La tesi prende in esame attraverso una ricerca azione presso il doposcuola Don Bosco ai salesiani di Venezia la necessità di realizzare nel territorio un nuovo doposcuola che risponda alla domanda emergente delle famiglie “di sostenere il costo per la formazione dei bambini dai 6 ai 10 anni” e delle risposte attuabili. La tesi si struttura in tre parti: la prima parte prende in esame le politiche familiari; la seconda parte la ricerca/azione presso il patronato salesiano di venezia, dove io stessa ho fatto da educatore e la terza parte presenta la realizzazione di “un doposcuola per minori dai 6 ai 10 anni”, denominato “Un Raggio di Sole” .
APA, Harvard, Vancouver, ISO, and other styles
4

Furini, Fabio <1982&gt. "Decomposition and reformulation of integer linear programming problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3593/.

Full text
Abstract:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
APA, Harvard, Vancouver, ISO, and other styles
5

Fortini, Matteo <1975&gt. "LP-based heuristics for the Traveling Salesman Problem." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/339/1/tesi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fortini, Matteo <1975&gt. "LP-based heuristics for the Traveling Salesman Problem." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/339/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Malaguti, Enrico <1977&gt. "The Vertex Coloring Problem and its generalizations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/340/1/TESI_Malaguti.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Malaguti, Enrico <1977&gt. "The Vertex Coloring Problem and its generalizations." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/340/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Cacchiani, Valentina <1977&gt. "Models and algorithms for combinatorial optimization problems arising in railway applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/344/1/Tesi_Cacchiani.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Cacchiani, Valentina <1977&gt. "Models and algorithms for combinatorial optimization problems arising in railway applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2007. http://amsdottorato.unibo.it/344/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Galli, Laura <1981&gt. "Combinatorial and Robust Optimisation Models and Algorithms for Railway Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1514/2/Galli_Laura_tesi.pdf.

Full text
Abstract:
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
APA, Harvard, Vancouver, ISO, and other styles
12

Galli, Laura <1981&gt. "Combinatorial and Robust Optimisation Models and Algorithms for Railway Applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1514/.

Full text
Abstract:
This thesis deals with an investigation of combinatorial and robust optimisation models to solve railway problems. Railway applications represent a challenging area for operations research. In fact, most problems in this context can be modelled as combinatorial optimisation problems, in which the number of feasible solutions is finite. Yet, despite the astonishing success in the field of combinatorial optimisation, the current state of algorithmic research faces severe difficulties with highly-complex and data-intensive applications such as those dealing with optimisation issues in large-scale transportation networks. One of the main issues concerns imperfect information. The idea of Robust Optimisation, as a way to represent and handle mathematically systems with not precisely known data, dates back to 1970s. Unfortunately, none of those techniques proved to be successfully applicable in one of the most complex and largest in scale (transportation) settings: that of railway systems. Railway optimisation deals with planning and scheduling problems over several time horizons. Disturbances are inevitable and severely affect the planning process. Here we focus on two compelling aspects of planning: robust planning and online (real-time) planning.
APA, Harvard, Vancouver, ISO, and other styles
13

D'Ambrosio, Claudia <1980&gt. "Application-oriented Mixed Integer Non-Linear Programming." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1634/1/DAmbrosio_Claudia_tesi.pdf.

Full text
Abstract:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
APA, Harvard, Vancouver, ISO, and other styles
14

D'Ambrosio, Claudia <1980&gt. "Application-oriented Mixed Integer Non-Linear Programming." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1634/.

Full text
Abstract:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
APA, Harvard, Vancouver, ISO, and other styles
15

Tramontani, Andrea <1978&gt. "Enhanced Mixed Integer Programming Techniques and Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1754/1/tramontani_andrea_tesi.pdf.

Full text
Abstract:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
APA, Harvard, Vancouver, ISO, and other styles
16

Tramontani, Andrea <1978&gt. "Enhanced Mixed Integer Programming Techniques and Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1754/.

Full text
Abstract:
Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.
APA, Harvard, Vancouver, ISO, and other styles
17

Battarra, Maria <1981&gt. "Exact and Heuristic Algorithms for Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2381/1/Battarra_Maria_Tesi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Battarra, Maria <1981&gt. "Exact and Heuristic Algorithms for Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2381/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Traversi, Emiliano <1981&gt. "Orientation and layout problems on graphs, with applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2637/2/traversi_emiliano_tesi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Traversi, Emiliano <1981&gt. "Orientation and layout problems on graphs, with applications." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2637/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Naji, Azimi Zahra <1982&gt. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/1/Naji_Azimi_Zahra_Tesi.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Naji, Azimi Zahra <1982&gt. "Algorithms for Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2695/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Salari, Majid <1982&gt. "Formulations and Algorithms for Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2700/1/Salari_Majid_Tesi.pdf.

Full text
Abstract:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
APA, Harvard, Vancouver, ISO, and other styles
24

Salari, Majid <1982&gt. "Formulations and Algorithms for Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2700/.

Full text
Abstract:
Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.
APA, Harvard, Vancouver, ISO, and other styles
25

Vera, Valdes Victor Andres <1975&gt. "Integrating Crew Scheduling and Rostering Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2705/1/vera_valdes_victor_andres_tesi.pdf.

Full text
Abstract:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
APA, Harvard, Vancouver, ISO, and other styles
26

Vera, Valdes Victor Andres <1975&gt. "Integrating Crew Scheduling and Rostering Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2705/.

Full text
Abstract:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
APA, Harvard, Vancouver, ISO, and other styles
27

Fernandes, Muritiba Albert Einstein <1983&gt. "Algorithms and Models For Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2897/1/FernandesMuritiba_AlbertEinstein_tesi.pdf.

Full text
Abstract:
In this thesis we present some combinatorial optimization problems, suggest models and algorithms for their effective solution. For each problem,we give its description, followed by a short literature review, provide methods to solve it and, finally, present computational results and comparisons with previous works to show the effectiveness of the proposed approaches. The considered problems are: the Generalized Traveling Salesman Problem (GTSP), the Bin Packing Problem with Conflicts(BPPC) and the Fair Layout Problem (FLOP).
APA, Harvard, Vancouver, ISO, and other styles
28

Fernandes, Muritiba Albert Einstein <1983&gt. "Algorithms and Models For Combinatorial Optimization Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/2897/.

Full text
Abstract:
In this thesis we present some combinatorial optimization problems, suggest models and algorithms for their effective solution. For each problem,we give its description, followed by a short literature review, provide methods to solve it and, finally, present computational results and comparisons with previous works to show the effectiveness of the proposed approaches. The considered problems are: the Generalized Traveling Salesman Problem (GTSP), the Bin Packing Problem with Conflicts(BPPC) and the Fair Layout Problem (FLOP).
APA, Harvard, Vancouver, ISO, and other styles
29

Medina, Durán Rosa Daniela <1984&gt. "The cutting stock problem in the wood industry." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3734/1/MedinaDuran_Rosa_tesi.pdf.

Full text
Abstract:
This thesis proposes a solution for board cutting in the wood industry with the aim of usage minimization and machine productivity. The problem is dealt with as a Two-Dimensional Cutting Stock Problem and specific Combinatorial Optimization methods are used to solve it considering the features of the real problem.
APA, Harvard, Vancouver, ISO, and other styles
30

Medina, Durán Rosa Daniela <1984&gt. "The cutting stock problem in the wood industry." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3734/.

Full text
Abstract:
This thesis proposes a solution for board cutting in the wood industry with the aim of usage minimization and machine productivity. The problem is dealt with as a Two-Dimensional Cutting Stock Problem and specific Combinatorial Optimization methods are used to solve it considering the features of the real problem.
APA, Harvard, Vancouver, ISO, and other styles
31

Persiani, Carlo Alfredo <1980&gt. "Algorithms for UAS insertion in civil air space." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3880/1/Persiani_CarloAlfredo_Tesi.pdf.

Full text
Abstract:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
APA, Harvard, Vancouver, ISO, and other styles
32

Persiani, Carlo Alfredo <1980&gt. "Algorithms for UAS insertion in civil air space." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3880/.

Full text
Abstract:
One of the most interesting challenge of the next years will be the Air Space Systems automation. This process will involve different aspects as the Air Traffic Management, the Aircrafts and Airport Operations and the Guidance and Navigation Systems. The use of UAS (Uninhabited Aerial System) for civil mission will be one of the most important steps in this automation process. In civil air space, Air Traffic Controllers (ATC) manage the air traffic ensuring that a minimum separation between the controlled aircrafts is always provided. For this purpose ATCs use several operative avoidance techniques like holding patterns or rerouting. The use of UAS in these context will require the definition of strategies for a common management of piloted and piloted air traffic that allow the UAS to self separate. As a first employment in civil air space we consider a UAS surveillance mission that consists in departing from a ground base, taking pictures over a set of mission targets and coming back to the same ground base. During all mission a set of piloted aircrafts fly in the same airspace and thus the UAS has to self separate using the ATC avoidance as anticipated. We consider two objective, the first consists in the minimization of the air traffic impact over the mission, the second consists in the minimization of the impact of the mission over the air traffic. A particular version of the well known Travelling Salesman Problem (TSP) called Time-Dependant-TSP has been studied to deal with traffic problems in big urban areas. Its basic idea consists in a cost of the route between two clients depending on the period of the day in which it is crossed. Our thesis supports that such idea can be applied to the air traffic too using a convenient time horizon compatible with aircrafts operations. The cost of a UAS sub-route will depend on the air traffic that it will meet starting such route in a specific moment and consequently on the avoidance maneuver that it will use to avoid that conflict. The conflict avoidance is a topic that has been hardly developed in past years using different approaches. In this thesis we purpose a new approach based on the use of ATC operative techniques that makes it possible both to model the UAS problem using a TDTSP framework both to use an Air Traffic Management perspective. Starting from this kind of mission, the problem of the UAS insertion in civil air space is formalized as the UAS Routing Problem (URP). For this reason we introduce a new structure called Conflict Graph that makes it possible to model the avoidance maneuvers and to define the arc cost function of the departing time. Two Integer Linear Programming formulations of the problem are proposed. The first is based on a TDTSP formulation that, unfortunately, is weaker then the TSP formulation. Thus a new formulation based on a TSP variation that uses specific penalty to model the holdings is proposed. Different algorithms are presented: exact algorithms, simple heuristics used as Upper Bounds on the number of time steps used, and metaheuristic algorithms as Genetic Algorithm and Simulated Annealing. Finally an air traffic scenario has been simulated using real air traffic data in order to test our algorithms. Graphic Tools have been used to represent the Milano Linate air space and its air traffic during different days. Such data have been provided by ENAV S.p.A (Italian Agency for Air Navigation Services).
APA, Harvard, Vancouver, ISO, and other styles
33

Roberti, Roberto <1982&gt. "Exact Algorithms for Different Classes of Vehicle Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4350/2/Roberti_Roberto_tesi.pdf.

Full text
Abstract:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
APA, Harvard, Vancouver, ISO, and other styles
34

Roberti, Roberto <1982&gt. "Exact Algorithms for Different Classes of Vehicle Routing Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4350/.

Full text
Abstract:
We deal with five problems arising in the field of logistics: the Asymmetric TSP (ATSP), the TSP with Time Windows (TSPTW), the VRP with Time Windows (VRPTW), the Multi-Trip VRP (MTVRP), and the Two-Echelon Capacitated VRP (2E-CVRP). The ATSP requires finding a lest-cost Hamiltonian tour in a digraph. We survey models and classical relaxations, and describe the most effective exact algorithms from the literature. A survey and analysis of the polynomial formulations is provided. The considered algorithms and formulations are experimentally compared on benchmark instances. The TSPTW requires finding, in a weighted digraph, a least-cost Hamiltonian tour visiting each vertex within a given time window. We propose a new exact method, based on new tour relaxations and dynamic programming. Computational results on benchmark instances show that the proposed algorithm outperforms the state-of-the-art exact methods. In the VRPTW, a fleet of identical capacitated vehicles located at a depot must be optimally routed to supply customers with known demands and time window constraints. Different column generation bounding procedures and an exact algorithm are developed. The new exact method closed four of the five open Solomon instances. The MTVRP is the problem of optimally routing capacitated vehicles located at a depot to supply customers without exceeding maximum driving time constraints. Two set-partitioning-like formulations of the problem are introduced. Lower bounds are derived and embedded into an exact solution method, that can solve benchmark instances with up to 120 customers. The 2E-CVRP requires designing the optimal routing plan to deliver goods from a depot to customers by using intermediate depots. The objective is to minimize the sum of routing and handling costs. A new mathematical formulation is introduced. Valid lower bounds and an exact method are derived. Computational results on benchmark instances show that the new exact algorithm outperforms the state-of-the-art exact methods.
APA, Harvard, Vancouver, ISO, and other styles
35

Linfati, Rodrigo <1983&gt. "Referee Assignment Problem Case: Italian Volleyball Championships." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4520/2/linfati_rodrigo_tesis.pdf.

Full text
Abstract:
This thesis addresses the formulation of a referee assignment problem for the Italian Volleyball Serie A Championships. The problem has particular constraints such as a referee must be assigned to different teams in a given period of times, and the minimal/maximal level of workload for each referee is obtained by considering cost and profit in the objective function. The problem has been solved through an exact method by using an integer linear programming formulation and a clique based decomposition for improving the computing time. Extensive computational experiments on real-world instances have been performed to determine the effectiveness of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
36

Linfati, Rodrigo <1983&gt. "Referee Assignment Problem Case: Italian Volleyball Championships." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2012. http://amsdottorato.unibo.it/4520/.

Full text
Abstract:
This thesis addresses the formulation of a referee assignment problem for the Italian Volleyball Serie A Championships. The problem has particular constraints such as a referee must be assigned to different teams in a given period of times, and the minimal/maximal level of workload for each referee is obtained by considering cost and profit in the objective function. The problem has been solved through an exact method by using an integer linear programming formulation and a clique based decomposition for improving the computing time. Extensive computational experiments on real-world instances have been performed to determine the effectiveness of the proposed approach.
APA, Harvard, Vancouver, ISO, and other styles
37

Escobar, Velasquez John Willmer <1980&gt. "Heuristic algorithms for the Capacitated Location-Routing Problem and the Multi-Depot Vehicle Routing Problem." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5258/1/Escobar_John_tesi.pdf.

Full text
Abstract:
The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo (2003) to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms. This work is organized as follows: Chapter 1 describes a detailed overview and a methodological review of the literature for the the Capacitated Location-Routing Problem (CLRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP. Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP. Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.
APA, Harvard, Vancouver, ISO, and other styles
38

Escobar, Velasquez John Willmer <1980&gt. "Heuristic algorithms for the Capacitated Location-Routing Problem and the Multi-Depot Vehicle Routing Problem." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2013. http://amsdottorato.unibo.it/5258/.

Full text
Abstract:
The Capacitated Location-Routing Problem (CLRP) is a NP-hard problem since it generalizes two well known NP-hard problems: the Capacitated Facility Location Problem (CFLP) and the Capacitated Vehicle Routing Problem (CVRP). The Multi-Depot Vehicle Routing Problem (MDVRP) is known to be a NP-hard since it is a generalization of the well known Vehicle Routing Problem (VRP), arising with one depot. This thesis addresses heuristics algorithms based on the well-know granular search idea introduced by Toth and Vigo (2003) to solve the CLRP and the MDVRP. Extensive computational experiments on benchmark instances for both problems have been performed to determine the effectiveness of the proposed algorithms. This work is organized as follows: Chapter 1 describes a detailed overview and a methodological review of the literature for the the Capacitated Location-Routing Problem (CLRP) and the Multi-Depot Vehicle Routing Problem (MDVRP). Chapter 2 describes a two-phase hybrid heuristic algorithm to solve the CLRP. Chapter 3 shows a computational comparison of heuristic algorithms for the CLRP. Chapter 4 presents a hybrid granular tabu search approach for solving the MDVRP.
APA, Harvard, Vancouver, ISO, and other styles
39

Alvarez, Miranda Eduardo Andre <1986&gt. "Networks, Uncertainty, Applications and a Crusade for Optimality." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6414/1/Alvarez_Eduardo_Tesi.pdf.

Full text
Abstract:
In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.
APA, Harvard, Vancouver, ISO, and other styles
40

Alvarez, Miranda Eduardo Andre <1986&gt. "Networks, Uncertainty, Applications and a Crusade for Optimality." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6414/.

Full text
Abstract:
In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.
APA, Harvard, Vancouver, ISO, and other styles
41

Tubertini, Paolo <1986&gt. "Operational research applied to regional healthcare system." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6541/1/Tubertini_Paolo_tesi.pdf.

Full text
Abstract:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.
APA, Harvard, Vancouver, ISO, and other styles
42

Tubertini, Paolo <1986&gt. "Operational research applied to regional healthcare system." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6541/.

Full text
Abstract:
In this thesis we focus on optimization and simulation techniques applied to solve strategic, tactical and operational problems rising in the healthcare sector. At first we present three applications to Emilia-Romagna Public Health System (SSR) developed in collaboration with Agenzia Sanitaria e Sociale dell'Emilia-Romagna (ASSR), a regional center for innovation and improvement in health. Agenzia launched a strategic campaign aimed at introducing Operations Research techniques as decision making tools to support technological and organizational innovations. The three applications focus on forecast and fund allocation of medical specialty positions, breast screening program extension and operating theater planning. The case studies exploit the potential of combinatorial optimization, discrete event simulation and system dynamics techniques to solve resource constrained problem arising within Emilia-Romagna territory. We then present an application in collaboration with Dipartimento di Epidemiologia del Lazio that focuses on population demand of service allocation to regional emergency departments. Finally, a simulation-optimization approach, developed in collaboration with INESC TECH center of Porto, to evaluate matching policies for the kidney exchange problem is discussed.
APA, Harvard, Vancouver, ISO, and other styles
43

Parriani, Tiziano <1984&gt. "Decomposition Methods and Network Design Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6551/1/Thesis_Parriani.pdf.

Full text
Abstract:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).
APA, Harvard, Vancouver, ISO, and other styles
44

Parriani, Tiziano <1984&gt. "Decomposition Methods and Network Design Problems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6551/.

Full text
Abstract:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).
APA, Harvard, Vancouver, ISO, and other styles
45

Pietrobuoni, Enrico <1986&gt. "Two-Dimensional Bin Packing Problem with Guillotine Restrictions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6810/1/PhD_Pietrobuoni.pdf.

Full text
Abstract:
This thesis, after presenting recent advances obtained for the two-dimensional bin packing problem, focuses on the case where guillotine restrictions are imposed. A mathematical characterization of non-guillotine patterns is provided and the relation between the solution value of the two-dimensional problem with guillotine restrictions and the two-dimensional problem unrestricted is being studied from a worst-case perspective. Finally it presents a new heuristic algorithm, for the two-dimensional problem with guillotine restrictions, based on partial enumeration, and computationally evaluates its performance on a large set of instances from the literature. Computational experiments show that the algorithm is able to produce proven optimal solutions for a large number of problems, and gives a tight approximation of the optimum in the remaining cases.
APA, Harvard, Vancouver, ISO, and other styles
46

Pietrobuoni, Enrico <1986&gt. "Two-Dimensional Bin Packing Problem with Guillotine Restrictions." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6810/.

Full text
Abstract:
This thesis, after presenting recent advances obtained for the two-dimensional bin packing problem, focuses on the case where guillotine restrictions are imposed. A mathematical characterization of non-guillotine patterns is provided and the relation between the solution value of the two-dimensional problem with guillotine restrictions and the two-dimensional problem unrestricted is being studied from a worst-case perspective. Finally it presents a new heuristic algorithm, for the two-dimensional problem with guillotine restrictions, based on partial enumeration, and computationally evaluates its performance on a large set of instances from the literature. Computational experiments show that the algorithm is able to produce proven optimal solutions for a large number of problems, and gives a tight approximation of the optimum in the remaining cases.
APA, Harvard, Vancouver, ISO, and other styles
47

Bordin, Chiara <1983&gt. "Mathematical Optimization Applied to Thermal and Electrical Energy Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6915/1/Bordin_Chiara_tesi.pdf.

Full text
Abstract:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.
APA, Harvard, Vancouver, ISO, and other styles
48

Bordin, Chiara <1983&gt. "Mathematical Optimization Applied to Thermal and Electrical Energy Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/6915/.

Full text
Abstract:
This Thesis aims at building and discussing mathematical models applications focused on Energy problems, both on the thermal and electrical side. The objective is to show how mathematical programming techniques developed within Operational Research can give useful answers in the Energy Sector, how they can provide tools to support decision making processes of Companies operating in the Energy production and distribution and how they can be successfully used to make simulations and sensitivity analyses to better understand the state of the art and convenience of a particular technology by comparing it with the available alternatives. The first part discusses the fundamental mathematical background followed by a comprehensive literature review about mathematical modelling in the Energy Sector. The second part presents mathematical models for the District Heating strategic network design and incremental network design. The objective is the selection of an optimal set of new users to be connected to an existing thermal network, maximizing revenues, minimizing infrastructure and operational costs and taking into account the main technical requirements of the real world application. Results on real and randomly generated benchmark networks are discussed with particular attention to instances characterized by big networks dimensions. The third part is devoted to the development of linear programming models for optimal battery operation in off-grid solar power schemes, with consideration of battery degradation. The key contribution of this work is the inclusion of battery degradation costs in the optimisation models. As available data on relating degradation costs to the nature of charge/discharge cycles are limited, we concentrate on investigating the sensitivity of operational patterns to the degradation cost structure. The objective is to investigate the combination of battery costs and performance at which such systems become economic. We also investigate how the system design should change when battery degradation is taken into account.
APA, Harvard, Vancouver, ISO, and other styles
49

Hadjidimitriou, Natalia <1979&gt. "Classification algorithms for Intelligent Transport Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7107/5/Natalia_Selini_Hadjidimitriou_Tesi.pdf.

Full text
Abstract:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
APA, Harvard, Vancouver, ISO, and other styles
50

Hadjidimitriou, Natalia <1979&gt. "Classification algorithms for Intelligent Transport Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amsdottorato.unibo.it/7107/.

Full text
Abstract:
Intelligent Transport Systems (ITS) consists in the application of ICT to transport to offer new and improved services to the mobility of people and freights. While using ITS, travellers produce large quantities of data that can be collected and analysed to study their behaviour and to provide information to decision makers and planners. The thesis proposes innovative deployments of classification algorithms for Intelligent Transport System with the aim to support the decisions on traffic rerouting, bus transport demand and behaviour of two wheelers vehicles. The first part of this work provides an overview and a classification of a selection of clustering algorithms that can be implemented for the analysis of ITS data. The first contribution of this thesis is an innovative use of the agglomerative hierarchical clustering algorithm to classify similar travels in terms of their origin and destination, together with the proposal for a methodology to analyse drivers’ route choice behaviour using GPS coordinates and optimal alternatives. The clusters of repetitive travels made by a sample of drivers are then analysed to compare observed route choices to the modelled alternatives. The results of the analysis show that drivers select routes that are more reliable but that are more expensive in terms of travel time. Successively, different types of users of a service that provides information on the real time arrivals of bus at stop are classified using Support Vector Machines. The results shows that the results of the classification of different types of bus transport users can be used to update or complement the census on bus transport flows. Finally, the problem of the classification of accidents made by two wheelers vehicles is presented together with possible future application of clustering methodologies aimed at identifying and classifying the different types of accidents.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography