Contents
Academic literature on the topic 'Masses d'eau – Océanographie – Méditerranée (mer)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Masses d'eau – Océanographie – Méditerranée (mer).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Dissertations / Theses on the topic "Masses d'eau – Océanographie – Méditerranée (mer)"
Barral, Quentin-Boris. "Caractérisation du front Nord-Baléares : Variabilité et rôle de la circulation des masses d'eau en Méditerranée Occidentale." Electronic Thesis or Diss., Toulon, 2022. http://www.theses.fr/2022TOUL0006.
Full textThe Western Mediterranean is one of the basins with the most plastic pollution in the world, and its surface warming is four times more intense than that of the oceans. It is a so-called "laboratory basin" for the study of the global ocean : it develops its own overturning circulation. Its currentology is composed of 4 layers and about 6 water masses. The meeting of two water masses of different surface temperatures and salinities creates a thermohaline front. This thesis presents recent advances in the characterisation of front zones and water mass dynamics in the Western Mediterranean. The detection of surface fronts in a simulation, and on satellite observations, has produced maps of front presence statistics. Two major zones of fronts, of temperature and salinity, appear in the centre of the basin and are very different. The first is thermal, summer and 50m deep. It starts in the Pyrenees but fades towards the north-west of Corsica. The second is haline, quasi-permanent and over 200m depth. It clearly connects the Balearic Islands to southwestern Sardinia. Previously confused within a single "North Balearic front", their different origins and locations imply that two new designations are proposed. The haline front zone marks the boundary between young southern Atlantic waters (AW) and old northern waters (mAW). It is displaced southwards during the interannual deep water formation (DWF) of the Provençal basin, and then moves northwards under the influence of Algerian eddies (AEs). The development of an algorithmfor separating the 6 different water masses allowed the description of the particular circulation of each of them in the simulation. The average circulations coincide with the known literature. Then, besides an unrealistic deep circulation event, two important results are deduced. On the one hand, the simulation shows that the DWF of the Provençal Basin seems to dislocate the deep East Algerian gyre, modifying in turn the trajectory of the surface AEs. On the other hand, the 2005 DWF induced a deep water transit towards the Tyrrhenian Sea in 2009. However, this transit induced a surface return flow of mAWs through the Sardinia Channel towards the Algerian Basin, instead of the usual inflow through the Corsica Channel, and exceptionally causing AWto reach the Ligurian Sea
Waldman, Robin. "Etude multi-échelle de la convection océanique profonde en mer Méditerranée : de l'observation à la modélisation climatique." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30361/document.
Full textThe northwestern Mediterranean sea, also named the Liguro-Provençal basin, is one of the few places where ocean deep convection occurs. This localized and intermittent phenomenon is one of the main modes of interaction between the deep ocean and the climate system. It is of paramount importance for the vertical redistribution of heat, carbon dioxyde and biogeochemical elements, and therefore for climate and marine biology. The PhD has been carried out in the framework of HyMeX programme, it aims at characterizing the ocean deep convection phenomenon in the Liguro-Provençal basin from the year 2012-2013 case study and at understanding the role of mesoscale dynamics and of the resulting intrinsic ocean variability on deep convection. The PhD work has first focused on characterizing the ocean deep convection phenomenon from observations collected during the 2012-2013 case study. We estimated the winter deep convection and spring restratification rates and an Observing System Simulation Experiment (OSSE) was developed to estimate the associated observation error. We conclude on the validity of MOOSE network observations to estimate the deep convection and restratification rates in the period 2012-2013. We characterize the period as exceptionally convective with a winter deep water formation rate of 2.3±0.5Sv (1Sv=106m³/s) and we estimate for the first time a spring deep water restratification rate of 0.8±0.4Sv. Two novel numerical approaches were developped during the PhD to characterize the roles of mesoscale dynamics and of intrinsic variability in the deep convection phenomenon. We implemented AGRIF grid refinement tool in the northwestern Mediterranean Sea within NEMOMED12 regional model to document the impact of mesoscale on deep convection and on the Mediterranean thermohaline circulation. In addition, we carried out perturbed initial state ensemble simulations to characterize the impact of ocean intrinsic variability on convection. After extensively evaluating the realism of deep convection in NEMOMED12 numerical model thanks to the 2012-2013 observations, we study with this model the impact of intrinsic variability on deep convection. During the case study as well as in the 1979-2013 historical period, intrinsic ocean variability largely modulates the mixed patch geography, particularly in the open-sea domain. At climatic timescales, intrinsic variability modulates largely the deep convection rate interannual variability. On average over the historical period, it also modulates the mixed patch geography, but it impacts marginally its magnitude and the properties of the deep water formed. Finally, we study with AGRIF tool the impact of mesoscale dynamics on deep convection and on the thermohaline circulation. In the 2012-2013 case study, mesoscale improves the realism of the simulated convection. We show that it increases the deep convection intrinsic variability. In this period as well as during the 1979-2013 historical period, it decreases the mean deep convection rate and it reduces deep water transformations. We mainly relate its impact on convection to the modifincation of the stationary circulation characterized by a relocation and an intensification of boundary currents and the presence of a stationary Balearic Front meander. Also, in the historical period, exchanges with the Algerian basin are increased, which modifies water mass climatological properties. Finally, the surface signature of mesoscale is likely to alter air-sea interactions and the coastal to regional Mediterranean climate
Mallil, Katia. "Circulation générale et processus de sous-méso échelle dans le bassin Algéro-Provençal de la Méditerranée à partir de données in situ." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS113.
Full textData from the SOMBA-GE2014 oceanographic cruise, allowed us to highlight the presence of Algerian gyres via current measurements. The temperature and salinity sections obtained across the basin allowed the visualization of the influence of the Algerian gyres on the hydrological distribution. Indeed, young intermediate Levantine waters extend from Saridinian LIW vein towards the interior of the Algerian basin, in the form of patches. LIW and WIW core climatologies covering the period 1960 to 2017 in the Algerian-Provençal basin were produced using the Mediterranean database of temperature and salinity profiles and new detection methods. A westward transport of LIW from the southern vein of Sardinia to the interior of the Algerian basin following the periphery of the Algerian gyres is highlighted by this climatology and confirmed by the cross-correlation of the cooling signal observed during the 1980s. The estimation of trends of LIW and WIW characteristics help to document their evolution. The acceleration of warming observed throughout the basin from 2010 is alarming. Glider observations have supported our conclusions regarding the effectiveness of mesoscale and submesoscale structures for the transport of water masses into the interior of the Algerian basin. Indeed, we observed WIW, LIW, and WMDW parcels within the Algerian Basin with more pronounced characteristics than adjacent waters
Arraes-Mescoff, Roseana. "Etude du comportement des particules dans la colonne d'eau méditerranéenne avec l'utilisation des traceurs géochimiques et la modélisation : application au site DYFAMED." Toulouse 3, 2000. http://www.theses.fr/2000TOU30130.
Full textPiété, Helen. "Imagerie sismique et océanographique des masses d'eau sur le plateau continental breton." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0078/document.
Full textThis work is a preliminary study for the development of a new tool, marine seismic reflection, for the observation of the seasonal thermocline of the Iroise Sea. It is the first application of this technique to the observation of shallow oceanographic structures (z < 50 m). In order to define general requirements for the design of a seismic acquisition system suited to the imaging of such targets, the theory of the seismic measurement was first investigated. Four multi-channel seismic reflection profiles from the GO, Carambar and Sigolo cruises were then reprocessed and analyzed in order to assess the potential of conventional seismic systems. They were found ill suited to the imaging of shallow oceanographic structures, because of a high antenna filter induced by large offsets and seismic trace lengths, and sources that do not reconcile with the high level of emission and fine vertical resolution. New oceanographic data acquired in the Iroise Sea during the Fromvar 2010 cruise allowed simulation of the seismic acquisition, and the definition of optimal acquisition parameters for the imaging of the seasonal thermocline. Sea trials of this specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: four seismic streamers, each consisting of 6 traces of 1.80 m.; a 1000 J SIG Sparker source, providing a 400 Hz signal with a level of emission of 210 dB re 1 μPa @1m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements of horizontal wavelength of a several hundreds m to a few km , most probably induced by internal waves
Herrmann, Marine. "Formation et devenir des masses d'eau en Méditerranée nord-occidentale : influence sur l'écosystème planctonique pélagique : variabilité inter-annuelle et changement climatique." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/489/.
Full textOur objective is to contribute to the understanding of the functioning of the Mediterranean system using modeling tools. We first study the formation and fate of water masses in the Northwestern Mediterranean Sea. The impact of the oceanic model spatial resolution on open-ocean deep convection modeling is examined through a real case study, and is related to the essential role played by the mesoscale structures in the formation and fate of deep water. The comparison of simulations performed under different atmospheric forcings enables to study the influence of the spatial resolution of this forcing on the modeling of deep convection and to underline the importance of atmospheric extremes. We then investigate the impact of interannual atmospheric variability and climate change on dense water formation over the Gulf of Lions shelf. The volumes of dense water formed over the shelf, exported and cascading into the deep ocean are well correlated with the winter atmospheric heat loss. The strengthening of the water column stratification between the XXth and the XXIst centuries induces a strong decrease of these volumes. We examine the impact of physical processes on the planktonic pelagic ecosystem using a coupled hydrodynamical - biogeochemical model. The study of a reference year enables to validate the model and to underline its defects. Primary production and respiration show a weak interannual variability, however, carbon exportation and net metabolism show a stronger variability. Finally, the warming of sea water due to climate change induces an increase of primary production by the end of the XXIth century, together with an enhancement of the microbial loop
Oziel, Laurent. "Variabilité de la mer de Barents et son impact sur le phytoplancton." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066483/document.
Full textThe Barents Sea has a particularly rich ecosystem. This is an Arctic region subject to intense climate changes. The drastic decrease in sea ice cover is the most visible effect. What are the impacts of these climatic changes on the hydrology and phytoplankton? In order to answer these questions, this thesis relies on the creation of an extensive historical database of physical and bio-geochemical parameters. A 3D bio-geochemical model with an Arctic specific ecosystem is used when observations are lacking. At least, remote sensing data provides valuable time series of Ice concentration, Chlorophyll-a... The Polar Front, separating the Atlantic Water coming from the Nordic Sea from the Arctic Water, is the principal feature of the Barents Sea region. Its position is known west of 35°E, but we showed that the polar front splits into two branches in the East part of the Barents Sea: the "Southern Front" and the "Northern Front". They enclose the winter locally formed Barents Sea Water. An “Atlantification”, illustrating a doubling of the Atlantic Water volume, has been evidenced and goes along with a North-eastward shift of the fronts. These hydrological and sea ice changes have a significant impact on the phytoplankton development. The two blooms of the Barents Sea occur further North and East with a 40% total anual biomass increase for the last two decades. This study suggests that the winter sea ice conditions and the frontal structure are the key mechanisms driving the inter-annual phytoplankton variability
Gasparin, Florent. "Caractéristiques des Masses d'Eau, Transport de masse et Variabilité de la circulation océanique en mer de Corail." Phd thesis, Université Paul Sabatier - Toulouse III, 2012. http://tel.archives-ouvertes.fr/tel-00840821.
Full textOziel, Laurent. "Variabilité de la mer de Barents et son impact sur le phytoplancton." Electronic Thesis or Diss., Paris 6, 2015. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2015PA066483.pdf.
Full textThe Barents Sea has a particularly rich ecosystem. This is an Arctic region subject to intense climate changes. The drastic decrease in sea ice cover is the most visible effect. What are the impacts of these climatic changes on the hydrology and phytoplankton? In order to answer these questions, this thesis relies on the creation of an extensive historical database of physical and bio-geochemical parameters. A 3D bio-geochemical model with an Arctic specific ecosystem is used when observations are lacking. At least, remote sensing data provides valuable time series of Ice concentration, Chlorophyll-a... The Polar Front, separating the Atlantic Water coming from the Nordic Sea from the Arctic Water, is the principal feature of the Barents Sea region. Its position is known west of 35°E, but we showed that the polar front splits into two branches in the East part of the Barents Sea: the "Southern Front" and the "Northern Front". They enclose the winter locally formed Barents Sea Water. An “Atlantification”, illustrating a doubling of the Atlantic Water volume, has been evidenced and goes along with a North-eastward shift of the fronts. These hydrological and sea ice changes have a significant impact on the phytoplankton development. The two blooms of the Barents Sea occur further North and East with a 40% total anual biomass increase for the last two decades. This study suggests that the winter sea ice conditions and the frontal structure are the key mechanisms driving the inter-annual phytoplankton variability
Alhammoud, Bahjat. "Circulation générale océanique et variabilité à méso-échelle en Méditerranée Orientale : approche numérique." Phd thesis, Aix-Marseille 2, 2005. http://pastel.archives-ouvertes.fr/pastel-00001798.
Full text