Academic literature on the topic 'Markov noise'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Markov noise.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Markov noise"
Novak, Stephanie, and Lyman J. Fretwell. "Non‐Markov noise processes." Journal of the Acoustical Society of America 80, S1 (December 1986): S64. http://dx.doi.org/10.1121/1.2023904.
Full textKinge, Sanjaykumar, B. Sheela Rani, and Mukul Sutaone. "Restored texture segmentation using Markov random fields." Mathematical Biosciences and Engineering 20, no. 6 (2023): 10063–89. http://dx.doi.org/10.3934/mbe.2023442.
Full textZhou, Xiaozhen, Shanping Li, and Zhen Ye. "A Novel System Anomaly Prediction System Based on Belief Markov Model and Ensemble Classification." Mathematical Problems in Engineering 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/179390.
Full textSanches, I. "Noise-compensated hidden Markov models." IEEE Transactions on Speech and Audio Processing 8, no. 5 (2000): 533–40. http://dx.doi.org/10.1109/89.861372.
Full textChyan, Phie, and N. Tri Saptadi. "Pemulihan Citra Berbasis Metode Markov Random Field." JURIKOM (Jurnal Riset Komputer) 9, no. 2 (April 29, 2022): 218. http://dx.doi.org/10.30865/jurikom.v9i2.3966.
Full textKorolkiewicz, Małgorzata Wiktoria. "A Dependent Hidden Markov Model of Credit Quality." International Journal of Stochastic Analysis 2012 (August 13, 2012): 1–13. http://dx.doi.org/10.1155/2012/719237.
Full textBORDONE, PAOLO, FABRIZIO BUSCEMI, and CLAUDIA BENEDETTI. "EFFECT OF MARKOV AND NON-MARKOV CLASSICAL NOISE ON ENTANGLEMENT DYNAMICS." Fluctuation and Noise Letters 11, no. 03 (September 2012): 1242003. http://dx.doi.org/10.1142/s0219477512420035.
Full textBorkar, Vivek S. "Stochastic approximation with ‘controlled Markov’ noise." Systems & Control Letters 55, no. 2 (February 2006): 139–45. http://dx.doi.org/10.1016/j.sysconle.2005.06.005.
Full textGodtliebsen, Fred. "Noise reduction using markov random fields." Journal of Magnetic Resonance (1969) 92, no. 1 (March 1991): 102–14. http://dx.doi.org/10.1016/0022-2364(91)90251-n.
Full textAlajaji, F., N. Phamdo, N. Farvardin, and T. E. Fuja. "Detection of binary Markov sources over channels with additive Markov noise." IEEE Transactions on Information Theory 42, no. 1 (1996): 230–39. http://dx.doi.org/10.1109/18.481793.
Full textDissertations / Theses on the topic "Markov noise"
Beattie, Valerie L. "Hidden Markov Model state-based noise compensation." Thesis, University of Cambridge, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259519.
Full textBai, Jiongjun. "Adaptive hidden Markov noise modelling for speech enhancement." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/11158.
Full textGales, Mark John Francis. "Model-based techniques for noise robust speech recognition." Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319311.
Full textParanchych, David W. "Markov modelling of digital symbol synchronizers in noise and interference." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq20576.pdf.
Full textWhalen, Nicholas J. "The capacity-cost function of channels with additive Markov noise." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0028/MQ31270.pdf.
Full textSkeen, Matthew E. (Matthew Edward). "Maximum likelihood estimation of fractional Brownian motion and Markov noise parameters." Thesis, Massachusetts Institute of Technology, 1991. http://hdl.handle.net/1721.1/42527.
Full textCALVIA, ALESSANDRO. "Optimal control of pure jump Markov processes with noise-free partial observation." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199013.
Full textThis thesis is concerned with an infinite horizon optimal control problem for a pure jump Markov process with noise-free partial observation. We are given a pair of stochastic processes, named unobserved or signal process and observed or data process. The signal process is a continuous-time pure jump Markov process, taking values in a complete and separable metric space, whose controlled rate transition measure is known. The observed process takes values in another complete and separable metric space and is of noise-free type. With this we mean that its values at each time t are given as a function of the corresponding values at time t of the unobserved process. We assume that this function is a deterministic and, without loss of generality, surjective map between the state spaces of the signal and data processes. The aim is to control the dynamics of the unobserved process, i.e. its controlled rate transition measure, through a control process, taking values in the set of Borel probability measures on a compact metric space, named set of control actions. We take as admissible controls for our problem all the processes of this kind that are also predictable with respect to the natural filtration of the data process. The control process is chosen in this class to minimize a discounted cost functional on infinite time horizon. The infimum of this cost functional among all admissible controls is the value function. In order to study the value function a preliminary step is required. We need to recast our optimal control problem with partial observation into a problem with complete observation. This is done studying the filtering process, a measure-valued stochastic process providing at each time t the conditional law of the unobserved process given the available observations up to time t (represented by the natural filtration of the data process at time t). We show that the filtering process satisfies an explicit stochastic differential equation and we characterize it as a Piecewise Deterministic Markov Process, in the sense of Davis. To treat the filtering process as a state variable, we study a separated optimal control problem. We introduce it as a discrete-time one and we show that it is equivalent to the original one, i.e. their respective value functions are linked by an explicit formula. We also show that admissible controls of the original problem and admissible policies of the separated one have a specific structure and there is a precise relationship between them. Next, we characterize the value function of the separated control problem (hence, indirectly, the value function of the original control problem) as the unique fixed point of a contraction mapping, acting from the space of bounded continuous function on the state space of the filtering process into itself. Therefore, we prove that the value function is bounded and continuous. The special case of a signal process given by a finite-state Markov chain is also studied. In this setting, we show that the value function of the separated control problem is uniformly continuous on the state space of the filtering process and that it is the unique constrained viscosity solution (in the sense of Soner) of a Hamilton-Jacobi-Bellman equation. We also prove that an optimal ordinary control exists, i.e. a control process taking values in the set of control actions, and that this process is a piecewise open-loop control in the sense of Vermes.
Kuckländer, Nina. "Synchronization via correlated noise and automatic control in ecological systems." Phd thesis, Universität Potsdam, 2006. http://opus.kobv.de/ubp/volltexte/2006/1082/.
Full textThe first part is motivated by field studies on feral sheep populations on two islands of the St. Kilda archipelago, which revealed strong correlations due to environmental noise. For a linear system the population correlation equals the noise correlation (Moran effect). But there exists no systematic examination of the properties of nonlinear maps under the influence of correlated noise. Therefore, in the first part of this thesis the noise-induced correlation of logistic maps is systematically examined. For small noise intensities it can be shown analytically that the correlation of quadratic maps in the fixed-point regime is always smaller than or equal to the noise correlation. In the period-2 regime a Markov model explains qualitatively the main dynamical characteristics. Furthermore, two different mechanisms are introduced which lead to a higher correlation of the systems than the environmental correlation. The new effect of "correlation resonance" is described, i. e. the correlation yields a maximum depending on the noise intensity.
In the second part of the thesis an automatic control method is presented which synchronizes different systems in a robust way. This method is inspired by phase-locked loops and is based on a feedback loop with a differential control scheme, which allows to change the phases of the controlled systems. The effectiveness of the approach is demonstrated for controlled phase synchronization of regular oscillators and foodweb models.
Gegenstand der Arbeit ist die Möglichkeit der Synchronisierung von nichtlinearen Systemen durch korreliertes Rauschen und automatische Kontrolle. Die Arbeit gliedert sich in zwei Teile.
Der erste Teil ist motiviert durch Feldstudien an wilden Schafspopulationen auf zwei Inseln des St. Kilda Archipels, die starke Korrelationen aufgrund von Umwelteinflüssen zeigen. In einem linearen System entspricht die Korrelation der beiden Populationen genau der Rauschkorrelation (Moran-Effekt). Es existiert aber noch keine systematische Untersuchung des Verhaltens nichtlinearer Abbildungen unter dem Einfluss korrelierten Rauschens. Deshalb wird im ersten Teils dieser Arbeit systematisch die rauschinduzierte Korrelation zweier logistischer Abbildungen in den verschiedenen dynamischen Bereichen untersucht. Für kleine Rauschintensitäten wird analytisch gezeigt, dass die Korrelation von quadratischen Abbildungen im Fixpunktbereich immer kleiner oder gleich der Rauschkorrelation ist. Im Periode-2 Bereich beschreibt ein Markov-Modell qualitativ die wichtigsten dynamischen Eigenschaften. Weiterhin werden zwei unterschiedliche Mechanismen vorgestellt, die dazu führen, dass die beiden ungekoppelten Systeme stärker als ihre Umwelt korreliert sein können. Dabei wird der neue Effekt der "correlation resonance" aufgezeigt, d. h. es ergibt sich eine Resonanzkurve der Korrelation in Abbhängkeit von der Rauschstärke.
Im zweiten Teil der Arbeit wird eine automatische Kontroll-Methode präsentiert, die es ermöglicht sehr unterschiedliche Systeme auf robuste Weise in Phase zu synchronisieren. Die Methode ist angelehnt an Phase-locked-Loops und basiert auf einer Rückkopplungsschleife durch einen speziellen Regler, der es erlaubt die Phasen der kontrollierten Systeme zu ändern. Die Effektivität dieser Methode zur Kontrolle der Phasensynchronisierung wird an regulären Oszillatoren und an Nahrungskettenmodellen demonstriert.
Bennett, Casey. "Channel Noise and Firing Irregularity in Hybrid Markov Models of the Morris-Lecar Neuron." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1441551744.
Full textSetiawan, Panji. "Exploration and optimization of noise reduction algorithms for speech recognition in embedded devices /." Aachen : Shaker, 2009. http://d-nb.info/99453583X/04.
Full textBooks on the topic "Markov noise"
Walsh, John Leclerc. Extraction of single channel current from correlated noise via a hidden Markov model. [s.l: s.n.], 1992.
Find full textHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textMiller, Richard Kendall. Survey on industrial noise control markets. Madison, GA: Future Technology Surveys, 1989.
Find full textRoberts, Mark J. Output price and markup dispersion in micro data: The roles of producer heterogeneity and noise. Cambridge, MA: National Bureau of Economic Research, 1997.
Find full textd', Almeida-Topor Hélène, Lakroum Monique 1953-, Spittler Gerd 1939-, Centre de recherches africaines (Paris, France), and Universität Bayreuth, eds. Le travail en Afrique noire: Représentations et pratiques à l'époque contemporaine. Paris: Karthala, 2003.
Find full textWei, Shang-Jin. The big players in the foreign exchange market: Do they trade on information or noise? Cambridge, MA: National Bureau of Economic Research, 1997.
Find full textEmpirical studies of Nigeria's foreign exchange parallel market II: Speculative efficiency and noisy trading. Nairobi: African Economic Research Consortium, 1997.
Find full textMartin, Michael R. The inner voice of trading: Eliminate the noise, and profit from the strategies that are right for you. Upper Saddle River, N.J: FT Press, 2012.
Find full textCorporation, Market Intelligence Research, ed. Medical equipment markets for eye, ear, nose and throat applications: Niche opportunities prevail. Mountain View, CA: Market Intelligence Research Corp., 1990.
Find full textBarreiro, Santiago Francisco, and Luciana Mabel Cordo Russo, eds. Shapeshifters in Medieval North Atlantic Literature. NL Amsterdam: Amsterdam University Press, 2018. http://dx.doi.org/10.5117/9789462984479.
Full textBook chapters on the topic "Markov noise"
Gardiner, Crispin W. "Quantum Markov Processes." In Quantum Noise, 140–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-09642-0_5.
Full textGardiner, Crispin W., and Peter Zoller. "Quantum Markov Processes." In Quantum Noise, 130–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04103-1_5.
Full textLasota, Andrzej, and Michael C. Mackey. "Markov and Foias Operators." In Chaos, Fractals, and Noise, 393–447. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4286-4_12.
Full textLasota, Andrzej, and Michael C. Mackey. "Markov and Frobenius-Perron Operators." In Chaos, Fractals, and Noise, 37–50. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4286-4_3.
Full textVaseghi, Saeed V. "Hidden Markov Models." In Advanced Signal Processing and Digital Noise Reduction, 111–39. Wiesbaden: Vieweg+Teubner Verlag, 1996. http://dx.doi.org/10.1007/978-3-322-92773-6_4.
Full textBudhiraja, Amarjit, and Paul Dupuis. "Recursive Markov Systems with Small Noise." In Analysis and Approximation of Rare Events, 79–117. New York, NY: Springer US, 2019. http://dx.doi.org/10.1007/978-1-4939-9579-0_4.
Full textAbbas, Syed Mohsin, Marwan Jalaleddine, and Warren J. Gross. "Hardware Architecture for GRAND Markov Order (GRAND-MO)." In Guessing Random Additive Noise Decoding, 95–123. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31663-0_5.
Full textMaassen, Hans. "Quantum Markov Processes Driven by Bose Noise." In Fundamental Aspects of Quantum Theory, 125–31. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4684-5221-1_13.
Full textJalen, Luka, and Rogemar S. Mamon. "Parameter Estimation in a Regime-Switching Model with Non-normal Noise." In Hidden Markov Models in Finance, 241–61. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-1-4899-7442-6_11.
Full textBelavkin, V. P. "Quantum Filtering of Markov Signals with White Quantum Noise." In Quantum Communications and Measurement, 381–91. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-1391-3_37.
Full textConference papers on the topic "Markov noise"
Pearce, Charles E. M. "Entropy, Markov information sources and Parrondo games." In Unsolved problems of noise and fluctuations. AIP, 2000. http://dx.doi.org/10.1063/1.59976.
Full textWhite, Langford B. "Tree indexed Markov processes and long range dependency." In Unsolved problems of noise and fluctuations. AIP, 2000. http://dx.doi.org/10.1063/1.59988.
Full textNewson, Paul, and John Krumm. "Hidden Markov map matching through noise and sparseness." In the 17th ACM SIGSPATIAL International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1653771.1653818.
Full textBeattie, V. L., and Steve J. Young. "Hidden Markov model state-based cepstral noise compensation." In 2nd International Conference on Spoken Language Processing (ICSLP 1992). ISCA: ISCA, 1992. http://dx.doi.org/10.21437/icslp.1992-171.
Full textProkopenko, I. G. "Nonparametric Algorithms For Detection Of Radar Markov Signals Against The Background Of Markov Noise." In 2020 21st International Radar Symposium (IRS). IEEE, 2020. http://dx.doi.org/10.23919/irs48640.2020.9253776.
Full textLapuyade-Lahorgue, Jérôme, and Wojciech Pieczynski. "Partially Markov models and unsupervised segmentation of semi-Markov chains hidden with long dependence noise." In Recent Advances in Stochastic Modeling and Data Analysis. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709691_0029.
Full textMahmood, Ahmed, and Mandar Chitre. "Temporal analysis of stationary Markov a-sub-Gaussian noise." In OCEANS 2016 MTS/IEEE Monterey. IEEE, 2016. http://dx.doi.org/10.1109/oceans.2016.7761390.
Full textHaggag, Sherif, Shady Mohamed, Asim Bhatti, Hussein Haggag, and Saeid Nahavandi. "Noise level classification for EEG using Hidden Markov Models." In 2015 10th System of Systems Engineering Conference (SoSE). IEEE, 2015. http://dx.doi.org/10.1109/sysose.2015.7151974.
Full textMutschler, Christopher, and Michael Philippsen. "Learning event detection rules with noise hidden Markov models." In 2012 NASA/ESA Conference on Adaptive Hardware and Systems (AHS). IEEE, 2012. http://dx.doi.org/10.1109/ahs.2012.6268645.
Full textMirbadin, Anoush, Ehsan Kiani, Armando Vannucci, and Giulio Colavolpe. "Estimation of Gaussian Processes in Markov-Middleton Impulsive Noise." In 2019 1st Global Power, Energy and Communication Conference (GPECOM). IEEE, 2019. http://dx.doi.org/10.1109/gpecom.2019.8778579.
Full textReports on the topic "Markov noise"
Jebrail, F. F., and R. S. Kistler. L51753 Natural Draft Aerial Coolers. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), January 1996. http://dx.doi.org/10.55274/r0010422.
Full textAit-Sahalia, Yacine, and Jialin Yu. High Frequency Market Microstructure Noise Estimates and Liquidity Measures. Cambridge, MA: National Bureau of Economic Research, February 2008. http://dx.doi.org/10.3386/w13825.
Full textRoberts, Mark, and Dylan Supina. Output Price and Markup Dispersion in Micro Data: The Roles of Producer Heterogeneity and Noise. Cambridge, MA: National Bureau of Economic Research, June 1997. http://dx.doi.org/10.3386/w6075.
Full textWei, Shang-Jin, and Jungshik Kim. The Big Players in the Foreign Exchange Market: Do They Trade on Information or Noise? Cambridge, MA: National Bureau of Economic Research, November 1997. http://dx.doi.org/10.3386/w6256.
Full textAit-Sahalia, Yacine, and Per Mykland. How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise. Cambridge, MA: National Bureau of Economic Research, April 2003. http://dx.doi.org/10.3386/w9611.
Full textJiang, Yuxiang. Unsettled Technology Areas in Electric Propulsion Systems. SAE International, May 2021. http://dx.doi.org/10.4271/epr2021012.
Full textТарасова, Олена Юріївна, and Ірина Сергіївна Мінтій. Web application for facial wrinkle recognition. Кривий Ріг, КДПУ, 2022. http://dx.doi.org/10.31812/123456789/7012.
Full textFiron, Nurit, Prem Chourey, Etan Pressman, Allen Hartwell, and Kenneth J. Boote. Molecular Identification and Characterization of Heat-Stress-Responsive Microgametogenesis Genes in Tomato and Sorghum - A Feasibility Study. United States Department of Agriculture, October 2007. http://dx.doi.org/10.32747/2007.7591741.bard.
Full textRouseff, Russell L., and Michael Naim. Characterization of Unidentified Potent Flavor Changes during Processing and Storage of Orange and Grapefruit Juices. United States Department of Agriculture, September 2002. http://dx.doi.org/10.32747/2002.7585191.bard.
Full text