Journal articles on the topic 'Markov chain Monte Carlo samplers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Markov chain Monte Carlo samplers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
South, L. F., A. N. Pettitt, and C. C. Drovandi. "Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals." Bayesian Analysis 14, no. 3 (September 2019): 753–76. http://dx.doi.org/10.1214/18-ba1129.
Full textEveritt, Richard G., Richard Culliford, Felipe Medina-Aguayo, and Daniel J. Wilson. "Sequential Monte Carlo with transformations." Statistics and Computing 30, no. 3 (November 17, 2019): 663–76. http://dx.doi.org/10.1007/s11222-019-09903-y.
Full textXiaopeng Xu, Xiaopeng Xu, Chuancai Liu Xiaopeng Xu, Hongji Yang Chuancai Liu, and Xiaochun Zhang Hongji Yang. "A Multi-Trajectory Monte Carlo Sampler." 網際網路技術學刊 23, no. 5 (September 2022): 1117–28. http://dx.doi.org/10.53106/160792642022092305020.
Full textDellaportas, Petros, and Ioannis Kontoyiannis. "Control variates for estimation based on reversible Markov chain Monte Carlo samplers." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74, no. 1 (November 3, 2011): 133–61. http://dx.doi.org/10.1111/j.1467-9868.2011.01000.x.
Full textJones, Galin L., Gareth O. Roberts, and Jeffrey S. Rosenthal. "Convergence of Conditional Metropolis-Hastings Samplers." Advances in Applied Probability 46, no. 2 (June 2014): 422–45. http://dx.doi.org/10.1239/aap/1401369701.
Full textJones, Galin L., Gareth O. Roberts, and Jeffrey S. Rosenthal. "Convergence of Conditional Metropolis-Hastings Samplers." Advances in Applied Probability 46, no. 02 (June 2014): 422–45. http://dx.doi.org/10.1017/s0001867800007151.
Full textLevy, Roy. "The Rise of Markov Chain Monte Carlo Estimation for Psychometric Modeling." Journal of Probability and Statistics 2009 (2009): 1–18. http://dx.doi.org/10.1155/2009/537139.
Full textKilic, Zeliha, Max Schweiger, Camille Moyer, and Steve Pressé. "Monte Carlo samplers for efficient network inference." PLOS Computational Biology 19, no. 7 (July 18, 2023): e1011256. http://dx.doi.org/10.1371/journal.pcbi.1011256.
Full textGuha, Subharup, Steven N. MacEachern, and Mario Peruggia. "Benchmark Estimation for Markov chain Monte Carlo Samples." Journal of Computational and Graphical Statistics 13, no. 3 (September 2004): 683–701. http://dx.doi.org/10.1198/106186004x2598.
Full textSiems, Tobias. "Markov Chain Monte Carlo on finite state spaces." Mathematical Gazette 104, no. 560 (June 18, 2020): 281–87. http://dx.doi.org/10.1017/mag.2020.51.
Full textTian, Lu, Jun S. Liu, and L. J. Wei. "Implementation of Estimating Function-Based Inference Procedures With Markov Chain Monte Carlo Samplers." Journal of the American Statistical Association 102, no. 479 (September 2007): 881–88. http://dx.doi.org/10.1198/016214506000000122.
Full textHeckman, Jonathan J., Jeffrey G. Bernstein, and Ben Vigoda. "MCMC with strings and branes: The suburban algorithm (Extended Version)." International Journal of Modern Physics A 32, no. 22 (August 10, 2017): 1750133. http://dx.doi.org/10.1142/s0217751x17501330.
Full textVihola, Matti, and Jordan Franks. "On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction." Biometrika 107, no. 2 (February 3, 2020): 381–95. http://dx.doi.org/10.1093/biomet/asz078.
Full textChib, Siddhartha, and Edward Greenberg. "Markov Chain Monte Carlo Simulation Methods in Econometrics." Econometric Theory 12, no. 3 (August 1996): 409–31. http://dx.doi.org/10.1017/s0266466600006794.
Full textSun, Shiliang, Jing Zhao, Minghao Gu, and Shanhu Wang. "Variational Hybrid Monte Carlo for Efficient Multi-Modal Data Sampling." Entropy 25, no. 4 (March 24, 2023): 560. http://dx.doi.org/10.3390/e25040560.
Full textKoike, Takaaki, and Marius Hofert. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations." Risks 8, no. 1 (January 15, 2020): 6. http://dx.doi.org/10.3390/risks8010006.
Full textCappé, Olivier, Christian P. Robert, and Tobias Rydén. "Reversible jump, birth-and-death and more general continuous time Markov chain Monte Carlo samplers." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65, no. 3 (July 8, 2003): 679–700. http://dx.doi.org/10.1111/1467-9868.00409.
Full textChaudhary, A. K. "Bayesian Analysis of Two Parameter Complementary Exponential Power Distribution." NCC Journal 3, no. 1 (June 14, 2018): 1–23. http://dx.doi.org/10.3126/nccj.v3i1.20244.
Full textBoys, R. J., and D. A. Henderson. "On Determining the Order of Markov Dependence of an Observed Process Governed by a Hidden Markov Model." Scientific Programming 10, no. 3 (2002): 241–51. http://dx.doi.org/10.1155/2002/683164.
Full textRaveendran, Nishanthi, and Georgy Sofronov. "A Markov Chain Monte Carlo Algorithm for Spatial Segmentation." Information 12, no. 2 (January 30, 2021): 58. http://dx.doi.org/10.3390/info12020058.
Full textShafii, Mahyar, Bryan Tolson, and L. Shawn Matott. "Improving the efficiency of Monte Carlo Bayesian calibration of hydrologic models via model pre-emption." Journal of Hydroinformatics 17, no. 5 (February 23, 2015): 763–70. http://dx.doi.org/10.2166/hydro.2015.043.
Full textMcClintock, Thomas, and Eduardo Rozo. "Reconstructing probability distributions with Gaussian processes." Monthly Notices of the Royal Astronomical Society 489, no. 3 (September 2, 2019): 4155–60. http://dx.doi.org/10.1093/mnras/stz2426.
Full textHolmes, C. C., and B. K. Mallick. "Bayesian Radial Basis Functions of Variable Dimension." Neural Computation 10, no. 5 (July 1, 1998): 1217–33. http://dx.doi.org/10.1162/089976698300017421.
Full textEfendiev, Yalchin, Bangti Jin, Presho Michael, and Xiaosi Tan. "Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems." Communications in Computational Physics 17, no. 1 (December 19, 2014): 259–86. http://dx.doi.org/10.4208/cicp.021013.260614a.
Full textSETIAWANI, PUTU AMANDA, KOMANG DHARMAWAN, and I. WAYAN SUMARJAYA. "IMPLEMENTASI METODE MARKOV CHAIN MONTE CARLO DALAM PENENTUAN HARGA KONTRAK BERJANGKA KOMODITAS." E-Jurnal Matematika 4, no. 3 (August 30, 2015): 122. http://dx.doi.org/10.24843/mtk.2015.v04.i03.p099.
Full textCampbell, Edward P., and Bryson C. Bates. "Regionalization of rainfall-runoff model parameters using Markov Chain Monte Carlo samples." Water Resources Research 37, no. 3 (March 2001): 731–39. http://dx.doi.org/10.1029/2000wr900349.
Full textLiu, Ao, Zhibing Zhao, Chao Liao, Pinyan Lu, and Lirong Xia. "Learning Plackett-Luce Mixtures from Partial Preferences." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 4328–35. http://dx.doi.org/10.1609/aaai.v33i01.33014328.
Full textBaele, Guy, Mandev S. Gill, Philippe Lemey, and Marc A. Suchard. "Hamiltonian Monte Carlo sampling to estimate past population dynamics using the skygrid coalescent model in a Bayesian phylogenetics framework." Wellcome Open Research 5 (March 30, 2020): 53. http://dx.doi.org/10.12688/wellcomeopenres.15770.1.
Full textKoblents, Eugenia, Inés P. Mariño, and Joaquín Míguez. "Bayesian Computation Methods for Inference in Stochastic Kinetic Models." Complexity 2019 (January 20, 2019): 1–15. http://dx.doi.org/10.1155/2019/7160934.
Full textZHAO, DI, and SHENGHUA NI. "PARALLEL MULTI-PROPOSAL AND MULTI-CHAIN MCMC FOR CALCULATING P-VALUE OF GENOME-WIDE ASSOCIATION STUDY." Parallel Processing Letters 23, no. 03 (September 2013): 1350008. http://dx.doi.org/10.1142/s0129626413500084.
Full textVaikundamoorthy, K. "Diagnosis of blood cancer using Markov chain Monte Carlo trace model." International Journal of Biomathematics 10, no. 03 (February 20, 2017): 1750034. http://dx.doi.org/10.1142/s1793524517500346.
Full textLi, P. J., D. W. Xu, and J. Zhang. "Probability-Based Structural Health Monitoring Through Markov Chain Monte Carlo Sampling." International Journal of Structural Stability and Dynamics 16, no. 07 (August 3, 2016): 1550039. http://dx.doi.org/10.1142/s021945541550039x.
Full textDosso, Stan. "Efficient reversible-jump Markov-chain Monte Carlo sampling in trans-dimensional Bayesian geoacoustic inversion." Journal of the Acoustical Society of America 152, no. 4 (October 2022): A158. http://dx.doi.org/10.1121/10.0015880.
Full textde Figueiredo, Leandro Passos, Dario Grana, Mauro Roisenberg, and Bruno B. Rodrigues. "Multimodal Markov chain Monte Carlo method for nonlinear petrophysical seismic inversion." GEOPHYSICS 84, no. 5 (September 1, 2019): M1—M13. http://dx.doi.org/10.1190/geo2018-0839.1.
Full textGu, Minghao, Shiliang Sun, and Yan Liu. "Dynamical Sampling with Langevin Normalization Flows." Entropy 21, no. 11 (November 10, 2019): 1096. http://dx.doi.org/10.3390/e21111096.
Full textLeSage, James P., Yao-Yu Chih, and Colin Vance. "Markov Chain Monte Carlo estimation of spatial dynamic panel models for large samples." Computational Statistics & Data Analysis 138 (October 2019): 107–25. http://dx.doi.org/10.1016/j.csda.2019.04.003.
Full textBouchard-Côté, Alexandre, Sebastian J. Vollmer, and Arnaud Doucet. "The Bouncy Particle Sampler: A Nonreversible Rejection-Free Markov Chain Monte Carlo Method." Journal of the American Statistical Association 113, no. 522 (April 3, 2018): 855–67. http://dx.doi.org/10.1080/01621459.2017.1294075.
Full textSmith, A. F. M., and G. O. Roberts. "Bayesian Computation Via the Gibbs Sampler and Related Markov Chain Monte Carlo Methods." Journal of the Royal Statistical Society: Series B (Methodological) 55, no. 1 (September 1993): 3–23. http://dx.doi.org/10.1111/j.2517-6161.1993.tb01466.x.
Full textAtchadé, Yves, and Yizao Wang. "On the convergence rates of some adaptive Markov chain Monte Carlo algorithms." Journal of Applied Probability 52, no. 3 (September 2015): 811–25. http://dx.doi.org/10.1239/jap/1445543848.
Full textAtchadé, Yves, and Yizao Wang. "On the convergence rates of some adaptive Markov chain Monte Carlo algorithms." Journal of Applied Probability 52, no. 03 (September 2015): 811–25. http://dx.doi.org/10.1017/s0021900200113452.
Full textKeery, John, Andrew Binley, Ahmed Elshenawy, and Jeremy Clifford. "Markov-chain Monte Carlo estimation of distributed Debye relaxations in spectral induced polarization." GEOPHYSICS 77, no. 2 (March 2012): E159—E170. http://dx.doi.org/10.1190/geo2011-0244.1.
Full textAyekple, Yao Elikem, Charles Kofi Tetteh, and Prince Kwaku Fefemwole. "Markov Chain Monte Carlo Method for Estimating Implied Volatility in Option Pricing." Journal of Mathematics Research 10, no. 6 (November 29, 2018): 108. http://dx.doi.org/10.5539/jmr.v10n6p108.
Full textLi, Jun, Philippe Vignal, Shuyu Sun, and Victor M. Calo. "On Stochastic Error and Computational Efficiency of the Markov Chain Monte Carlo Method." Communications in Computational Physics 16, no. 2 (August 2014): 467–90. http://dx.doi.org/10.4208/cicp.110613.280214a.
Full textLam, Heung F., Jia H. Yang, Qin Hu, and Ching T. Ng. "Railway ballast damage detection by Markov chain Monte Carlo-based Bayesian method." Structural Health Monitoring 17, no. 3 (July 10, 2017): 706–24. http://dx.doi.org/10.1177/1475921717717106.
Full textTolba, Ahlam, Ehab Almetwally, Neveen Sayed-Ahmed, Taghreed Jawa, Nagla Yehia, and Dina Ramadan. "Bayesian and non-Bayesian estimation methods to independent competing risks models with type II half logistic weibull sub-distributions with application to an automatic life test." Thermal Science 26, Spec. issue 1 (2022): 285–302. http://dx.doi.org/10.2298/tsci22s1285t.
Full textLye, Adolphus, Alice Cicirello, and Edoardo Patelli. "An efficient and robust sampler for Bayesian inference: Transitional Ensemble Markov Chain Monte Carlo." Mechanical Systems and Signal Processing 167 (March 2022): 108471. http://dx.doi.org/10.1016/j.ymssp.2021.108471.
Full textTsang, K. P., B. C. M. Wang, and L. Garrison. "PRM34 Estimating Markov Chain Transition Matrices in Limited Data Samples: A Monte Carlo Experiment." Value in Health 15, no. 4 (June 2012): A164—A165. http://dx.doi.org/10.1016/j.jval.2012.03.890.
Full textMijatović, Aleksandar, and Jure Vogrinc. "Asymptotic variance for random walk Metropolis chains in high dimensions: logarithmic growth via the Poisson equation." Advances in Applied Probability 51, no. 4 (November 15, 2019): 994–1026. http://dx.doi.org/10.1017/apr.2019.40.
Full textFelbermair, Samuel, Florian Lammer, Eva Trausinger-Binder, and Cornelia Hebenstreit. "Generation of a synthetic population for agent-based transport modelling with small sample travel survey data using statistical raster census data." International Journal of Traffic and Transportation Management 02, no. 02 (October 10, 2020): 09–17. http://dx.doi.org/10.5383/jttm.02.02.002.
Full textSen, Deborshee, Matthias Sachs, Jianfeng Lu, and David B. Dunson. "Efficient posterior sampling for high-dimensional imbalanced logistic regression." Biometrika 107, no. 4 (June 17, 2020): 1005–12. http://dx.doi.org/10.1093/biomet/asaa035.
Full text