Academic literature on the topic 'Markov chain Monte Carlo samplers'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Markov chain Monte Carlo samplers.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Markov chain Monte Carlo samplers"
South, L. F., A. N. Pettitt, and C. C. Drovandi. "Sequential Monte Carlo Samplers with Independent Markov Chain Monte Carlo Proposals." Bayesian Analysis 14, no. 3 (September 2019): 753–76. http://dx.doi.org/10.1214/18-ba1129.
Full textEveritt, Richard G., Richard Culliford, Felipe Medina-Aguayo, and Daniel J. Wilson. "Sequential Monte Carlo with transformations." Statistics and Computing 30, no. 3 (November 17, 2019): 663–76. http://dx.doi.org/10.1007/s11222-019-09903-y.
Full textXiaopeng Xu, Xiaopeng Xu, Chuancai Liu Xiaopeng Xu, Hongji Yang Chuancai Liu, and Xiaochun Zhang Hongji Yang. "A Multi-Trajectory Monte Carlo Sampler." 網際網路技術學刊 23, no. 5 (September 2022): 1117–28. http://dx.doi.org/10.53106/160792642022092305020.
Full textDellaportas, Petros, and Ioannis Kontoyiannis. "Control variates for estimation based on reversible Markov chain Monte Carlo samplers." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 74, no. 1 (November 3, 2011): 133–61. http://dx.doi.org/10.1111/j.1467-9868.2011.01000.x.
Full textJones, Galin L., Gareth O. Roberts, and Jeffrey S. Rosenthal. "Convergence of Conditional Metropolis-Hastings Samplers." Advances in Applied Probability 46, no. 2 (June 2014): 422–45. http://dx.doi.org/10.1239/aap/1401369701.
Full textJones, Galin L., Gareth O. Roberts, and Jeffrey S. Rosenthal. "Convergence of Conditional Metropolis-Hastings Samplers." Advances in Applied Probability 46, no. 02 (June 2014): 422–45. http://dx.doi.org/10.1017/s0001867800007151.
Full textLevy, Roy. "The Rise of Markov Chain Monte Carlo Estimation for Psychometric Modeling." Journal of Probability and Statistics 2009 (2009): 1–18. http://dx.doi.org/10.1155/2009/537139.
Full textKilic, Zeliha, Max Schweiger, Camille Moyer, and Steve Pressé. "Monte Carlo samplers for efficient network inference." PLOS Computational Biology 19, no. 7 (July 18, 2023): e1011256. http://dx.doi.org/10.1371/journal.pcbi.1011256.
Full textGuha, Subharup, Steven N. MacEachern, and Mario Peruggia. "Benchmark Estimation for Markov chain Monte Carlo Samples." Journal of Computational and Graphical Statistics 13, no. 3 (September 2004): 683–701. http://dx.doi.org/10.1198/106186004x2598.
Full textSiems, Tobias. "Markov Chain Monte Carlo on finite state spaces." Mathematical Gazette 104, no. 560 (June 18, 2020): 281–87. http://dx.doi.org/10.1017/mag.2020.51.
Full textDissertations / Theses on the topic "Markov chain Monte Carlo samplers"
Guha, Subharup. "Benchmark estimation for Markov Chain Monte Carlo samplers." The Ohio State University, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=osu1085594208.
Full textSisson, Scott Antony. "Markov chains for genetics and extremes." Thesis, University of Bristol, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391095.
Full textPang, Wan-Kai. "Modelling ordinal categorical data : a Gibbs sampler approach." Thesis, University of Southampton, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323876.
Full textVerhelst, Norman D., Reinhold Hatzinger, and Patrick Mair. "The Rasch Sampler." Foundation for Open Access Statistics, 2007. http://dx.doi.org/10.18637/jss.v020.i04.
Full textZhu, Qingyun. "Product Deletion and Supply Chain Management." Digital WPI, 2019. https://digitalcommons.wpi.edu/etd-dissertations/527.
Full textAl, Hakmani Rahab. "Bayesian Estimation of Mixture IRT Models using NUTS." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/dissertations/1641.
Full textLu, Pingbo. "Calibrated Bayes factors for model selection and model averaging." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343396705.
Full textDeng, Wei. "Multiple imputation for marginal and mixed models in longitudinal data with informative missingness." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1126890027.
Full textTitle from first page of PDF file. Document formatted into pages; contains xiii, 108 p.; also includes graphics. Includes bibliographical references (p. 104-108). Available online via OhioLINK's ETD Center
Wu, Yi-Fang. "Accuracy and variability of item parameter estimates from marginal maximum a posteriori estimation and Bayesian inference via Gibbs samplers." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/5879.
Full textFu, Shuting. "Bayesian Logistic Regression Model with Integrated Multivariate Normal Approximation for Big Data." Digital WPI, 2016. https://digitalcommons.wpi.edu/etd-theses/451.
Full textBooks on the topic "Markov chain Monte Carlo samplers"
Liang, F. Advanced Markov chain Monte Carlo methods: Learning from past samples. Hoboken, NJ: Wiley, 2010.
Find full textHandbook for Markov chain Monte Carlo. Boca Raton: Taylor & Francis, 2011.
Find full textLiang, Faming, Chuanhai Liu, and Raymond J. Carroll. Advanced Markov Chain Monte Carlo Methods. Chichester, UK: John Wiley & Sons, Ltd, 2010. http://dx.doi.org/10.1002/9780470669723.
Full textR, Gilks W., Richardson S, and Spiegelhalter D. J, eds. Markov chain Monte Carlo in practice. Boca Raton, Fla: Chapman & Hall, 1998.
Find full textR, Gilks W., Richardson S, and Spiegelhalter D. J, eds. Markov chain Monte Carlo in practice. London: Chapman & Hall, 1996.
Find full textS, Kendall W., Liang F. 1970-, and Wang J. S. 1960-, eds. Markov chain Monte Carlo: Innovations and applications. Singapore: World Scientific, 2005.
Find full textJoseph, Anosh. Markov Chain Monte Carlo Methods in Quantum Field Theories. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46044-0.
Full textGamerman, Dani. Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. London: Chapman & Hall, 1997.
Find full textFreitas, Lopes Hedibert, ed. Markov chain Monte Carlo: Stochastic simulation for Bayesian inference. 2nd ed. Boca Raton: Taylor & Francis, 2006.
Find full textMarkov chain Monte Carlo: Stochastic simulation for Bayesian inference. London: Chapman & Hall, 1997.
Find full textBook chapters on the topic "Markov chain Monte Carlo samplers"
Keith, Jonathan M., and Christian M. Davey. "Bayesian Approaches to the Design of Markov Chain Monte Carlo Samplers." In Monte Carlo and Quasi-Monte Carlo Methods 2012, 455–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41095-6_22.
Full textAoki, Satoshi, Hisayuki Hara, and Akimichi Takemura. "Markov Chain Monte Carlo Methods over Discrete Sample Space." In Springer Series in Statistics, 23–31. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3719-2_2.
Full textTanner, Martin A. "Markov Chain Monte Carlo: The Gibbs Sampler and the Metropolis Algorithm." In Tools for Statistical Inference, 137–92. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-4024-2_6.
Full textKitchen, Nathan, and Andreas Kuehlmann. "A Markov Chain Monte Carlo Sampler for Mixed Boolean/Integer Constraints." In Computer Aided Verification, 446–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02658-4_34.
Full textTanner, Martin A. "Markov Chain Monte Carlo: The Gibbs Sampler and the Metropolis Algorithm." In Tools for Statistical Inference, 102–46. New York, NY: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4684-0192-9_6.
Full textYu, Thomas, Marco Pizzolato, Gabriel Girard, Jonathan Rafael-Patino, Erick Jorge Canales-Rodríguez, and Jean-Philippe Thiran. "Robust Biophysical Parameter Estimation with a Neural Network Enhanced Hamiltonian Markov Chain Monte Carlo Sampler." In Lecture Notes in Computer Science, 818–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-20351-1_64.
Full textSorensen, Daniel, and Daniel Gianola. "Markov Chain Monte Carlo." In Statistics for Biology and Health, 497–537. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-22764-4_11.
Full textWedel, Michel, and Peter Lenk. "Markov Chain Monte Carlo." In Encyclopedia of Operations Research and Management Science, 925–30. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4419-1153-7_1164.
Full textJoseph, Anosh. "Markov Chain Monte Carlo." In SpringerBriefs in Physics, 37–42. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46044-0_4.
Full textFürnkranz, Johannes, Philip K. Chan, Susan Craw, Claude Sammut, William Uther, Adwait Ratnaparkhi, Xin Jin, et al. "Markov Chain Monte Carlo." In Encyclopedia of Machine Learning, 639–42. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_511.
Full textConference papers on the topic "Markov chain Monte Carlo samplers"
Vaiciulyte, Ingrida. "Adaptive Monte-Carlo Markov chain for multivariate statistical estimation." In International Workshop of "Stochastic Programming for Implementation and Advanced Applications". The Association of Lithuanian Serials, 2012. http://dx.doi.org/10.5200/stoprog.2012.21.
Full textBURKETT, K. M., B. McNENEY, and J. GRAHAM. "A MARKOV CHAIN MONTE CARLO SAMPLER FOR GENE GENEALOGIES CONDITIONAL ON HAPLOTYPE DATA." In Proceedings of Statistics 2011 Canada/IMST 2011-FIM XX. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814417983_0003.
Full textGuzman, Rel. "Monte Carlo Methods on High Dimensional Data." In LatinX in AI at Neural Information Processing Systems Conference 2018. Journal of LatinX in AI Research, 2018. http://dx.doi.org/10.52591/lxai2018120314.
Full textPutze, A., L. Derome, F. Donato, and D. Maurin. "A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays." In Proceedings of the 12th ICATPP Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814329033_0056.
Full textDavis, Gary A. "Sample-Based Estimation of Vehicle Speeds from Yaw Marks: Bayesian Implementation Using Markov Chain Monte Carlo Simulation." In SAE 2014 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. http://dx.doi.org/10.4271/2014-01-0467.
Full textDe Sa, Christopher, Kunle Olukotun, and Christopher Ré. "Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/672.
Full textLin, Pin-Yi, and Kuei-Yuan Chan. "Optimal Sample Augmentation and Resource Allocation for Design With Inadequate Uncertainty Data." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70234.
Full textAn, Dawn, and Joo-Ho Choi. "Improved MCMC Method for Parameter Estimation Based on Marginal Probability Density Function." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48784.
Full textWu, Y. T., A. P. Ku, and C. M. Serratella. "A Robust and Efficient Computational Method for Fatigue Reliability Update Using Inspected Data." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80034.
Full textBérešová, Simona. "Numerical realization of the Bayesian inversion accelerated using surrogate models." In Programs and Algorithms of Numerical Mathematics 21. Institute of Mathematics, Czech Academy of Sciences, 2023. http://dx.doi.org/10.21136/panm.2022.03.
Full textReports on the topic "Markov chain Monte Carlo samplers"
Safta, Cosmin, Mohammad Khalil, and Habib N. Najm. Transitional Markov Chain Monte Carlo Sampler in UQTk. Office of Scientific and Technical Information (OSTI), March 2020. http://dx.doi.org/10.2172/1606084.
Full textGelfand, Alan E., and Sujit K. Sahu. On Markov Chain Monte Carlo Acceleration. Fort Belvoir, VA: Defense Technical Information Center, April 1994. http://dx.doi.org/10.21236/ada279393.
Full textWarnes, Gregory R. HYDRA: A Java Library for Markov Chain Monte Carlo. Fort Belvoir, VA: Defense Technical Information Center, March 2002. http://dx.doi.org/10.21236/ada459649.
Full textBates, Cameron Russell, and Edward Allen Mckigney. Metis: A Pure Metropolis Markov Chain Monte Carlo Bayesian Inference Library. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1417145.
Full textBaltz, E. Markov Chain Monte Carlo Exploration of Minimal Supergravity with Implications for Dark Matter. Office of Scientific and Technical Information (OSTI), July 2004. http://dx.doi.org/10.2172/827306.
Full textSethuraman, Jayaram. Easily Verifiable Conditions for the Convergence of the Markov Chain Monte Carlo Method. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada308874.
Full textDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada367895.
Full textDoss, Hani. Statistical Inference for Coherent Systems from Partial Information and Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, January 1996. http://dx.doi.org/10.21236/ada305676.
Full textDoss, Hani. Studies in Reliability Theory and Survival Analysis and in Markov Chain Monte Carlo Methods. Fort Belvoir, VA: Defense Technical Information Center, December 1998. http://dx.doi.org/10.21236/ada379998.
Full textKnopp, Jeremy S., and Fumio Kojima. Inverse Problem for Electromagnetic Propagation in a Dielectric Medium using Markov Chain Monte Carlo Method (Preprint). Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada565876.
Full text