Journal articles on the topic 'Markov chain Monte Carlo (MCMC)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Markov chain Monte Carlo (MCMC).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Borkar, Vivek S. "Markov Chain Monte Carlo (MCMC)." Resonance 27, no. 7 (July 2022): 1107–15. http://dx.doi.org/10.1007/s12045-022-1407-1.
Full textRoy, Vivekananda. "Convergence Diagnostics for Markov Chain Monte Carlo." Annual Review of Statistics and Its Application 7, no. 1 (March 9, 2020): 387–412. http://dx.doi.org/10.1146/annurev-statistics-031219-041300.
Full textJones, Galin L., and Qian Qin. "Markov Chain Monte Carlo in Practice." Annual Review of Statistics and Its Application 9, no. 1 (March 7, 2022): 557–78. http://dx.doi.org/10.1146/annurev-statistics-040220-090158.
Full textJones, Galin L., and Qian Qin. "Markov Chain Monte Carlo in Practice." Annual Review of Statistics and Its Application 9, no. 1 (March 7, 2022): 557–78. http://dx.doi.org/10.1146/annurev-statistics-040220-090158.
Full textSiems, Tobias. "Markov Chain Monte Carlo on finite state spaces." Mathematical Gazette 104, no. 560 (June 18, 2020): 281–87. http://dx.doi.org/10.1017/mag.2020.51.
Full textChaudhary, A. K. "Bayesian Analysis of Two Parameter Complementary Exponential Power Distribution." NCC Journal 3, no. 1 (June 14, 2018): 1–23. http://dx.doi.org/10.3126/nccj.v3i1.20244.
Full textChaudhary, Arun Kumar, and Vijay Kumar. "A Bayesian Estimation and Predictionof Gompertz Extension Distribution Using the MCMC Method." Nepal Journal of Science and Technology 19, no. 1 (July 1, 2020): 142–60. http://dx.doi.org/10.3126/njst.v19i1.29795.
Full textChaudhary, A. K. "A Study of Perks-II Distribution via Bayesian Paradigm." Pravaha 24, no. 1 (June 12, 2018): 1–17. http://dx.doi.org/10.3126/pravaha.v24i1.20221.
Full textMüller, Christian, Fabian Weysser, Thomas Mrziglod, and Andreas Schuppert. "Markov-Chain Monte-Carlo methods and non-identifiabilities." Monte Carlo Methods and Applications 24, no. 3 (September 1, 2018): 203–14. http://dx.doi.org/10.1515/mcma-2018-0018.
Full textShadare, A. E., M. N. O. Sadiku, and S. M. Musa. "Markov Chain Monte Carlo Solution of Poisson’s Equation in Axisymmetric Regions." Advanced Electromagnetics 8, no. 5 (December 17, 2019): 29–36. http://dx.doi.org/10.7716/aem.v8i5.1255.
Full textFinke, Axel, Arnaud Doucet, and Adam M. Johansen. "Limit theorems for sequential MCMC methods." Advances in Applied Probability 52, no. 2 (June 2020): 377–403. http://dx.doi.org/10.1017/apr.2020.9.
Full textKarandikar, Rajeeva L. "On the Markov Chain Monte Carlo (MCMC) method." Sadhana 31, no. 2 (April 2006): 81–104. http://dx.doi.org/10.1007/bf02719775.
Full textMasoumi, Samira, Thomas A. Duever, and Park M. Reilly. "Sequential Markov Chain Monte Carlo (MCMC) model discrimination." Canadian Journal of Chemical Engineering 91, no. 5 (July 13, 2012): 862–69. http://dx.doi.org/10.1002/cjce.21711.
Full textQin, Liang, Philipp Höllmer, and Werner Krauth. "Direction-sweep Markov chains." Journal of Physics A: Mathematical and Theoretical 55, no. 10 (February 16, 2022): 105003. http://dx.doi.org/10.1088/1751-8121/ac508a.
Full textKoike, Takaaki, and Marius Hofert. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations." Risks 8, no. 1 (January 15, 2020): 6. http://dx.doi.org/10.3390/risks8010006.
Full textAzizah, Azizah. "PEMODELAN KLAIM ASURANSI MENGGUNAKAN PENDEKATAN BAYESIAN DAN MARKOV CHAIN MONTE CARLO." Jurnal Kajian Matematika dan Aplikasinya (JKMA) 2, no. 2 (June 11, 2021): 7. http://dx.doi.org/10.17977/um055v2i22021p7-13.
Full textSETIAWANI, PUTU AMANDA, KOMANG DHARMAWAN, and I. WAYAN SUMARJAYA. "IMPLEMENTASI METODE MARKOV CHAIN MONTE CARLO DALAM PENENTUAN HARGA KONTRAK BERJANGKA KOMODITAS." E-Jurnal Matematika 4, no. 3 (August 30, 2015): 122. http://dx.doi.org/10.24843/mtk.2015.v04.i03.p099.
Full textLevy, Roy. "The Rise of Markov Chain Monte Carlo Estimation for Psychometric Modeling." Journal of Probability and Statistics 2009 (2009): 1–18. http://dx.doi.org/10.1155/2009/537139.
Full textGrana, Dario, Leandro de Figueiredo, and Klaus Mosegaard. "Markov chain Monte Carlo for petrophysical inversion." GEOPHYSICS 87, no. 1 (November 12, 2021): M13—M24. http://dx.doi.org/10.1190/geo2021-0177.1.
Full textBiswas, Abhik. "Bayesian MCMC Approach to Learning About the SIR Model." International Journal for Research in Applied Science and Engineering Technology 10, no. 6 (June 30, 2022): 540–53. http://dx.doi.org/10.22214/ijraset.2022.43818.
Full textSong, Yihan, Ali Luo, and Yongheng Zhao. "Measuring Stellar Radial Velocity using Markov Chain Monte Carlo(MCMC) Method." Proceedings of the International Astronomical Union 9, S298 (May 2013): 441. http://dx.doi.org/10.1017/s1743921313007060.
Full textVargas, Juan P., Jair C. Koppe, Sebastián Pérez, and Juan P. Hurtado. "Planning Tunnel Construction Using Markov Chain Monte Carlo (MCMC)." Mathematical Problems in Engineering 2015 (2015): 1–8. http://dx.doi.org/10.1155/2015/797953.
Full textRoberts, Gareth O., and Jeffrey S. Rosenthal. "Complexity bounds for Markov chain Monte Carlo algorithms via diffusion limits." Journal of Applied Probability 53, no. 2 (June 2016): 410–20. http://dx.doi.org/10.1017/jpr.2016.9.
Full textStathopoulos, Vassilios, and Mark A. Girolami. "Markov chain Monte Carlo inference for Markov jump processes via the linear noise approximation." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 371, no. 1984 (February 13, 2013): 20110541. http://dx.doi.org/10.1098/rsta.2011.0541.
Full textSinharay, Sandip. "Experiences With Markov Chain Monte Carlo Convergence Assessment in Two Psychometric Examples." Journal of Educational and Behavioral Statistics 29, no. 4 (December 2004): 461–88. http://dx.doi.org/10.3102/10769986029004461.
Full textPooley, C. M., S. C. Bishop, A. Doeschl-Wilson, and G. Marion. "Posterior-based proposals for speeding up Markov chain Monte Carlo." Royal Society Open Science 6, no. 11 (November 2019): 190619. http://dx.doi.org/10.1098/rsos.190619.
Full textSouth, Leah F., Marina Riabiz, Onur Teymur, and Chris J. Oates. "Postprocessing of MCMC." Annual Review of Statistics and Its Application 9, no. 1 (March 7, 2022): 529–55. http://dx.doi.org/10.1146/annurev-statistics-040220-091727.
Full textTie, Zhixin, Dingkai Zhu, Shunhe Hong, and Hui Xu. "A Hierarchical Random Graph Efficient Sampling Algorithm Based on Improved MCMC Algorithm." Electronics 11, no. 15 (July 31, 2022): 2396. http://dx.doi.org/10.3390/electronics11152396.
Full textHarizahayu, Harizahayu. "PEMODELAN RANTAI MARKOV MENGGUNAKAN ALGORITMA METROPOLIS-HASTINGS." MAp (Mathematics and Applications) Journal 2, no. 2 (December 31, 2020): 11–18. http://dx.doi.org/10.15548/map.v2i2.2259.
Full textYuan, Ke, Mark Girolami, and Mahesan Niranjan. "Markov Chain Monte Carlo Methods for State-Space Models with Point Process Observations." Neural Computation 24, no. 6 (June 2012): 1462–86. http://dx.doi.org/10.1162/neco_a_00281.
Full textJiang, Yu Hang, Tong Liu, Zhiya Lou, Jeffrey S. Rosenthal, Shanshan Shangguan, Fei Wang, and Zixuan Wu. "Markov Chain Confidence Intervals and Biases." International Journal of Statistics and Probability 11, no. 1 (December 21, 2021): 29. http://dx.doi.org/10.5539/ijsp.v11n1p29.
Full textShao, Liangshan, and Yingchao Gao. "A Gas Prominence Prediction Model Based on Entropy-Weighted Gray Correlation and MCMC-ISSA-SVM." Processes 11, no. 7 (July 13, 2023): 2098. http://dx.doi.org/10.3390/pr11072098.
Full textLukitasari, Dewi, Adi Setiawan, and Leopoldus Ricky Sasangko. "Bayesian Survival Analysis Untuk Mengestimasi Parameter Model Weibull-Regression Pada Kasus Ketahanan Hidup Pasien Penderita Jantung Koroner." d'CARTESIAN 4, no. 1 (February 10, 2015): 26. http://dx.doi.org/10.35799/dc.4.1.2015.7531.
Full textAhmadian, Yashar, Jonathan W. Pillow, and Liam Paninski. "Efficient Markov Chain Monte Carlo Methods for Decoding Neural Spike Trains." Neural Computation 23, no. 1 (January 2011): 46–96. http://dx.doi.org/10.1162/neco_a_00059.
Full textÖstling, Robert, and Jörg Tiedemann. "Efficient Word Alignment with Markov Chain Monte Carlo." Prague Bulletin of Mathematical Linguistics 106, no. 1 (October 1, 2016): 125–46. http://dx.doi.org/10.1515/pralin-2016-0013.
Full textShadare, A. E., M. N. O. Sadiku, and S. M. Musa. "Solution of Axisymmetric Inhomogeneous Problems with the Markov Chain Monte Carlo." Advanced Electromagnetics 8, no. 4 (September 7, 2019): 50–58. http://dx.doi.org/10.7716/aem.v8i4.1162.
Full textde Figueiredo, Leandro Passos, Dario Grana, Mauro Roisenberg, and Bruno B. Rodrigues. "Gaussian mixture Markov chain Monte Carlo method for linear seismic inversion." GEOPHYSICS 84, no. 3 (May 1, 2019): R463—R476. http://dx.doi.org/10.1190/geo2018-0529.1.
Full textStuart, Georgia K., Susan E. Minkoff, and Felipe Pereira. "A two-stage Markov chain Monte Carlo method for seismic inversion and uncertainty quantification." GEOPHYSICS 84, no. 6 (November 1, 2019): R1003—R1020. http://dx.doi.org/10.1190/geo2018-0893.1.
Full textChe, X., and S. Xu. "Bayesian data analysis for agricultural experiments." Canadian Journal of Plant Science 90, no. 5 (September 1, 2010): 575–603. http://dx.doi.org/10.4141/cjps10004.
Full textAcquah, Henry De-Graft. "Bayesian Logistic Regression Modelling via Markov Chain Monte Carlo Algorithm." Journal of Social and Development Sciences 4, no. 4 (April 30, 2013): 193–97. http://dx.doi.org/10.22610/jsds.v4i4.751.
Full textAtchadé, Yves, and Yizao Wang. "On the convergence rates of some adaptive Markov chain Monte Carlo algorithms." Journal of Applied Probability 52, no. 3 (September 2015): 811–25. http://dx.doi.org/10.1239/jap/1445543848.
Full textAtchadé, Yves, and Yizao Wang. "On the convergence rates of some adaptive Markov chain Monte Carlo algorithms." Journal of Applied Probability 52, no. 03 (September 2015): 811–25. http://dx.doi.org/10.1017/s0021900200113452.
Full textvan den Berg, Stéphanie M., Leo Beem, and Dorret I. Boomsma. "Fitting Genetic Models Using Markov Chain Monte Carlo Algorithms With BUGS." Twin Research and Human Genetics 9, no. 3 (June 1, 2006): 334–42. http://dx.doi.org/10.1375/twin.9.3.334.
Full textLiang, Faming, and Ick-Hoon Jin. "A Monte Carlo Metropolis-Hastings Algorithm for Sampling from Distributions with Intractable Normalizing Constants." Neural Computation 25, no. 8 (August 2013): 2199–234. http://dx.doi.org/10.1162/neco_a_00466.
Full textBumbaca, Federico (Rico), Sanjog Misra, and Peter E. Rossi. "Scalable Target Marketing: Distributed Markov Chain Monte Carlo for Bayesian Hierarchical Models." Journal of Marketing Research 57, no. 6 (October 1, 2020): 999–1018. http://dx.doi.org/10.1177/0022243720952410.
Full textZhao, Di, and Haiwu He. "DSMC: Fast direct simulation Monte Carlo solver for the Boltzmann equation by Multi-Chain Markov Chain and multicore programming." International Journal of Modeling, Simulation, and Scientific Computing 07, no. 02 (June 2016): 1650009. http://dx.doi.org/10.1142/s1793962316500094.
Full textChaudhary, Arun Kumar, and Vijay Kumar. "A Bayesian Analysis of Perks Distribution via Markov Chain Monte Carlo Simulation." Nepal Journal of Science and Technology 14, no. 1 (October 14, 2013): 153–66. http://dx.doi.org/10.3126/njst.v14i1.8936.
Full textIzzatullah, Muhammad, Tristan van Leeuwen, and Daniel Peter. "Bayesian seismic inversion: a fast sampling Langevin dynamics Markov chain Monte Carlo method." Geophysical Journal International 227, no. 3 (July 22, 2021): 1523–53. http://dx.doi.org/10.1093/gji/ggab287.
Full textKitchen, James L., Jonathan D. Moore, Sarah A. Palmer, and Robin G. Allaby. "MCMC-ODPR: Primer design optimization using Markov Chain Monte Carlo sampling." BMC Bioinformatics 13, no. 1 (2012): 287. http://dx.doi.org/10.1186/1471-2105-13-287.
Full textWei, Pengfei, Chenghu Tang, and Yuting Yang. "Structural reliability and reliability sensitivity analysis of extremely rare failure events by combining sampling and surrogate model methods." Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 233, no. 6 (May 17, 2019): 943–57. http://dx.doi.org/10.1177/1748006x19844666.
Full text