Journal articles on the topic 'Maritime anomaly detection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Maritime anomaly detection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Iphar, Clément, Cyril Ray, and Aldo Napoli. "Data integrity assessment for maritime anomaly detection." Expert Systems with Applications 147 (June 2020): 113219. http://dx.doi.org/10.1016/j.eswa.2020.113219.
Full textKim, Donghyun, Gian Antariksa, Melia Putri Handayani, Sangbong Lee, and Jihwan Lee. "Explainable Anomaly Detection Framework for Maritime Main Engine Sensor Data." Sensors 21, no. 15 (July 31, 2021): 5200. http://dx.doi.org/10.3390/s21155200.
Full textTserpes, Konstantinos, Konstantinos Chatzikokolakis, Dimitris Zissis, Giannis Spiliopoulos, and Ioannis Kontopoulos. "Real-time maritime anomaly detection: detecting intentional AIS switch-off." International Journal of Big Data Intelligence 7, no. 2 (2020): 85. http://dx.doi.org/10.1504/ijbdi.2020.10029526.
Full textKontopoulos, Ioannis, Konstantinos Chatzikokolakis, Dimitris Zissis, Konstantinos Tserpes, and Giannis Spiliopoulos. "Real-time maritime anomaly detection: detecting intentional AIS switch-off." International Journal of Big Data Intelligence 7, no. 2 (2020): 85. http://dx.doi.org/10.1504/ijbdi.2020.107375.
Full textSithiravel, Rajiv, Bhashyam Balaji, Bradley Nelson, Michael Kenneth McDonald, Ratnasingham Tharmarasa, and Thiagalingam Kirubarajan. "Airborne Maritime Surveillance Using Magnetic Anomaly Detection Signature." IEEE Transactions on Aerospace and Electronic Systems 56, no. 5 (October 2020): 3476–90. http://dx.doi.org/10.1109/taes.2020.2973866.
Full textKazemi, Samira, Shahrooz Abghari, Niklas Lavesson, Henric Johnson, and Peter Ryman. "Open data for anomaly detection in maritime surveillance." Expert Systems with Applications 40, no. 14 (October 2013): 5719–29. http://dx.doi.org/10.1016/j.eswa.2013.04.029.
Full textHan, X., C. Armenakis, and M. Jadidi. "DBSCAN OPTIMIZATION FOR IMPROVING MARINE TRAJECTORY CLUSTERING AND ANOMALY DETECTION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B4-2020 (August 25, 2020): 455–61. http://dx.doi.org/10.5194/isprs-archives-xliii-b4-2020-455-2020.
Full textMichałowska, Katarzyna, Signe Riemer-Sørensen, Camilla Sterud, and Ole Magnus Hjellset. "Anomaly Detection with Unknown Anomalies: Application to Maritime Machinery." IFAC-PapersOnLine 54, no. 16 (2021): 105–11. http://dx.doi.org/10.1016/j.ifacol.2021.10.080.
Full textPark, Jaemin, and Sungil Kim. "Maritime Anomaly Detection Based on VAE-CUSUM Monitoring System." Journal of the Korean Institute of Industrial Engineers 46, no. 4 (August 31, 2020): 432–42. http://dx.doi.org/10.7232/jkiie.2020.46.4.432.
Full textLei, Po-Ruey. "A framework for anomaly detection in maritime trajectory behavior." Knowledge and Information Systems 47, no. 1 (May 19, 2015): 189–214. http://dx.doi.org/10.1007/s10115-015-0845-4.
Full textZhao, Liangbin, and Guoyou Shi. "Maritime Anomaly Detection using Density-based Clustering and Recurrent Neural Network." Journal of Navigation 72, no. 04 (February 8, 2019): 894–916. http://dx.doi.org/10.1017/s0373463319000031.
Full textOsekowska, Ewa, Henric Johnson, and Bengt Carlsson. "Grid Size Optimization for Potential Field based Maritime Anomaly Detection." Transportation Research Procedia 3 (2014): 720–29. http://dx.doi.org/10.1016/j.trpro.2014.10.051.
Full textWolsing, Konrad, Linus Roepert, Jan Bauer, and Klaus Wehrle. "Anomaly Detection in Maritime AIS Tracks: A Review of Recent Approaches." Journal of Marine Science and Engineering 10, no. 1 (January 14, 2022): 112. http://dx.doi.org/10.3390/jmse10010112.
Full textFilipiak, Dominik, Milena Stróżyna, Krzysztof Węcel, and Witold Abramowicz. "Big Data for Anomaly Detection in Maritime Surveillance: Spatial AIS Data Analysis for Tankers." Zeszyty Naukowe Akademii Marynarki Wojennej 215, no. 4 (December 1, 2018): 5–28. http://dx.doi.org/10.2478/sjpna-2018-0024.
Full textAmro, Ahmed, Aybars Oruc, Vasileios Gkioulos, and Sokratis Katsikas. "Navigation Data Anomaly Analysis and Detection." Information 13, no. 3 (February 23, 2022): 104. http://dx.doi.org/10.3390/info13030104.
Full textZhen, Rong, Yongxing Jin, Qinyou Hu, Zheping Shao, and Nikitas Nikitakos. "Maritime Anomaly Detection within Coastal Waters Based on Vessel Trajectory Clustering and Naïve Bayes Classifier." Journal of Navigation 70, no. 3 (January 16, 2017): 648–70. http://dx.doi.org/10.1017/s0373463316000850.
Full textRiveiro, Maria. "Evaluation of Normal Model Visualization for Anomaly Detection in Maritime Traffic." ACM Transactions on Interactive Intelligent Systems 4, no. 1 (April 2014): 1–24. http://dx.doi.org/10.1145/2591511.
Full textFreitas, Sara, Hugo Silva, José Miguel Almeida, and Eduardo Silva. "Convolutional neural network target detection in hyperspectral imaging for maritime surveillance." International Journal of Advanced Robotic Systems 16, no. 3 (May 1, 2019): 172988141984299. http://dx.doi.org/10.1177/1729881419842991.
Full textYan, Ran, and Shuaian Wang. "Ship detention prediction using anomaly detection in port state control: model and explanation." Electronic Research Archive 30, no. 10 (2022): 3679–91. http://dx.doi.org/10.3934/era.2022188.
Full textChen, Shuguang, Yikun Huang, and Wei Lu. "Anomaly Detection and Restoration for AIS Raw Data." Wireless Communications and Mobile Computing 2022 (March 30, 2022): 1–11. http://dx.doi.org/10.1155/2022/5954483.
Full textHuang, Jie, Fengwei Zhu, Zejun Huang, Jian Wan, and Yongjian Ren. "Research on Real-Time Anomaly Detection of Fishing Vessels in a Marine Edge Computing Environment." Mobile Information Systems 2021 (May 4, 2021): 1–15. http://dx.doi.org/10.1155/2021/5598988.
Full textXu, Gangyan, Chun-Hsien Chen, Fan Li, and Xuan Qiu. "AIS data analytics for adaptive rotating shift in vessel traffic service." Industrial Management & Data Systems 120, no. 4 (March 8, 2020): 749–67. http://dx.doi.org/10.1108/imds-01-2019-0056.
Full textVenskus, Julius, Povilas Treigys, Jolita Bernatavičienė, Gintautas Tamulevičius, and Viktor Medvedev. "Real-Time Maritime Traffic Anomaly Detection Based on Sensors and History Data Embedding." Sensors 19, no. 17 (August 31, 2019): 3782. http://dx.doi.org/10.3390/s19173782.
Full textTyasayumranani, Widiastuti, Taewoong Hwang, Taemin Hwang, and Ik-Hyun Youn. "Anomaly detection model of small-scaled ship for maritime autonomous surface ships’ operation." Journal of International Maritime Safety, Environmental Affairs, and Shipping 6, no. 4 (October 2, 2022): 224–35. http://dx.doi.org/10.1080/25725084.2022.2154116.
Full textAbreu, Fernando H. O., Amilcar Soares, Fernando V. Paulovich, and Stan Matwin. "A Trajectory Scoring Tool for Local Anomaly Detection in Maritime Traffic Using Visual Analytics." ISPRS International Journal of Geo-Information 10, no. 6 (June 15, 2021): 412. http://dx.doi.org/10.3390/ijgi10060412.
Full textYan, Zhenguo, Xin Song, Hanyang Zhong, Lei Yang, and Yitao Wang. "Ship Classification and Anomaly Detection Based on Spaceborne AIS Data Considering Behavior Characteristics." Sensors 22, no. 20 (October 11, 2022): 7713. http://dx.doi.org/10.3390/s22207713.
Full textStróżyna, Milena, Jacek Małyszko, Krzysztof Węcel, Dominik Filipiak, and Witold Abramowicz. "Architecture of Maritime Awareness System Supplied with External Information." Annual of Navigation 23, no. 1 (December 1, 2016): 135–49. http://dx.doi.org/10.1515/aon-2016-0009.
Full textKatsamenis, Iason, Nikolaos Bakalos, Eleni Eirini Karolou, Anastasios Doulamis, and Nikolaos Doulamis. "Fall Detection Using Multi-Property Spatiotemporal Autoencoders in Maritime Environments." Technologies 10, no. 2 (March 29, 2022): 47. http://dx.doi.org/10.3390/technologies10020047.
Full textSun, Jiaqi, Jiarong Wang, Zhicheng Hao, Ming Zhu, Haijiang Sun, Ming Wei, and Kun Dong. "AC-LSTM: Anomaly State Perception of Infrared Point Targets Based on CNN+LSTM." Remote Sensing 14, no. 13 (July 4, 2022): 3221. http://dx.doi.org/10.3390/rs14133221.
Full textLiu, Lei, Yong Zhang, Yue Hu, Yongming Wang, Jingyi Sun, and Xiaoxiao Dong. "A Hybrid-Clustering Model of Ship Trajectories for Maritime Traffic Patterns Analysis in Port Area." Journal of Marine Science and Engineering 10, no. 3 (March 1, 2022): 342. http://dx.doi.org/10.3390/jmse10030342.
Full textd'Afflisio, Enrica, Paolo Braca, and Peter Willett. "Malicious AIS Spoofing and Abnormal Stealth Deviations: A Comprehensive Statistical Framework for Maritime Anomaly Detection." IEEE Transactions on Aerospace and Electronic Systems 57, no. 4 (August 2021): 2093–108. http://dx.doi.org/10.1109/taes.2021.3083466.
Full textRoberts, Steven Andrew. "A Shape‐Based Local Spatial Association Measure (LISShA): A Case Study in Maritime Anomaly Detection." Geographical Analysis 51, no. 4 (November 19, 2018): 403–25. http://dx.doi.org/10.1111/gean.12178.
Full textGuo, Shaoqing, Junmin Mou, Linying Chen, and Pengfei Chen. "An Anomaly Detection Method for AIS Trajectory Based on Kinematic Interpolation." Journal of Marine Science and Engineering 9, no. 6 (June 1, 2021): 609. http://dx.doi.org/10.3390/jmse9060609.
Full textBombara, Giuseppe, and Calin Belta. "Offline and Online Learning of Signal Temporal Logic Formulae Using Decision Trees." ACM Transactions on Cyber-Physical Systems 5, no. 3 (July 2021): 1–23. http://dx.doi.org/10.1145/3433994.
Full textSfyridis, A., T. Cheng, and M. Vespe. "DETECTING VESSELS CARRYING MIGRANTS USING MACHINE LEARNING." ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences IV-4/W2 (October 19, 2017): 53–60. http://dx.doi.org/10.5194/isprs-annals-iv-4-w2-53-2017.
Full textÇALIŞKAN, Ufuk Yakup, and Burak ZİNCİR. "Tracking Liquefied Natural Gas Fuelled Ship’s Emissions via Formaldehyde Deposition in Marine Boundary Layer." Marine Science and Technology Bulletin 11, Early View (December 31, 2022): 384–96. http://dx.doi.org/10.33714/masteb.1159477.
Full textSteidel, Matthias, Jan Mentjes, and Axel Hahn. "Context-Sensitive Prediction of Vessel Behavior." Journal of Marine Science and Engineering 8, no. 12 (December 4, 2020): 987. http://dx.doi.org/10.3390/jmse8120987.
Full textOka Widyantara, I. Made, I. Putu Noven Hartawan, Anak Agung Istri Ngurah Eka Karyawati, Ngurah Indra Er, and Ketut Buda Artana. "Automatic identification system-based trajectory clustering framework to identify vessel movement pattern." IAES International Journal of Artificial Intelligence (IJ-AI) 12, no. 1 (March 1, 2023): 1. http://dx.doi.org/10.11591/ijai.v12.i1.pp1-11.
Full textWang, Yitao, Lei Yang, Xin Song, Quan Chen, and Zhenguo Yan. "A Multi-Feature Ensemble Learning Classification Method for Ship Classification with Space-Based AIS Data." Applied Sciences 11, no. 21 (November 3, 2021): 10336. http://dx.doi.org/10.3390/app112110336.
Full textLumbangaol, A., I. M. Radjawane, and A. Furqon. "Linkages of Active and Weakening MJO events to Seasonal Variations over the Maritime Continent." IOP Conference Series: Earth and Environmental Science 925, no. 1 (November 1, 2021): 012004. http://dx.doi.org/10.1088/1755-1315/925/1/012004.
Full textYanti, Tia Novi, and Dahruji. "Window Dressing Detection in the Energy Sector Industry Listed on the Indonesian Sharia Stock Index." Jurnal Ekonomi Syariah Teori dan Terapan 9, no. 6 (November 30, 2022): 800–814. http://dx.doi.org/10.20473/vol9iss20226pp800-814.
Full textRiveiro, Maria, Giuliana Pallotta, and Michele Vespe. "Maritime anomaly detection: A review." WIREs Data Mining and Knowledge Discovery 8, no. 5 (May 25, 2018). http://dx.doi.org/10.1002/widm.1266.
Full textWei, Zhaokun, Xinlian Xie, and Xiaoju Zhang. "Maritime anomaly detection based on a support vector machine." Soft Computing, August 7, 2022. http://dx.doi.org/10.1007/s00500-022-07409-w.
Full textWei, Zhaokun, Xinlian Xie, and Xiaoju Zhang. "Maritime anomaly detection based on a support vector machine." Soft Computing, August 7, 2022. http://dx.doi.org/10.1007/s00500-022-07409-w.
Full textKarataş, Gözde Boztepe, Pinar Karagoz, and Orhan Ayran. "Trajectory pattern extraction and anomaly detection for maritime vessels." Internet of Things, August 2021, 100436. http://dx.doi.org/10.1016/j.iot.2021.100436.
Full textHu, Jia, Kuljeet Kaur, Hui Lin, Xiaoding Wang, Mohammad Mehedi Hassan, Imran Razzak, and Mohammad Hammoudeh. "Intelligent Anomaly Detection of Trajectories for IoT Empowered Maritime Transportation Systems." IEEE Transactions on Intelligent Transportation Systems, 2022, 1–10. http://dx.doi.org/10.1109/tits.2022.3162491.
Full text"Anomaly Detection in Vessel Tracking – A Bayesian Networks (BNs) Approach." International Journal of Maritime Engineering Part A3 2015 157, A3 (January 1, 2015): 145–52. http://dx.doi.org/10.3940/rina.ijme.2015.a3.316.
Full textHandayani, D., W. Sediono, and A. Shah. "ANOMALY DETECTION IN VESSEL TRACKING – A BAYESIAN NETWORKS (BNs) APPROACH." International Journal of Maritime Engineering 157, A3 (December 13, 2021). http://dx.doi.org/10.5750/ijme.v157ia3.956.
Full textForti, Nicola, Enrica d'Afflisio, Paolo Braca, Leonardo M. Millefiori, Peter Willett, and Sandro Carniel. "Maritime Anomaly Detection in a Real-World Scenario: Ever Given Grounding in the Suez Canal." IEEE Transactions on Intelligent Transportation Systems, 2021, 1–7. http://dx.doi.org/10.1109/tits.2021.3123890.
Full textNguyen, Duong, Rodolphe Vadaine, Guillaume Hajduch, Rene Garello, and Ronan Fablet. "GeoTrackNet--A Maritime Anomaly Detector Using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection." IEEE Transactions on Intelligent Transportation Systems, 2021, 1–13. http://dx.doi.org/10.1109/tits.2021.3055614.
Full text