Academic literature on the topic 'Marine photosynthetic organisms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Marine photosynthetic organisms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Marine photosynthetic organisms"
Kumar, Amit, Immacolata Castellano, Francesco Paolo Patti, Anna Palumbo, and Maria Cristina Buia. "Nitric oxide in marine photosynthetic organisms." Nitric Oxide 47 (May 2015): 34–39. http://dx.doi.org/10.1016/j.niox.2015.03.001.
Full textSingh, Dipali, Ross Carlson, David Fell, and Mark Poolman. "Modelling metabolism of the diatom Phaeodactylum tricornutum." Biochemical Society Transactions 43, no. 6 (November 27, 2015): 1182–86. http://dx.doi.org/10.1042/bst20150152.
Full textAvila-Alonso, Dailé, Jan M. Baetens, Rolando Cardenas, and Bernard De Baets. "Assessing the effects of ultraviolet radiation on the photosynthetic potential in Archean marine environments." International Journal of Astrobiology 16, no. 3 (September 9, 2016): 271–79. http://dx.doi.org/10.1017/s147355041600032x.
Full textCoelho, Susana M., Nathalie Simon, Sophia Ahmed, J. Mark Cock, and Frédéric Partensky. "Ecological and evolutionary genomics of marine photosynthetic organisms." Molecular Ecology 22, no. 3 (September 18, 2012): 867–907. http://dx.doi.org/10.1111/mec.12000.
Full textGiomi, Folco, Alberto Barausse, Carlos M. Duarte, Jenny Booth, Susana Agusti, Vincent Saderne, Andrea Anton, Daniele Daffonchio, and Marco Fusi. "Oxygen supersaturation protects coastal marine fauna from ocean warming." Science Advances 5, no. 9 (September 2019): eaax1814. http://dx.doi.org/10.1126/sciadv.aax1814.
Full textFolmer, F., M. Jaspars, M. Dicato, and M. Diederich. "Photosynthetic marine organisms as a source of anticancer compounds." Phytochemistry Reviews 9, no. 4 (October 15, 2010): 557–79. http://dx.doi.org/10.1007/s11101-010-9200-2.
Full textBirringer, Marc, Karsten Siems, Alexander Maxones, Jan Frank, and Stefan Lorkowski. "Natural 6-hydroxy-chromanols and -chromenols: structural diversity, biosynthetic pathways and health implications." RSC Advances 8, no. 9 (2018): 4803–41. http://dx.doi.org/10.1039/c7ra11819h.
Full textLefranc, Florence, Aikaterini Koutsaviti, Efstathia Ioannou, Alexander Kornienko, Vassilios Roussis, Robert Kiss, and David Newman. "Algae metabolites: fromin vitrogrowth inhibitory effects to promising anticancer activity." Natural Product Reports 36, no. 5 (2019): 810–41. http://dx.doi.org/10.1039/c8np00057c.
Full textPereira, Leonel. "Macroalgae." Encyclopedia 1, no. 1 (February 7, 2021): 177–88. http://dx.doi.org/10.3390/encyclopedia1010017.
Full textRaven, John A., and John Beardall. "Energizing the plasmalemma of marine photosynthetic organisms: the role of primary active transport." Journal of the Marine Biological Association of the United Kingdom 100, no. 3 (April 13, 2020): 333–46. http://dx.doi.org/10.1017/s0025315420000211.
Full textDissertations / Theses on the topic "Marine photosynthetic organisms"
Thomson, Danielle, and n/a. "Arsenic and Selected Elements in Marine Photosynthetic Organisms,South-East Coast, NSW, Australia." University of Canberra. Resource, Environmental and Heritage Sciences, 2006. http://erl.canberra.edu.au./public/adt-AUC20070521.120826.
Full textLopes, Andreia Filipa Rodrigues. "Marine photosynthetic organisms from the Portuguese coast as sources of antitumoural compounds." Master's thesis, 2016. http://hdl.handle.net/10400.1/8565.
Full textO aparecimento e agravamento de várias doenças, tais como o cancro, diabetes e doenças cardíacas, tem vindo a aumentar ao longo do tempo, levando a uma crescente necessidade de pesquisa de novos compostos com aplicações biomédicas, principalmente de origem natural. As plantas halófitas possuem um enorme potencial biotecnológico por descobrir, sendo consideradas um grande reservatório, praticamente inexplorado, de novas moléculas bioativas ou novas fontes de compostos conhecidos. Assim, este trabalho teve como principal objetivo a avaliação do potencial antitumoral in vitro de extratos naturais de 25 espécies de halófitas. Adicionalmente, foram avaliadas outras atividades biológicas destes extratos, nomeadamente as suas propriedades antioxidantes e despigmentantes in vitro. O perfil fitoquímico dos extratos também foi estudado pela avaliação do seu conteúdo em diferentes grupos fenólicos. A atividade citotóxica in vitro foi avaliada pelo método de brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio (MTT) usando linhas celulares tumorais de mamíferos (HepG2: hepatocarcinoma humano; HeLa: adenocarcinoma humano; THP1: leucemia monocítica aguda humana; SH-SY5Y: neuroblastoma humano) e uma linha celular de origem não tumoral (S17: linha celular de medula óssea de murino). A atividade antioxidante foi investigada pelos métodos de 2,2-difenil-1-picrilhidrazil (DPPH) e ácido 2,2'-azino-bis(3-etilbenzotiazolina-6-sulfónico) (ABTS), e também determinando o potencial quelante dos iões ferro (Fe2+) e cobre (Cu2+). O perfil fitoquímico incluiu a determinação do conteúdo total de fenólicos, flavonóis, taninos, flavonas e flavonol por espetrofotometria. Por fim, foi avaliado o potencial despigmentante dos extratos através da atividade inibitória da enzima tirosinase. Dos resultados obtidos é evidente que a espécie Inula crithmoides é uma potencial candidata para a pesquisa de compostos anticancerígenos e as espécies Convolvulus (Calystegia) soldanella, Frankenia laevis, F. pulverulenta, Lythrum salicaria e Pistacia lentiscus apresentam um melhor potencial para serem usadas como fonte de moléculas e/ou produtos inovadores com aplicações em diferentes áreas, como a nutracêutica e cosmética, uma vez que apresentaram os melhores resultados para todas as atividades testadas.
The onset and exacerbation of several diseases like cancer, cardiac diseases and diabetes has increased over time, leading to an increasing need for the research of new compounds with biomedical applications, namely those of natural origin. Halophytes have a high biotechnological potential and are considered an almost unexplored reservoir of novel bioactive molecules, or new sources of known compounds. Therefore, this work aimed to evaluate the in vitro antitumoral potential of natural extracts from 25 species of halophytes. Aditionally, it was evaluated other biological activities of these extracts, namely the in vitro antioxidant and skin whitening properties. The phytochemical profile of the extracts was also assessed through the evaluation of their content in different phenolic groups. The in vitro cytotoxic activity was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method using mammalian cell lines from tumoral origin (HepG2: human hepatocarcinoma; HeLa: human adenocarcinoma; THP1: human acute monocytic leukemia; SH-SY5Y: human neuroblastoma) and one cell line from non-tumoural origin (S17: murine stromal cell line). Antioxidant activity was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays, and also by determining the chelating potential on iron (Fe2+) and copper (Cu2+) ions. Phytochemical profiling included the determination of the total content in phenolics, flavonoids, tannins, flavone and flavonol by spectrophotometric assays. Skin whitening potential was evaluated by the inhibitory activity of the enzyme tyrosinase. From our results it is clear the species Inula crithmoides hold the potential to be a source of antitumoral compounds, while Convolvulus (Calystegia) soldanella, Frankenia laevis, F. pulverulenta, Lythrum salicaria and Pistacia lentiscus have the highest potential to be used as source of molecules and/or innovative products with potential aplications in different areas, such as nutraceutical and cosmetic, since they allowed the best results for all tested activities.
Book chapters on the topic "Marine photosynthetic organisms"
Porcellis, Diego de Abreu, Diana F. Adamatti, and Paulo Cesar Abreu. "Biomass Variation Phytoplanktons Using Agent-Based Simulation." In Advances in Computational Intelligence and Robotics, 279–94. IGI Global, 2017. http://dx.doi.org/10.4018/978-1-5225-1756-6.ch012.
Full textAndersson, Andreas J., and Fred T. Mackenzie. "Effects of Ocean Acidification on Benthic Processes, Organisms, and Ecosystems." In Ocean Acidification. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199591091.003.0012.
Full textGray, John S., and Michael Elliott. "Functional diversity of benthic assemblages." In Ecology of Marine Sediments. Oxford University Press, 2009. http://dx.doi.org/10.1093/oso/9780198569015.003.0009.
Full textÁlvarez-Borrego, Saul. "Physical Oceanography." In Island Biogeography in the Sea of Cortés II. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195133462.003.0008.
Full textConference papers on the topic "Marine photosynthetic organisms"
Kokubu, Hideki, and Hideki Kokubu. "A FUNDAMENTAL STUDY ON CARBON STORAGE BY ZOSTERA MARINA IN ISE BAY, JAPAN." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.21610/conferencearticle_58b4315b8e806.
Full textKokubu, Hideki, and Hideki Kokubu. "A FUNDAMENTAL STUDY ON CARBON STORAGE BY ZOSTERA MARINA IN ISE BAY, JAPAN." In Managing risks to coastal regions and communities in a changing world. Academus Publishing, 2017. http://dx.doi.org/10.31519/conferencearticle_5b1b93b173b5e4.64557120.
Full text