Academic literature on the topic 'Marine algae as food Australia'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Marine algae as food Australia.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Marine algae as food Australia"

1

Holmes, Michael J., Bill Venables, and Richard J. Lewis. "Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes." Toxins 13, no. 8 (July 23, 2021): 515. http://dx.doi.org/10.3390/toxins13080515.

Full text
Abstract:
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
APA, Harvard, Vancouver, ISO, and other styles
2

Rao, Dhana, Jeremy S. Webb, Carola Holmström, Rebecca Case, Adrian Low, Peter Steinberg, and Staffan Kjelleberg. "Low Densities of Epiphytic Bacteria from the Marine Alga Ulva australis Inhibit Settlement of Fouling Organisms." Applied and Environmental Microbiology 73, no. 24 (October 26, 2007): 7844–52. http://dx.doi.org/10.1128/aem.01543-07.

Full text
Abstract:
ABSTRACT Bacteria that produce inhibitory compounds on the surface of marine algae are thought to contribute to the defense of the host plant against colonization of fouling organisms. However, the number of bacterial cells necessary to defend against fouling on the plant surface is not known. Pseudoalteromonas tunicata and Phaeobacter sp. strain 2.10 (formerly Roseobacter gallaeciensis) are marine bacteria often found in association with the alga Ulva australis and produce a range of extracellular inhibitory compounds against common fouling organisms. P. tunicata and Phaeobacter sp. strain 2.10 biofilms with cell densities ranging from 102 to 108 cells cm−2 were established on polystyrene petri dishes. Attachment and settlement assays were performed with marine fungi (uncharacterized isolates from U. australis), marine bacteria (Pseudoalteromonas gracilis, Alteromonas sp., and Cellulophaga fucicola), invertebrate larvae (Bugula neritina), and algal spores (Polysiphonia sp.) and gametes (U. australis). Remarkably low cell densities (102 to 103 cells cm−2) of P. tunicata were effective in preventing settlement of algal spores and marine fungi in petri dishes. P. tunicata also prevented settlement of invertebrate larvae at densities of 104 to 105 cells cm−2. Similarly, low cell densities (103 to 104cells cm−2) of Phaeobacter sp. strain 2.10 had antilarval and antibacterial activity. Previously, it has been shown that abundance of P. tunicata on marine eukaryotic hosts is low (<1 × 103 cells cm−2) (T. L. Skovhus et al., Appl. Environ. Microbiol. 70:2373-2382, 2004). Despite such low numbers of P. tunicata on U. australis in situ, our data suggest that P. tunicata and Phaeobacter sp. strain 2.10 are present in sufficient quantities on the plant to inhibit fouling organisms. This strongly supports the hypothesis that P. tunicata and Phaeobacter sp. strain 2.10 can play a role in defense against fouling on U. australis at cell densities that commonly occur in situ.
APA, Harvard, Vancouver, ISO, and other styles
3

Burke, Catherine, Staffan Kjelleberg, and Torsten Thomas. "Selective Extraction of Bacterial DNA from the Surfaces of Macroalgae." Applied and Environmental Microbiology 75, no. 1 (October 31, 2008): 252–56. http://dx.doi.org/10.1128/aem.01630-08.

Full text
Abstract:
ABSTRACT A novel method has been developed for the selective extraction of DNA from surface-associated bacterial communities from the two model marine benthic algae Ulva australis and Delisea pulchra. The extracted DNA had no detectable contamination with host DNA, was recovered in high yield and quality, and was representative of the bacterial community on the algal surfaces. The DNA is suitable for a variety of subsequent applications, including the construction of large-insert clone libraries and metagenomic sequencing.
APA, Harvard, Vancouver, ISO, and other styles
4

Diansyah, Sufal, Ika Kusumawati, and Fandi Hardinata. "INVENTARISASI JENIS-JENIS MAKROALGA DI PANTAI LHOK BUBON KECAMATAN SAMATIGA KABUPATEN ACEH BARAT." JURNAL PERIKANAN TROPIS 5, no. 1 (April 1, 2018): 93. http://dx.doi.org/10.35308/jpt.v5i1.1029.

Full text
Abstract:
Indonesia has tropical marine waters rich in biodiversity. One of the organisms living in Indonesian coastal waters is macroalgae. Algae is one of the marine natural resources of economic value and has an ecological role as a high producer in the food chain and spawning place of marine biota. types of macroalgae have many benefits, ecologically and economically for the community. The ecological benefits of macroalgae are to provide habitat for several types of marine life such as species of crustaceans, mollusca, echinoderms, fish or other small algae. The economic value of macroalgae can be used as food, industrial raw materials, and materials for laboratories such as wet preserved materials, media materials for bacterial and fungal breeding to produce antibiotics, and there are also macroalgal types used as medicines. This study aims to identify and inventory the types of macroalgae in Lhok Bubon waters. The research method used is survey method, by identifying macroalga and inventory of macroalga contained in research location. The results of identification of macroalgae in Lhok Bubon waters are Caulerpa racemosa, Chaetomorpha anteninna, Halimeda micronesica, Boegesenia forbesi, Cladhopora hespetica, Halimeda discoidea, Chaetomorpha sp, Sargasum sp., Sargasum natans, Padina australis, Turbinaria ornata, Canistrocaptus crispatus, Asparagopsis taxiformis, Galaxaura filamentosa, dan Halymenia durvillei.
APA, Harvard, Vancouver, ISO, and other styles
5

Ridley, J. "The role of engineering innovation in Blue Carbon solutions." APPEA Journal 52, no. 2 (2012): 706. http://dx.doi.org/10.1071/aj11120.

Full text
Abstract:
Humanity faces the global challenge of safely removing CO2 from the atmosphere to secure a stable climate. Broadly, there are three options: terrestrial, soils and ocean, and coastal blue carbon sinks. Each option has unique characteristics in relation to permanence, leakage, environmental integrity and co-bene?ts. This extended abstract explores opportunities for blue carbon projects and highlights the important role of engineers in advancing the success of these innovative techniques. Examples of blue carbon include salt marshes, mangroves, seagrasses, macro-algae, coral reefs and open-ocean micro-algae. Regional case studies for mangrove rehabilitation and pioneering research in Australia on micro-algae and open-ocean sequestration are also presented. The world’s oceans contain about 90% of the global carbon budget. Nearly half of global primary productivity occurs in the open-ocean; this productivity has been achieved using only 0.05% of the earth’s biomass. Coastal and marine systems are ef?cient at the continuous storage of carbon, retaining it for centuries. Co-bene?ts include coastal protection, ?sh nurseries, marine biodiversity and improved water quality. Blue carbon is therefore not only direct mitigation, but also a major contributor to the adaptation of changing climate, building a more resilient ecology and supporting long-term sustainability, including that of the major carbon-based industries. Engineers are well equipped to lead this blue revolution while working with scientists and carbon professionals. This extended absrtact highlights opportunities for fast-track implementation and the engineering challenges; it draws on case studies to show scaleable solutions for achieving climate and food security.
APA, Harvard, Vancouver, ISO, and other styles
6

Hwang, Charnsmorn, Chih-Hua Chang, Michael Burch, Milena Fernandes, and Tim Kildea. "Effects of Epiphytes and Depth on Seagrass Spectral Profiles: Case Study of Gulf St. Vincent, South Australia." International Journal of Environmental Research and Public Health 16, no. 15 (July 29, 2019): 2701. http://dx.doi.org/10.3390/ijerph16152701.

Full text
Abstract:
Seagrasses are a crucial indicator species of coastal marine ecosystems that provide substratum, shelter, and food for epiphytic algae, invertebrates, and fishes. More accurate mapping of seagrasses is essential for their survival as a long-lasting natural resource. Before reflectance spectra could properly be used as remote sensing endmembers, factors that may obscure the detection of reflectance signals must be assessed. The objectives in this study are to determine the influence of (1) epiphytes, (2) water depth, and (3) seagrass genus on the detection of reflectance spectral signals. The results show that epiphytes significantly dampen bottom-type reflectance throughout most of the visible light spectrum, excluding 670–679 nm; the depth does influence reflectance, with the detection of deeper seagrasses being easier, and as the depth increases, only Heterozostera increase in the exact “red edge” wavelength at which there is a rapid change in the near-infrared (NIR) spectrum. These findings helped improve the detection of seagrass endmembers during remote sensing, thereby helping protect the natural resource of seagrasses.
APA, Harvard, Vancouver, ISO, and other styles
7

Maher, William, Joel Waring, Frank Krikowa, Elliott Duncan, and Simon Foster. "Ecological factors affecting the accumulation and speciation of arsenic in twelve Australian coastal bivalve molluscs." Environmental Chemistry 15, no. 2 (2018): 46. http://dx.doi.org/10.1071/en17106.

Full text
Abstract:
Environmental contextKnowledge of the pathways by which arsenic is accumulated and transferred in marine ecosystems is scarce. Molluscs are important keystone organisms providing a link between primary producers (micro and macroalgae) and higher trophic levels such as fish. The present study examines the accumulation and species of arsenic in common bivalve molluscs from south-east Australia to understand the cycling of arsenic in marine food webs. AbstractThe present paper reports the whole-tissue total arsenic concentrations and water-soluble arsenic species in 12 common coastal Australian bivalve mollusc species. Mean arsenic concentrations ranged from 18 to 57 µg g−1 dry mass. Planktivores had significantly less arsenic (20–40 µg g−1; 22 ± 3 µg g−1) than did suspension and deposit feeders (36–57 µg g−1; 43 ± 7 µg g−1), with those associated with fine clay–silt sediments (49 ± 7 µg g−1) having significantly more arsenic than those associated with sand substrates (31 ± 11 µg g−1 ). Most planktivores and suspension feeders had similar arsenic species, with high proportions of arsenobetaine (AB) (64–92 %) and relatively low proportions of other arsenic species (0.55–15.8 %). Lower proportions of AB (13–57 %) and larger proportions of inorganic arsenic (6–7 %) were found in deposit feeders, reflecting increased exposure to inorganic arsenic in sediments. The study indicated that at lower trophic levels, organisms feed on algae and suspended matter containing a range of arsenic species including arsenosugars and AB. The implications for arsenic cycling are that as all bivalve molluscs accumulate AB and are a source of AB in benthic food webs. Because all bivalve molluscs also contained appreciable concentrations of arsenoriboses, precursors are present for the de novo synthesis of AB. As well, deposit feeders have higher proportions of inorganic arsenic that can be metabolised to different end products when ingested by higher trophic organisms
APA, Harvard, Vancouver, ISO, and other styles
8

Kalalo, Julia L., Desy Mantiri, and Joice Rimper. "ANALISIS JENIS-JENIS PIGMEN ALGA COKLAT Padina australis Hauck DARI PERAIRAN LAUT SULAWESI." JURNAL PESISIR DAN LAUT TROPIS 2, no. 1 (December 4, 2014): 8. http://dx.doi.org/10.35800/jplt.2.1.2014.6352.

Full text
Abstract:
Padina australis Hauck is one of the brown algae that belongs to a class Phaeophyceae, Dictyotales order. This species is very important because it is useful as animal feed, fertilizer, pharmaceutical ingredients, human food and cosmetics. Sample taken in marine waters Sulawesi, precisely in the waters of cape Kalasey, Tongkaina waters, and the waters Blongko. The purpose of this study is to analyze the type of pigment chlorophyll with qualitatively and quantitatively. Process of extraction is done with organic solvent, and the developer with PE and acetone (80:20). Extraction results then analyzed with a spectrophotometer at a wavelength of 380-700nm, for the type of pigment chlorophyll. Type of pigment found in the pigment extraction P. australis Hauck of three waters is chlorophyll-a and chlorophyll-b, with an average concentration of chlorophyll-a value that is the highest in the waters Blongko 0.381 µg/ml in PTK3, with a range from 0.293 to 0.381 µg/ml, and lowest in the waters Tongkaina is 0.143 µg/ml PT3, with a range from 0.431 to 0.30 µg/ml.
APA, Harvard, Vancouver, ISO, and other styles
9

Arthur, Karen E., Colin J. Limpus, and Joan M. Whittier. "Baseline blood biochemistry of Australian green turtles (Chelonia mydas) and effects of exposure to the toxic cyanobacterium Lyngbya majuscula." Australian Journal of Zoology 56, no. 1 (2008): 23. http://dx.doi.org/10.1071/zo08055.

Full text
Abstract:
Quantifying health in wild marine turtles is challenging because reptiles have characteristically wide-ranging normal reference values for many indicators of health and because of the shortage of population-specific baseline data for wild animals. We measured blood biochemistry profiles (calcium, magnesium, sodium, lactate dehydrogenase (LDH), urea, cholesterol, triglycerides, and glucose) of green turtles (Chelonia mydas) in Moreton and Shoalwater Bays, Australia, and compared them in relation to capture site, age, sex and exposure to harmful algal blooms of the toxic cyanobacteria Lyngbya majuscula. Turtles were considered to be clinically healthy when no external injuries or lesions were observed and there was no evidence of disease or emaciation. Differences in blood profiles were detected between sites, but not between age groups or sexes. Turtles that were exposed to L. majuscula generally had lower plasma glucose concentrations and decreased LDH activity, which may represent a metabolic downregulation resulting from food limitation. This study provides the first blood biochemistry reference values for green turtles in Queensland, Australia, that can be used in future assessments of green turtles in these foraging habitats.
APA, Harvard, Vancouver, ISO, and other styles
10

Trewin, N. H., and K. J. McNamara. "Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia." Transactions of the Royal Society of Edinburgh: Earth Sciences 85, no. 3 (1994): 177–210. http://dx.doi.org/10.1017/s026359330000359x.

Full text
Abstract:
AbstractThe trace fossils of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia are spectacular in their variety and preservation. They provide a unique insight into the activities of the early invaders of terrestrial environments, and reveal the presence of a diverse fauna dominated by arthropods. Within the Formation trace fossil assemblages can be related to fluvial, aeolian and marine sand-dominated environments. Two distinct and diverse ichnofaunas are recognised.The Heimdallia–Diplichnites Ichnofauna occurs in sandstones deposited in broad low sinuosity braided fluvial channels, between which were mixed aeolian and waterlain sandsheets, small aeolian dunes and flooded interdune and deflation hollows. Heimdallia is the major bioturbator, favouring shallow pools. Other burrows include Tumblagoodichnus (gen. nov.), Diplocraterion, Skolithos, Beaconites and Didymaulyponomos. Arthropod trackways (Diplichnites) occur on surfaces of waterlain sands and on foreset bedding of aeolian dunes, and represent some of the earliest reported terrestrial trackways. Other trackways include Paleohelcura and Protichnites, and the digging traces Selenichnites and Rusophycus are also present. At least ten types of arthropods are required to produce the observed traces. Myriapods, eurypterids, euthycarcinoids, xiphosurids and scorpionids are considered responsible for the trackway assemblage.The Skolithos–Diplocraterion Ichnofauna occurs at the top of the exposed section in sandstones that overlie a thick fluvial sequence containing few traces. The strata are considered to represent marine influence at a fluvial/marine transition. They show variable trough cross-bedding, complex planar cross-bedding with down-climbing sets, ripple lamination, and fining-up sequences with bioturbated tops. Traces are dominated by crowded Skolithos up to 1 m long, together with two forms of Diplocraterion. Daedalus and Lunatubichnus (gen. nov.) burrows occur in a few beds and Aulichnites trails cover some foreset surfaces of cross-bedding.The trace fossils and the sedimentology of the Tumblagooda Sandstone bear a remarkable similarity to those of the lower part of the Taylor Group of Antarctica, which is probably Devonian in age. It is suggested that the two represent a similar age, stratigraphy, and range of environments on the margins of Gondwana. Large unvegetated fluvial outwash plains with variable aeolian influence were essentially coastal in character and fluvial/marine transitions occur in sand-rich environments. The animals responsible for the traces inhabited coastal areas but many could survive outwith marine influence, and arthropods responsible for some types of Diplichnites trackways walked out of water.The rich diversity of trackways attributable to arthropods illustrate that the invasion of terrestrial environments by arthropods, particularly large forms, was well-established by the beginning of the Devonian. The basis of the food chain was algal and bacterial films which bound the surface sediment in freshwater pools.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Marine algae as food Australia"

1

Goodsell, Paris Justine. "Consequences of disturbance for subtidal floral and faunal diversity /." Title page, abstract and table of contents only, 2004. http://web4.library.adelaide.edu.au/theses/09PH/09phg6555.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Crawley, Karen Ruth. "Detached macrophyte accumulations in surf zones: Significance of macrophyte type and volume in supporting secondary production." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2006. https://ro.ecu.edu.au/theses/1744.

Full text
Abstract:
Detached macrophytes (sea grass and macroalgae) are transported from more offshore areas and accumulate in large volumes in surf zones, where they are commonly called wrack. In coastal regions in other parts of the world, wrack transported from one habitat to a second habitat can be considered as a "spatial subsidy" for the recipient habitat with significant consequences for community dynamics and food webs. The primary aim of this study was to determine the significance of the different components of wrack (i.e. sea grass and brown, red and green algae) as a direct and indirect food source and habitat for invertebrates and fish in surf zones of south-western Australia. The importance of different volumes of surf zone wrack to determining fish abundance and composition was also investigated. These aims were achieved by examining the food and habitat preference of invertebrates and the habitat preference of fish through laboratory trials and field experiments. Gut content analysis was used to examine the importance of wrack-associated invertebrates as a food source for fish, while stable isotope analysis (carbon, nitrogen and sulfur) and lipid analysis (lipid class and fatty acid composition) were conducted on macrophytes, amphipods and fish to determine the source of nutrients and energy. The composition of surf zone wrack in the region comprises large quantities of seagrass, then brown and red algae, with negligible quantities of green algae. Allorchestes compressa, the dominant macroinvertebrate in surf zone wrack, showed a preference for consuming brown algae over other macrophyte types. Similarly, stable isotope analysis from some locations and fatty acid analyses indicated that A. compressa assimilates nutrients predominantly from brown algae. The influence of brown algae on secondary production extends to second-order consumers. Allorchestes compressa was the major prey of juveniles of the cobbler Cnidoglanis macrocephalus and the sea trumpeter Pelsartia humeralis, the main fish species in surf zone wrack accumulations in the region. Detached brown algae therefore contributes most to the detached macrophyte - amphipod - fish trophic pathway in the surf zones, and thus drives secondary production in these regions and provides a crucial link between coastal ecosystems. Detached macrophytes also provide an important, but transient, habitat for invertebrates and fish in south-western Australia. Under laboratory conditions, Allorchestes compressa showed a strong preference for inhabiting seagrasses over macroalgae, iii however in situ caging experiments showed that A. compressa has a strong preference for brown algae, red algae or a mixture of macrophytes, but tended to avoid seagrass. Therefore, A. compressa showed a clear preference for different types of detached macrophytes as a habitat, with seagrass ranking below other types of macrophyte under field conditions. In contrast, neither Cnidoglanis macrocephalus or Pelsartia humeralis showed a preference for inhabiting different types of detached macrophytes as a habitat, but showed a strong positive influence by increasing volumes of wrack The species composition, densities and biomass of fish, which were dominated by juveniles, were strongly influenced by increasing volume of wrack in surf zones of south-western Australia. This study has shown that both the type and volume of detached macrophytes transported from more offshore regions subsidizes consumers and plays a crucial role in supporting secondary production in less productive surf-zone habitats of south-western Australia. The removal of large amounts of wrack from nearshore areas could have a detrimental impact on the biodiversity or abundance of macroinvertebrate and fish populations, which rely on wrack for food and shelter.
APA, Harvard, Vancouver, ISO, and other styles
3

James, Deborah Linnell. "Enhancing food safety and quality." Morgantown, W. Va. : [West Virginia University Libraries], 2007. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5189.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2007.
Title from document title page. Document formatted into pages; contains xi, 87 p. : ill. Vita. Includes abstract. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
4

McCollough, Bianca. "Toxic algae and other marine biota: detection, mitigation, prevention and effects on the food industry." Kansas State University, 2016. http://hdl.handle.net/2097/32490.

Full text
Abstract:
Master of Science
Food Science Institute
Curtis Kastner
Harmful Algal Blooms (HABs) including Cyanobacteria and other toxic marine biota are responsible for similar harmful effects on human health, food safety, ecosystem maintenance, economic losses and liability issues for aquaculture farms as well as the food industry. Detection, monitoring and mitigation are all key factors in decreasing the deleterious effects of these toxic algal blooms. Harmful algal blooms can manifest toxic effects on a number of facets of animal physiology, elicit noxious taste and odor events and cause mass fish as well as animal kills. Such blooms can adversely impact the perception of the efficacy and safety of the food industry, water utilities, the quality of aquaculture and land farming products, as well as cause ripple effects experienced by coastal communities. HABs can adversely impact coastal areas and other areas reliant on local aquatic ecosystems through the loss of revenues experienced by local restaurants, food manufacturers as well as seafood harvesting/processing plants; loss of tourism revenue, decreased property values and a fundamental shift in the lives of those that are reliant upon those industries for their quality of life. This paper discusses Cyanobacteria, macroalgae, HABs, Cyanobacteria toxins, mitigation of HAB populations and their products as well as the ramifications this burgeoning threat to aquatic/ landlocked communities including challenges these toxic algae pose to the field of food science and the economy.
APA, Harvard, Vancouver, ISO, and other styles
5

Edi, Bralatei. "Inorganic arsenic in biological samples using field deployable techniques." Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=231842.

Full text
Abstract:
Arsenic (As) exposure through water and As contaminated food in rural areas around the world is well documented. While there are accurate, precise, and even robust screening methods for on-site water analysis, the determination of toxic inorganic As (iAs, a class I carcinogen) in foodstuff has been made possible through methods based on mass spectrometry. No screening or field method for iAs in food has been established and, there is also a lack of screening and monitoring methods for human exposure to iAs. The objectives of this thesis were to develop and apply a robust, reliable and well established screening method which is field deployable for the measurement of iAs in rice and seaweed in addition to the total As metabolites in human urine resulting from exposure to inorganic As. Reported in this work is the development and application of optimised field deployable methods based on the Gutzeit reaction with the aid of a field test kit (FTK) for the determination of iAs in rice, rice-based products, edible seaweeds and seaweeds cultivated from their natural habitat. The methods involve simple sample extraction by boiling in nitric acid before analysis with the FTK. Results were obtained in under an hour with the FTK and further validated with speciation analysis by HPLC-ICP-MS (High Performance Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry). Analysis of 30 store-bought rice samples with the field method gave good reproducibility (± 12 %) for samples with variable As concentrations. The results were comparable to those obtained by HPLC-ICP-MS with no contribution from organoarsenicals. Screening analysis with the field method based on recent regulations for inorganic arsenic in rice also gave low false positive and false negative rates ( < 10 %) for violations against these regulations, an indication that the method can accurately identify samples that are above or below the recommended maximum contaminant limits for iAs in rice. Similarly, results from the seaweed analysis with the field method were also comparable to those from speciation analysis by HPLC-ICP-MS with limited bias between the set of data from both vii methods. Optimisation of extraction methods using a subset of samples gave 80-95% iAs recovery with no contribution from the organoarsenicals present in the samples. The determination of total As metabolites in urine from the exposure to iAs could not be done directly using the FTK. In this case, the method involved the use of UV photolysis with persulphate and titanium dioxide as oxidizing agents for the conversion of methylated As species (DMA) to the inorganic form before analysis with the FTK. A partial determination of DMA with the FTK in urine matrix was demonstrated but this needs to be studied further for the development of a robust field method for monitoring human exposure to iAs.
APA, Harvard, Vancouver, ISO, and other styles
6

Thomson, Danielle, and n/a. "Arsenic and Selected Elements in Marine Photosynthetic Organisms,South-East Coast, NSW, Australia." University of Canberra. Resource, Environmental and Heritage Sciences, 2006. http://erl.canberra.edu.au./public/adt-AUC20070521.120826.

Full text
Abstract:
The cycling of arsenic in the marine photosynthetic plants and algae was examined by analysing total arsenic concentrations and arsenic species in selected marine photosynthetic organisms from the south-east coast, NSW, Australia. A range of elements required for metabolism in photosynthetic organisms were also analysed to determine if any relationship between these elements and arsenic concentrations occurred. Organisms were selected from salt marsh and mangrove ecosystems, marine inter-tidal and estuarine environments, and two species of marine phytoplankton cultured, to represent the different marine environments that primary producers inhabit. Organisms selected were compared to species within their own environment and then a comparison made between the varying ecosystems. In the salt marsh and mangrove ecosystems, the leaves of four species, the mangrove Avicennia marina, the samphire Sarcocornia quinqueflora, the seablight Suaeda australis, and the seagrass Posidonia australis were sampled from three locations from the south-east coast of NSW using nested sampling. Mean total arsenic concentrations (mean � sd) dry mass for all locations were A. marina (0.38 � 0.18 �g g-1 to 1.2 � 0.7 �g g-1), S. quinqueflora (0.13 � 0.06 �g g-1 to 0.46 � 0.22 �g g-1), S. australis (0.03 � 0.06 �g g-1 to 0.05 � 0.03 �g g-1)and P. australis (0.34 � 0.10 �g g-1 to 0.65 � 0.26 �g g-1). Arsenic concentrations were significantly different between species and locations but were consistently low compared to marine macroalgae species. Significant relationships between As and Fe concentrations for A. marina, S. quinqueflora and P. australis and negative relationship between As and Zn concentrations for S. quinqueflora could partially explain arsenic concentrations in these species. No relationship between As and P concentrations were found in this study. All terrestrial species contained predominantly inorganic arsenic in the water extractable and residue fractions with minor concentrations of DMA in the water-soluble fraction. P. australis also contained dimethylated glycerol and phosphate arsenoriboses. The presence of arsenobetaine, arsenocholine and trimethylated glycerol arsonioribose is most likely due to the presence of epiphytes on fronds on P. australis. In contrast, macroalgae contained higher total arsenic concentrations compared to marine terrestrial angiosperms. Total arsenic concentrations also varied between classes of algae: red macroalgae 4.3 �g g-1 to 24.7 �g g-1, green macroalgae 8.0 �g g-1 to 11.0 �g g-1 and blue green algae 10.4 �g g-1 and 18.4 �g g-1. No significant relations were found between As concentrations and concentrations of Fe, Co, Cu, Mn, Mo, Mg, P and Zn concentrations, elements that are required by macroalgae for photosynthesis and growth. Distinct differences between algal classes were found for the proportion of arsenic species present in the lipid and water-soluble fractions, with green algae having a higher proportion of As in lipids than red or estuarine algae. Acid hydrolysis of the lipid extract revealed DMA, glycerol arsenoribose and TMA based arsenolipids. Within water-soluble extracts, red and blue-green algae contained a greater proportion of arsenic as inorganic and simple methylated arsenic species compared to green algae, which contained predominantly glycerol arsenoribose. Arsenobetaine, arsenocholine and tetramethylarsonium was also present in water-soluble extracts but is not normally identified with macroalgae and is again likely due to the presence of attached epiphytes. Residue extracts contained predominantly inorganic arsenic, most likely associated with insoluble constituents of the cell. Mean arsenic concentrations in the green microalgae Dunaliella tertiolecta were 13.3 �g g-1 to 14.5 �g g-1, which is similar to arsenic concentrations found in green macroalgae in this study. Diatom Phaeodactylum tricornutum arsenic concentrations were 1.62 �g g-1 to 2.08 �g g-1. Varying the orthophosphate concentrations had little effect on arsenic uptake of microalgae. D. tertiolecta and P. tricornutum metabolised arsenic, forming simple methylated arsenic species and arsenic riboses. The ratio of phosphate to glycerol arsenoriboses was higher than that normally found in green macroalgae. The hydrolysed lipid fraction contained DMA arsenolipid (16-96%) with minor proportions of phosphate arsenoribose (4-23%). D. tertiolecta at f/10 phosphate concentration, however, contained glycerol arsenoribose and another arsenic lipid with similar retention as TMAO as well as DMA. The similarities between arsenic species in the water-soluble hydrolysed lipids and water-soluble extracts, especially for P. tricornutum, suggests that cells readily bind arsenic within lipids, either for membrane structure or storage, releasing arsenic species into the cytosol as degradation of lipids occurs. Inorganic arsenic was sequestered into insoluble components of the cell. Arsenic species present in D. tertiolecta at lower phosphate concentrations (f/10) were different to other phosphate concentrations (f/2, f/5), and require further investigation to determine whether this is a species-specific response as a result of phosphate deficiency. Although there are similarities in arsenic concentrations and arsenic species in marine photosynthetic organisms, it is evident that response to environmental concentrations of arsenic in uncontaminated environments is dependent on the mode of transfer from the environment, the influence of other elements in arsenic uptake and the ability of the organism to metabolise and sequester inorganic arsenic within the cell. It is not scientifically sound to generalise on arsenic metabolism in �marine plants� when species and the ecosystem in which they exist may influence the transformation of arsenic in higher marine organisms. There is no evidence to suggest that angiosperms produce AB as arsenic is mostly present as inorganic As, with little or no arsenic present in the lipids. However, marine macro- and microalgae both contain lipids with arsenic moieties that may be precursors for AB transformation. Specifically, the presence of TMA and dimethylated arsenoribose based arsenolipids both can transform to AB via intermediates previously identified in marine organisms. Further identification and characterization of As containing lipids is required.
APA, Harvard, Vancouver, ISO, and other styles
7

Rutten, Karin. "Studies on the biomass, diversity and nutrient relationships of macroalgae and seagrasses in Lake Illawarra, New South Wales, Australia." School of Earth and Environmental Sciences - Faculty of Science, 2007. http://ro.uow.edu.au/theses/22.

Full text
Abstract:
Lake Illawarra is a shallow barrier lagoon, located on the south-eastern coast of Australia. Eutrophication, referring to the enrichment of water by inorganic plant nutrients (primarily nitrogen and phosphorus), is one of the key environmental problems in Lake Illawarra. Management of macroalgae in Lake Illawarra is a major issue; excessive blooms of macroalgae, resulting in odours, access problems and community concern over Lake health, have led to many management strategies, including direct harvesting of algal biomass. Little information is available on the factors responsible for excessive growth of macroalgae in Lake Illawarra, although over supply of nutrients has often been cited as the primary cause. The aim of this study was to investigate the distribution, diversity, biomass and nutrient relationships of seagrasses and macroalgae in Lake Illawarra, and to determine what contribution, if any, macrophytes make to the Lake’s nutrient budget. Firstly, detailed species lists and taxonomic descriptions were prepared for macrophytes occurring in Lake Illawarra, between June 2000 and July 2003. This study focused primarily on shallow (< 1 m depth), inshore areas of Lake Illawarra, where problematic macroalgal blooms frequently occur. Seagrasses found in Lake Illawarra are Zostera capricorni, Ruppia megacarpa, Halophila ovalis and Halophila decipiens. In addition, 35 species of macroalgae were recorded and described; these included: 14 species from 7 genera of green macroalgae; 9 species from 9 different genera of brown macroalgae; and, 8 species from 8 genera of red macroalgae. The biomass of seagrasses and macroalgae in Lake Illawarra were documented seasonally (winter and summer) at four key Lake Illawarra sites; these included two R. megacarpa sites and two Z. capricorni sites. Average R. megacarpa and Z. capricorni dry weight (DW) biomasses (above and below-ground material) ranged from 54.8 - 440 g DW m 2 and 58.1 - 230 g DW m 2, respectively. Significant die-back, particularly of Z. capricorni, occurred in winter; summer biomasses were up to 1.5 - 3.9 times higher than winter biomasses. Below-ground material (roots and rhizomes) comprised 20 - 45 % and 40 - 67 % of total plant biomass for R. megacarpa and Z. capricorni, respectively. Macroalgal biomass in 2000-03 was notably lower than in previous decades; this may be due to drought, as well as improvements in water quality. Maximum biomasses of macroalgae recorded in the present study were 150 - 370 g DW m 2. Algal blooms were composed primarily of the filamentous chlorophytes, Chaetomorpha linum and Chaetomorpha billardierii. The highest seagrass (R. megacarpa) and macroalgal biomasses usually occurred at the Oasis Caravan Park site, located along the eastern Lake Illawarra peninsula. Tissue nutrient analyses were conducted on the most abundant seagrasses (Z. capricorni and R. megacarpa) and macroalgae occurring at four sites in Lake Illawarra, between spring 2000 and winter 2002. Total C contents of macrophytes varied from 23.3 - 42.0 % C for seagrasses, and 28.0 - 39.7 % C for macroalgae. The δ13C and δ15N contents of seagrasses ranged from -7.7 to 15.9 ‰ and 0.7 - 9.0 ‰, respectively. The most significant seasonal variations in seagrass δ13C contents and, to a lesser extentδ15N contents, occurred in Z. capricorni located at the source of fresh water input, Mullet Creek. Macroalgae showed a greater variation in isotopic signatures than the seagrasses, ranging from 4.9 to 19.8 ‰ (δ13C) and 1.8 - 14.6 ‰ (δ15N). Differences between species at the same site were often more significant than differences between the same species at different sites. Seagrass leaf N and P contents ranged from 1.74 - 4.13 % (mean ± s.e.: 2.62 ± 0.05 % N) and 0.12 - 0.59 % P (mean ± s.e.: 0.31 ± 0.01 % P); leaf N and P contents were typically double those of roots/rhizomes. N contents varied between species and sites, but P contents of Z. capricorni were usually significantly higher than R. megacarpa. Z. capricorni C and N contents increased in winter, corresponding to lower winter biomasses. Seagrass leaf biomass and tissue P contents peaked in summer 2002, which may be related to higher water column P concentrations in summer. Tissue N and P contents of macroalgae were more variable than those of the seagrasses, and ranged from 0.85 - 3.95 % N and 0.03 - 0.58 % P. The average C/P (808 ± 65) and N/P (47.9 ± 3.47) molar ratios of macroalgae were typically double those of the seagrasses. Low concentrations of tissue P, with respect to N, in R. megacarpa and macroalgae implied P limitation on several occasions, particularly when macrophyte biomasses were low. High tissue N contents in Lake Illawarra macrophytes suggested N limitation of biomass formation rarely occurred. Evidence of P, rather than N, limitation in macrophytes is surprising considering most data suggests N limitation of phytoplankton production in Lake Illawarra. The estimated pools of N and P contained in Lake Illawarra macrophyte biomass were similar to those present in the water column, but appeared minute when compared to the N and P stored within Lake Illawarra sediment. Laboratory culture experiments were conducted to evaluate the response of the most problematic alga, Chaetomorpha linum, to nutrient enrichment. Water temperatures of 20 - 25°C were found to promote the highest growth rates (up to 27 % WW d 1) of C. linum, but high growth rates (13 % WW d 1) were also recorded at 10°C, the lowest winter water temperature recorded in Lake Illawarra. Enrichment with N, rather than P, had the greatest effect on C. linum; growth rates were significantly reduced in treatments without added N, but treatments with N-alone were statistically similar to N+P treatments. It was concluded that in Lake Illawarra, C. linum was strongly nitrogen limited. The ability of C. linum to grow successfully in culture, under a range of nutrient treatments, and without added phosphorus, in particular, correlates with the excessive growth of this alga in Lake Illawarra. This study has made a significant contribution to the understanding of seagrass and macroalgal growth, biomass and distribution in Lake Illawarra. This information will assist with the long-term management of macroalgal problems in Lake Illawarra.
APA, Harvard, Vancouver, ISO, and other styles
8

Vanderklift, Mathew Arie. "Interactions between sea urchins and macroalgae in south-western Australia : testing general predictions in a local context." University of Western Australia. School of Plant Biology, 2002. http://theses.library.uwa.edu.au/adt-WU2004.0086.

Full text
Abstract:
Generalist herbivores profoundly influence the biomass and species composition of macroalgae assemblages. In subtidal ecosystems of temperate latitudes, large invertebrates are usually the most influential herbivores. I tested the prediction that exclusion of invertebrate herbivores would lead to changes in the biomass and species composition of the macroalgae assemblages that are a prominent feature of the reefs in south-western Australia. The most abundant invertebrate herbivores were sea urchins (Heliocidaris erythrogramma, Phyllacanthus irregularis and Centrostephanus tenuispinus), and these occupied different trophic positions. Heliocidaris was present at virtually all reefs surveyed, and was particularly abundant in the Fremantle region. Analyses of stable isotopes and direct observations of gut contents revealed that it was almost exclusively herbivorous, and that it mainly ate foliose brown algae. In contrast, Phyllacanthus and Centrostephanus were omnivorous; while they consumed large proportions of algae, a substantial proportion of the diet of both species was animal tissue. Because Heliocidaris is a generalist herbivore that occurs at high densities, it could exert a large influence on the macroalgae assemblage. This prediction was tested by a series of press experiments. Contrary to the prediction, Heliocidaris exerted a very minor influence on the biomass, and no detectable influence on the species composition, of attached macroalgae. However, it exerted a major influence on the retention of drift macroalgae and seagrass by trapping and feeding on drift. It exerted a particularly strong influence on retention of the kelp Ecklonia radiata. This kelp was not abundant in the attached algae assemblage (when all plots were pooled it ranked 35th in biomass), but was abundant as drift (ranking 1st). Most of the drift Ecklonia was retained by sea urchins, rather than freely drifting.Herbivorous fish may also influence macroalgae assemblages. To compare the effects of sea urchins versus fish on recruiting and adult macroalgae a 13-month exclusion experiment was conducted. There were no detectable effects of sea urchins (mainly Heliocidaris) on either recruiting or adult macroalgae. There were some patterns in the biomass of recruiting algae consistent with an influence by herbivorous fish; however, these patterns were also consistent with the presence of artefacts (shading and reduced water flow) by fish exclusion devices. I began with the prediction that large invertebrate herbivores were a major influence on the macroalgae assemblages of subtidal reefs in south-western Australia. Overall, there was little evidence to support this prediction: within spatial extents of tens of square metres and over periods of 1-2 years, only minor effects were detected. However, it remains plausible that herbivores exert an influence over long time periods across large spatial extents in south-western Australia. I propose that trophic subsidies support the comparatively high densities of Heliocidaris that exist at some reefs. I further propose that these subsidies mediate the effects of sea urchins on the attached macroalgae assemblage, and that they might play an important role in energy and nutrient cycling in these nearshore ecosystems.
APA, Harvard, Vancouver, ISO, and other styles
9

Paterson, Harriet. "Microzooplankton from oligotrophic waters off south west Western Australia : biomass, diversity and impact on phytoplankton." University of Western Australia. School of Animal Biology, 2006. http://theses.library.uwa.edu.au/adt-WU2007.0031.

Full text
Abstract:
[Truncated abstract] The role of marine microzooplankton in aquatic food webs has been studied in most regions of the world’s oceans, with the exception of the subtropical/temperate eastern Indian Ocean. This thesis addresses this gap in knowledge by investigating microzooplankton from five stations on a cross continental shelf transect and in two mesoscale features ∼300 km offshore of south west Western Australia. My primary focus was to measure and evaluate microzooplankton community change over space and time and their impact on phytoplankton on a cross shelf transect, sampling five stations from February 2002 December 2004 as part of a large multidisciplinary investigation into the pelagic ecosystem on the shelf (Chapter 2). This transect was named the Two Rocks transect. I also investigated an eddy pair (Chapter 5), which had originated from water in the vicinity of the Two Rocks transect, also undertaken as part of a larger study, investigating biophysical coupling within mesoscale eddies off south west Western Australia . . . The distribution of mixotrophic cells differed across the transect. Those mixotrophs that use photosynthesis as their primarily energy source exploited nutrient limited conditions inshore consuming particles, while mixotrophs that are primarily heterotrophic survived low prey conditions offshore by photosynthesizing. In the eddies, the grazing behaviour of microzooplankton was dependent on the specific phytoplankton assemblage in each eddy. The warm core eddy had a resident population of diatoms that were consumed by heterotrophic dinoflagellates present in high numbers. The cold core eddy had a warm cap which prevented upwelled water reaching the surface, resulting in stratification and a very active microbial food web, particularly in the surface.
APA, Harvard, Vancouver, ISO, and other styles
10

Mellbrand, Kajsa. "The Spider and the Sea : Effects of marine subsidies on the role of spiders in terrestrial food webs." Doctoral thesis, Stockholms universitet, Botaniska institutionen, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-27227.

Full text
Abstract:
The purpose of this study was to identify if terrestrial arthropod predators on Baltic Sea shores vary in their use of marine versus terrestrial food items, and to construct a bottom-up food web for Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g. phantom midges, Chironomidae). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis, and a two source mixing model was used to examine proportions of marine carbon to diets. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, while insect predators such as beetles and hemipterans mainly utilize nutrients and energy derived from terrestrial sources, possibly due to differences in hunting behaviour. That spiders are the predators that benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Marine algae as food Australia"

1

Marinus, Huisman John, McCarthy P. M. 1955-, Australian Biological Resources Study, CSIRO Publishing, and Australia. Dept. of the Environment and Heritage., eds. Algae of Australia. Canberra: Australian Biological Resources Study, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Huisman, John M. Algae of Australia: Nemaliales. Canberra: CSIRO, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nori. Tōkyō: Hōsei Daigaku Shuppankyoku, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Study, Australian Biological Resources, CSIRO, and Australia. Department of the Environment, Water, Heritage and the Arts, eds. Algae of Australia: Phytoplankton of temperate coastal waters. Collingwood, Vic: Australian Biological Resources Study and CSIRO Publishing, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

McConnaughey, Evelyn. Sea vegetables: Harvesting guide & cookbook. Happy Camp, Calif., U.S.A: Naturegraph Publishers, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Abbott, Isabella Aiona. Limu: An ethnobotanical study of some Hawaiian seaweeds. 4th ed. Lawai, Hawaii (P.O. Box 340, Lawai, Kauai, Hawaii 96765): National Tropical Botanical Garden, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Marine plants of Australia. Nedlands, W.A: University of Western Australia Press, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lewallen, Eleanor. Sea vegetable gourmet cookbook and wildcrafter's guide. Mendocino, Calif: Mendocino Sea Vegetable Company, 1996.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Pierre, Aucante, ed. Nouvelles saveurs de la mer: La cuisine et les algues. Paris: A. Michel, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

The new seaweed cookbook: A complete guide to discovering the deep flavors of the sea. Berkeley, Calif: North Atlantic Books, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Marine algae as food Australia"

1

Yashaswini, Devi G. V., Jayachandran Venkatesan, and Sukumaran Anil. "Hydrocolloids from Marine Macroalgae: Isolation and Applications." In Algae for Food, 185–200. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003165941-13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wijesekara, Isuru, and Se-Kwon Kim. "Application of Marine Algae Derived Nutraceuticals in the Food Industry." In Marine Algae Extracts, 627–38. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527679577.ch35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bhardwaj, Meenakshi, and Hannah R. Vasanthi. "Biomedical Potential of Marine Macroalgae in Modulating Chronic Disease Pathologies." In Algae for Food, 239–60. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003165941-16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Singh, Simranjeet, Vijay Kumar, Shivika Datta, Satyender Singh, Daljeet Singh Dhanjal, Noyonika Kaul, Praveen C. Ramamurthy, and Joginder Singh. "Marine Algae as Green Agriculture." In Green Chemistry in Agriculture and Food Production, 99–110. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9780429289538-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hafting, Jeff T., M. Lynn Cornish, Amy Deveau, and Alan T. Critchley. "Marine Algae: Gathered Resource to Global Food Industry." In The Algae World, 403–27. Dordrecht: Springer Netherlands, 2015. http://dx.doi.org/10.1007/978-94-017-7321-8_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yamamoto, Ichiro, Masahide Moriguchi, Sayuri Matsuura, and Hiroko Maruyama. "Dietary Marine Algae and Their Antitumor Effects." In Food Factors for Cancer Prevention, 337–41. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-67017-9_66.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rakholiya, K. D., J. T. Patel, V. D. Vora, G. S. Sutaria, R. M. Patel, R. A. Dave, and M. J. Kaneria. "Antioxidant activities of some marine algae: Case study from india." In Food Technology, 147–62. Toronto ; Waretown, New Jersey : Apple Academic Press, 2017. |: Apple Academic Press, 2017. http://dx.doi.org/10.1201/9781315365657-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gerwick, William H. "Antimutagenic, Antiinflammatory, and Potential Anticancer Substances from Marine Algae." In Food Factors for Cancer Prevention, 342–47. Tokyo: Springer Japan, 1997. http://dx.doi.org/10.1007/978-4-431-67017-9_67.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Wijesekara, Isuru, Mahinda Senevirathne, Yong-Xin Li, and Se-Kwon Kim. "Functional Ingredients from Marine Algae as Potential Antioxidants in the Food Industry." In Handbook of Marine Macroalgae, 398–402. Chichester, UK: John Wiley & Sons, Ltd, 2011. http://dx.doi.org/10.1002/9781119977087.ch23.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Battaglene, Stephen, and Stewart Fielder. "The status of marine fish larval-rearing technology in Australia." In Live Food in Aquaculture, 1–5. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-017-2097-7_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Marine algae as food Australia"

1

Al-AShwal, Aisha Ahmed, Noora Al-Naimi, Jassim Al-Khayat, Bruno Giraldes, Najat Al-Omari, Noora Al-Fardi, Caesar Sorino, and Ekhlas Abdelbari. "Distribution and Diversity of Benthic Marine Macroalgae in Islands around Qatar." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0052.

Full text
Abstract:
Extending into the Arabian Gulf, Qatar is surrounded by a number of islands mostly scattered by the eastern coastline. With the unique physical characteristics of the Gulf, which is a highly saline sea with high seawater temperatures, there is an urge need to investigate the macroalgae living in such harsh environment. Macroalgae plays an important role in the food web as they are primary producers and providers of food for other organisms. They also provide shelter and habitat in the marine ecosystem for herbivorous fish and other invertebrate animals. Additionally, macroalgae plays an outstanding role in reducing CO2 from the atmosphere and increasing the level of dissolved oxygen in their immediate environment. However, there are few studies on marine macroalgae in Qatar and no previous studies found related to macroalgae from the islands around Qatar. The present work contributes to the macroalgae research by providing the first survey of distribution and diversity of benthic marine macroalgae in islands around Qatar. The marine benthic green, red and brown macroalgae of intertidal and subtidal in marine zone areas around Qatar were collected during Qatar’s Islands project, which started 2018. The collected macroalgae are documented and a total of 67 species of macroalgae are recorded for all islands around Qatar, 24 Chlorophyta (Green algae), 25 Rhodophyta (Red algae) and 18 species Phaeophyta (Brown algae). The Red algae are dominant taxon in term of species richness, accounting for an average of 37% of the species at all study sites. The islands which had more species are Al-Beshaireya 58 Species, Al-Aaliya 53 Species, Sheraouh 48 Species, Janan 43 Species and Bu Felaita 37 Species. Our results show that islands located at eastern and southeastern coast of Qatar have more diversity of algae species than those located at the western and northwestern coast.
APA, Harvard, Vancouver, ISO, and other styles
2

Dalgamouni, Tasneem atef, Shatha Kanji, Maroua Cherif, Rihab Rasheed, Touria Bounnit, Hareb Aljabri, Imen Saadaoui, and Radhouane Ben Hamadou. "Isolation, Cultivation, and Characterization of Novel Local Marine Micro-Algae for Aquaculture Feed Supplement Production." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0037.

Full text
Abstract:
Aquaculture is considered as a promising alternative to support the food demands of the everincreasing population. Currently, this sector faces several challenges such as using fishmeal, which is unsustainable and expensive. Therefore, it is necessary to identify an alternative feed component that is sustainable, cost-effective and can provide the essential nutrients required by the fish. In this context, microalgae are considered as a viable source of proteins, lipids, polysaccharides and highvalue products (HVPs) such as essential fatty acids, amino acids and vitamins. They play a vital role in the marine food chain and hence can be easily assimilated by the fish. The current research targeted the isolation, identification and characterization of novel marine microalgae from Qatar coastline to produce aquaculture feed supplement. As the climate poses a number of stress factors, such as high light intensities, temperatures and varying salinities, it is expected that novel microalgae with interesting metabolite profiles can be isolated from the environment for developing aquaculture sector in Qatar. Standard plating methods were used to isolate halophilic strains from field waters. PCR-sequencing was used to identify the novel microalgae, cyanobacteria and diatom isolates. Then a comparative analysis of the growth performance and metabolite content was performed to characterize these strains. Results evidenced that the cyanobacteria strain exhibited the highest biomass productivity of 51.4 mg L-1day-1 whereas the highest lipid content was observed in the novel diatom isolate ranging up to 28.62% and the highest amount of carotenoids was detected in the case of the microalgae. As in conclusion, a rich feed supplement blending the three isolates can be considered as an alternative to fishmeal. As a continuation of this research, the potential strains will be cultivated under various stress to increase their nutritional value.
APA, Harvard, Vancouver, ISO, and other styles
3

Strokov, A. "НЕКРОПОЛЬ ФАНАГОРИИ – ПЕРВЫЕ РЕЗУЛЬТАТЫ РАДИОУГЛЕРОДНОГО ДАТИРОВАНИЯ." In Радиоуглерод в археологии и палеоэкологии: прошлое, настоящее, будущее. Материалы международной конференции, посвященной 80-летию старшего научного сотрудника ИИМК РАН, кандидата химических наук Ганны Ивановны Зайцевой. Samara State University of Social Sciences and Education, 2020. http://dx.doi.org/10.31600/978-5-91867-213-6-93-94.

Full text
Abstract:
In Russian archaeology radiocarbon dating is used in very rare cases when antiquities from historical periods are studied based on coin finds and historical sources which have their own historical chronology. However, this arrangement does not always work, as some graves do not contain items that can be dated to a narrow time span while a great number of graves often have no funerary offerings at all. The State Historical Museum in Moscow houses archaeological materials from the Phanagoria necropolis excavated in 1936. Phanagoria is is the largest city of the Classical period and the early medieval period (540 BC–10th century). The collection from the necropolis excavations has preserved organic carbon-containing finds from grave 21 (the wood served to make a coffin – juniper, and sea algae). These materials were selected for AMS-dating. The following results were obtained: wood: 342–420 calAD, sea algae – 132–241 calAD. Of particular interest is the impression of the coin of the Roman Emperor Valens (364–378) found in this grave. The AMS-date of the coffin wood fully confirms the traditional archaeological dating of the finds whereas the coin offers an opportunity to narrow down the timeline of the grave to several decades (375–420). The older age of sea algae is caused by a marine reservoir effect which must be taken into account during the verification of the radiocarbon age of the consumers the food intake of which probably included algae.
APA, Harvard, Vancouver, ISO, and other styles
4

Cherif, Maroua, Touria Bounnit, Hareb Al JAbri, and Imen Saadaoui. "Improvement of Omega-3-rich Microalgae Biomass Production to Support Qatar Food Security." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0035.

Full text
Abstract:
Recently, algae have received considerable interest as one of the most promising feedstocks suitable for animal feed production due to their fast growth, less nutrient requirements and their ability to produce primary and secondary metabolites with high-added value. Different strategies were applied to improve both biomass and metabolites productivities aiming to produce highquality biomass with low cost and high nutritional value. Tetraselmis subcoliformis QUCCCM50, a local marine green alga presenting fast growth, high metabolites content and easy to harvest, was selected as a candidate for feed production. Three different stress conditions were applied to enhance its potential to produce high-value products such as Nitrogen or Phosphorus depletion and high salinity of 100ppt. An assessment of the growth properties and biomass productivity was performed during the growth. After 15 days of cultivation using tubular photobioreactors, the biomass was subjected to metabolites characterization and fatty acids methyl ester profiling. Results showed that the three stress conditions present different impacts on biomass productivity and, lipid quantity and quality. Cultivation under 100 ppt led to the highest increase in lipid content. This culture condition led to 25% increase of the omega-3 fatty acids with the appearance of the docosahexaenoic acid (DHA) and a remarkable increase of the alpha-linolenic acid, comparatively to the control. The enrichment of the Tetraselmis subcoliformis’ biomass in terms of omega-3 fatty acids enhance its nutritional value and make it very suitable for animal feed production. The optimized culture conditions obtained from the current study will be applied at large scale to enhance the quality of the biomass towards omega-3 enriched animal feed supplement production, and hence support achieving food security in the State of Qatar.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Marine algae as food Australia"

1

Sukenik, Assaf, Paul Roessler, and John Ohlrogge. Biochemical and Physiological Regulation of Lipid Synthesis in Unicellular Algae with Special Emphasis on W-3 Very Long Chain Lipids. United States Department of Agriculture, January 1995. http://dx.doi.org/10.32747/1995.7604932.bard.

Full text
Abstract:
Various unicellular algae produce omega-3 (w3) very-long-chain polyunsaturated fatty acids (VLC-PUFA), which are rarely found in higher plants. In this research and other studies from our laboratories, it has been demonstrated that the marine unicellular alga Nannochloropsis (Eustigmatophyceae) can be used as a reliable and high quality source for the w3 VLC-PUFA eicosapentaenoic acid (EPA). This alga is widely used in mariculture systems as the primary component of the artificial food chain in fish larvae production, mainly due to its high EPA content. Furthermore, w3 fatty acids are essential for humans as dietary supplements and may have therapeutic benefits. The goal of this research proposal was to understand the physiological and biochemical mechanisms which regulate the synthesis and accumulation of glycerolipids enriched with w3 VLC-PUFA in Nannochloropsis. The results of our studies demonstrate various aspects of lipid synthesis and its regulation in the alga: 1. Variations in lipid class composition imposed by various environmental conditions were determined with special emphasis on the relative abundance of the molecular species of triacylglycerol (TAG) and monogalactosyl diacylglycerol (MGDG). 2. The relationships between the cellular content of major glycerolipids (TAG and MGDG) and the enzymes involved in their synthesis were studied. The results suggested the importance of UDP-galactose diacylglycerol galactosyl (UDGT) in regulation of the cellular level of MGDG. In a current effort we have purified UDGT several hundredfold from Nannochloropsis. It is our aim to purify this enzyme to near homogeneity and to produce antibodies against this enzyme in order to provide the tools for elucidation of the biochemical mechanisms that regulate this enzyme and carbon allocation into galactolipids. 3. Our in vitro and in vivo labeling studies indicated the possibility that phosphatidylcholine (PC) and phosphatidylethanolamine (PE) are associated with desaturation of the structural lipids, whereas shorter chain saturated fatty acids are more likely to be incorporated into TAG. 4. Isolation of several putative mutants of Nannochloropsis which appear to have different lipid and fatty acid compositions than the wild type; a mutant of a special importance that is devoid of EPA was fully characterized. In addition, we could demonstrate the feasibility of Nannochloropsis biomass production for aquaculture and human health: 1) We demonstrated in semi-industrial scale the feasibility of mass production of Nannochloropsis biomass in collaboration with the algae plant NBT in Eilat; 2) Nutritional studies verified the importance algal w3 fatty acids for the development of rats and demonstrated that Nannochloropsis biomass fed to pregnant and lactating rats can benefit their offspring.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography