Academic literature on the topic 'MAPbCl3'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'MAPbCl3.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "MAPbCl3"
Nagabhushana, G. P., Radha Shivaramaiah, and Alexandra Navrotsky. "Direct calorimetric verification of thermodynamic instability of lead halide hybrid perovskites." Proceedings of the National Academy of Sciences 113, no. 28 (June 28, 2016): 7717–21. http://dx.doi.org/10.1073/pnas.1607850113.
Full textLu, Haizhou, Huotian Zhang, Sijian Yuan, Jiao Wang, Yiqiang Zhan, and Lirong Zheng. "An optical dynamic study of MAPbBr3 single crystals passivated with MAPbCl3/I3-MAPbBr3 heterojunctions." Physical Chemistry Chemical Physics 19, no. 6 (2017): 4516–21. http://dx.doi.org/10.1039/c6cp07182a.
Full textFranz, Alexandra, Daniel M. Többens, Julia Steckhan, and Susan Schorr. "Determination of the miscibility gap in the solid solutions series of methylammonium lead iodide/chloride." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 74, no. 5 (August 31, 2018): 445–49. http://dx.doi.org/10.1107/s2052520618010764.
Full textZhang, Cuiping, Zhipeng Li, Juan Liu, Yunchuan Xin, Zhipeng Shao, Guanglei Cui, and Shuping Pang. "MAPbCl3-Mediated Decomposition Process to Tune Cl/PbI2 Distribution in MAPbI3 Films." ACS Energy Letters 3, no. 8 (July 5, 2018): 1801–7. http://dx.doi.org/10.1021/acsenergylett.8b00837.
Full textCheng, Xiaohua, Lin Jing, Ying Zhao, Songjie Du, Jianxu Ding, and Tianliang Zhou. "Crystal orientation-dependent optoelectronic properties of MAPbCl3 single crystals." Journal of Materials Chemistry C 6, no. 6 (2018): 1579–86. http://dx.doi.org/10.1039/c7tc05156e.
Full textPan, Yuzhu, Xin Wang, Jingda Zhao, Yubing Xu, Yuwei Li, Qing Li, Xiaobing Zhang, et al. "Photodiodes based on a MAPbBr3/Bi3+-doped MAPbCl3 single crystals heterojunction for the X-ray detection." CrystEngComm 23, no. 28 (2021): 4954–62. http://dx.doi.org/10.1039/d1ce00406a.
Full textBernasconi, Andrea, Katharine Page, Zhenbang Dai, Liang Z. Tan, Andrew M. Rappe, and Lorenzo Malavasi. "Ubiquitous Short-Range Distortion of Hybrid Perovskites and Hydrogen-Bonding Role: the MAPbCl3 Case." Journal of Physical Chemistry C 122, no. 49 (November 26, 2018): 28265–72. http://dx.doi.org/10.1021/acs.jpcc.8b10086.
Full textCheng, Xiaohua, Lin Jing, Ye Yuan, Songjie Du, Jun Zhang, Xiaoyuan Zhan, Jianxu Ding, Hao Yu, and Guodong Shi. "Fe2+/Fe3+ Doped into MAPbCl3 Single Crystal: Impact on Crystal Growth and Optical and Photoelectronic Properties." Journal of Physical Chemistry C 123, no. 3 (January 4, 2019): 1669–76. http://dx.doi.org/10.1021/acs.jpcc.8b12428.
Full textBahtiar, Ayi, and Khairul Habibie. "THE STABILITY STUDIES OF MIXED HALIDE PEROVSKITE CH3NH3PbBrXI3-X THIN FILMS IN AMBIENT WITH AIR HUMIDITY 70% USING UV-VIS SPECTROSCOPY AND X-RAY DIFFRACTION." Spektra: Jurnal Fisika dan Aplikasinya 5, no. 2 (August 31, 2020): 109–18. http://dx.doi.org/10.21009/spektra.052.03.
Full textTumusange, Marie Solange, Biwas Subedi, Cong Chen, Maxwell M. Junda, Zhaoning Song, Yanfa Yan, and Nikolas J. Podraza. "Impact of Humidity and Temperature on the Stability of the Optical Properties and Structure of MAPbI3, MA0.7FA0.3PbI3 and (FAPbI3)0.95(MAPbBr3)0.05 Perovskite Thin Films." Materials 14, no. 14 (July 20, 2021): 4054. http://dx.doi.org/10.3390/ma14144054.
Full textDissertations / Theses on the topic "MAPbCl3"
Mlčkovová, Hana. "Studium dielektrických vlastností krystalů perovskitů." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445134.
Full textRackovská, Anna Patrícia. "Studium optických vlastností tenkých vrstev prekurzorů pro přípravu monokrystalů perovskitů MAPbBr3." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445137.
Full textGavranović, Stevan. "Monokrystaly perovskitů pro detekci elektromagnetického záření." Master's thesis, Vysoké učení technické v Brně. Fakulta chemická, 2021. http://www.nusl.cz/ntk/nusl-445139.
Full textAn, Qingzhi [Verfasser], and Yana [Akademischer Betreuer] Vaynzof. "Physics of Interfaces in MAPbI3 Perovskite Solar Cells / Qingzhi An ; Betreuer: Yana Vaynzof." Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1223546586/34.
Full textBramucci, Lorenzo. "Proprietà ottiche di cristalli di perovskite per applicazioni in rivelatori di radiazioni." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/22984/.
Full textTan, Qin [Verfasser]. "Influence of vacuum-assisted solvent evaporation on MAPbI3 layers and solar cells / Qin Tan." Berlin : Freie Universität Berlin, 2019. http://d-nb.info/1198862548/34.
Full textFrancisco, López Adrian. "Understanding the temperature and pressure dependence of the optoelectronic and structural properties of FAxMA1-xPbI3 perovskite solid solutions." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670182.
Full textLas perovskitas orgánicas/inorgánicas híbridas han atraído mucha atención desde que se introdujeron por primera vez en un dispositivo fotovoltaico hace diez años, obteniendo una eficiencia de alrededor del 3%. Desde entonces, la eficiencia de las celdas solares de perovskita ha aumentado hasta casi igualar la eficiencia de las celdas fotovoltaicas comerciales de silicio. Además, permite la fabricación de dispositivos flexibles a un precio reducido. Debido a sus propiedades optoelectrónicas excepcionalmente buenas, también se está llevando a cabo una intensa investigación para encontrar diferentes aplicaciones de este tipo de materiales, ya sea como sensores, láseres o diodos emisores de luz. Sin embargo, todavía deben abordarse algunos problemas que presentan, como la inestabilidad química o estructural en condiciones ambientales. Con el fin de comprender mejor la estabilidad estructural y el papel desempeñado por la interacción entre el catión orgánico y la red inorgánica, estudiamos las propiedades estructurales y optoelectrónicas de las perovskitas de la familia FAxMA1-xPbI3 a diferentes presiones (hasta 15 GPa) y temperaturas (de 10 a 385 K). Nuestra investigación de este material es realizada por medio de espectroscopía óptica no invasiva, como fotoluminiscencia (PL), Raman y elipsometría. En los artículos aquí recopilados se muestra el primer diagrama de fase completo de perovskitas de yoduro de plomo de cationes mixtos (formamidinio y metilamonio), en función de la temperatura y la composición. Este diagrama puede servir para evaluar la concentración relativa óptima de los cationes orgánicos para estabilizar la fase cúbica con respecto a los cambios de temperatura. Estos materiales también presentan una dependencia atípica del bandgap con temperatura, que en la literatura se atribuye exclusivamente a la renormalización del gap debido a la interacción electrón-fonón. Sin embargo, es éste trabajo mostramos que los efectos de expansión térmica también juegan un papel decisivo en la dependencia del gap con temperatura. De todas las combinaciones de la familia de perovskitas de haluro organometálico, MAPbI3 es probablemente el más estudiado debido a sus excelentes propiedades. Se sabe que la interacción entre el movimiento de los cationes orgánicos y la jaula inorgánica rígida tiene un papel decisivo en la estructura cristalina de este material. Por ejemplo, debido al desorden dinámico de las moléculas de metilamonio, la perovskita MAPbI3 adopta una fase cúbica altamente simétrica a altas temperaturas. Cuando se enfría, tanto la contracción de la red como la reducción de la simetría debido a una transición a una fase ortorrómbica bloquean las moléculas de MA en los huecos de la red inorgánica. En los artículos aquí compilados observamos por primera vez un efecto similar pero a temperatura ambiente, aplicando presión hidrostática al material. En ambos casos, el bloqueo de los cationes de MA se puede observar indirectamente a través de una reducción drástica de los anchos de línea de fonones en las mediciones Raman. Demostrando, de ésta manera, que es posible alterar las propiedades vibratorias del material aplicando una presión controlada. Finalmente, la modificación del valor del bandgap y la variación de la estructura de bandas del sistema mixto FAxMA1-xPbI3 se evalúa en función de la composición de FA con elipsometría y fotoluminiscencia.
Hybrid organic/inorganic perovskites have attracted a lot of attention since they were first introduced in a working photovoltaic device ten years ago, yielding an efficiency of around 3%. Since then, the efficiency of the perovskite solar cells has risen to almost stand toe to toe with that of commercial silicon photovoltaics. Besides, it allows the fabrication of flexible devices at an inexpensive cost. Due to its exceptionally good optoelectronic properties, there is also an intense research for different applications of this type of materials, such as sensors, lasers or light-emitting diodes. However, they still present some issues that need to be addressed, such as chemical or structural instabilities under ambient conditions. In order to better understand the structural stability, and the role played by the interaction between the organic cation and the inorganic framework, we studied the structural and optoelectronic properties of perovskites of the family FAxMA1-xPbI3 at different pressures (up to 15 GPa) and temperatures (10 to 385 K). We investigated this material by noninvasive optical spectroscopy means, such as photoluminescence (PL), Raman and ellipsometry. In the articles here compiled, the first complete phase diagram of mixed cation (formamidinium and methylammonium) lead iodide perovskites is provided as a function of temperature and composition. This serves to assess the best relative concentration of the organic cations to stabilize the cubic phase with respect to temperature changes. These materials also present an atypical dependence of the bandgap with temperature, which in the literature is ascribed exclusively to a huge electron-phonon renormalization. However, here we show that thermal expansion effects also play a decisive role in the temperature behavior of the fundamental gap. From all the combinations in the family of organometal halide perovskites, MAPbI3 is probably the most studied due to its outstanding optoelectronic properties. It is known that the interplay between the movement of the organic cations and the rigid inorganic cage has a decisive role in the crystalline structure of this material. For instance, due to the dynamic disorder of the methylammonia, MAPbI3 adopts a highly symmetric cubic phase at high temperatures. When cooling down, both the contraction of the lattice and the reduction of symmetry due to a transition to an orthorhombic phase lock the MA molecules in the cage voids. We are able to observe for the first time a similar effect but at room temperature, by applying hydrostatic pressure to the material. In both cases, the locking of the MA cations can be indirectly observed through a drastic reduction of the phonon linewidths in Raman experiments. We have shown, in this way, that it is possible to alter the vibrational properties of the material by applying a controlled hydrostatic pressure. Finally, the tuning of the bandgap and the variation of the band structure of the mixed-system FAxMA1-xPbI3 is evaluated as a function of FA composition with ellipsometry and photoluminescence.
Lin, Jia-Ching, and 林佳慶. "High transparent MAPbBr3 perovskite quantum dots solar cells." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/z27h86.
Full text國立臺北科技大學
光電工程系
106
In this study, MAPbBr3 perovskite quantum dots (QD-MAPbBr3) were prepared by as simple and rapid method.Octylammonium bromide (OABr) makes MAPbBr3 with better exciton binding energy, surface morphology and stability.Moreover,the color of the MAPbBr3 film is dark orange,but it becomes light yellow after OABr used.Therefore MAPbBr3 added with OABr have a better light transmittance.To form a nanocrystalline thin film,QD-MAPbBr3 was coated on NiO or PEDOT:PSS thin films grown on patterned ITO substrates by a spin-coating method in a nitrogen-filled glove box for devices.Subsequently, C60 and Ag were deposited on QD-MAPbBr3 films using a thermal evaporation to fabricate Glass/ITO/NiO/QD-MAPbBr3/C60/Ag perovskite solar cells,where NiO, QD-MAPbBr3, C60 were used as a hole transport layer,active layer and electron transport layer,respectively.To realize material characteristics,x-ray diffraction (XRD),scanning electron microscope (SEM),UV/VIS/NIR spectrometer,and photoluminescence spectrometers (PL) were used to analysis crystallinity,surface morphology,transmittance,and optical behavior of the QD-MAPbBr3 films.The J-V characteristics of devices were evaluated by a solar simulator system.
HUANG, YI-WEN, and 黃怡雯. "Research of MAPbBr3 Crystals Perovskite Metal-Semiconductor-Metal Photodetector." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/gxjrg6.
Full text國立臺北科技大學
光電工程系
107
This thesis is on metal-semiconductor-metal MAPbBr3 perovskite crystal photodetector. Perovskite crystals are produced by constant temperature growth. To explore the effect of different crystal growth temperature on crystal structure, we analyzed the crystal structure, crystal uniformity, and defects by XRD and PL. We found the best temperature for crystal growth and subsequently fabricated the perovskite crystal into photodetector. The current-to-voltage characteristic curve(IV curve), optical responsivity, and carrier mobility of the light detector were measured. The electrode of the photodetector is an interdigitated structure in which MAPbBr3 perovskite crystal semiconductor materials are used as a light absorbing layer. On the electrode, C60 is used as an electron transport layer, resulting in a light response exhibited at an incident light wavelength of 400 nm. When the photodetector was biased to 15V, 16V, 17V, 18V, 19V and 20V, the optimal optical responsivity is 13.13 A/W, 14.97 A/W, 17.13 A/W, 19.98 A/W, 22.48 A/W and 24.50 A/W; the carrier mobility was 14.4 cm2V-1s-1.
YANG, YI-TING, and 楊依庭. "The study of developing Al-doped ZnO/MAPbBr3 composite nanotree structure." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/v3uk85.
Full textBook chapters on the topic "MAPbCl3"
Kumari, Nitu, Sanjaykumar R. Patel, and Jignasa V. Gohel. "Optimization of MAPbI3 Film Using Response Surface Methodology for Enhancement in Photovoltaic Performance." In Nanotechnology for Energy and Environmental Engineering, 395–412. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-33774-2_17.
Full textWolf, Matthew J., Dibyajyoti Ghosh, Jolla Kullgren, and Meysam Pazoki. "Characterizing MAPbI3 with the aid of first principles calculations." In Characterization Techniques for Perovskite Solar Cell Materials, 217–36. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-12-814727-6.00010-4.
Full textConference papers on the topic "MAPbCl3"
Cai, Zhuangli, Zuolin Liu, Bin Yang, Min Yang, and Shangchao Lin. "Diffusion-Mediated Anharmonic Phonon Transport and Thermal Conductivity Reduction in Defective Hybrid Perovskites." In ASME 2021 Heat Transfer Summer Conference collocated with the ASME 2021 15th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ht2021-62601.
Full textNonni, E., D. Rossi, M. Auf der Maur, and A. Di Carlo. "Modelling of mixed-phase MAPbI3." In 2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2021. http://dx.doi.org/10.1109/nusod52207.2021.9541536.
Full textChen, Lung-Chien, Zong-Liang Tseng, Jia-Ching Lin, and Kuan-Lin Lee. "High transparent MAPbBr3 perovskite quantum dots solar cells." In 2018 7th International Symposium on Next Generation Electronics (ISNE). IEEE, 2018. http://dx.doi.org/10.1109/isne.2018.8394666.
Full textSoto-Montero, Tatiana, Wiria Soltanpoor, Suzana Kralj, Yorick A. Birkholzer, Zdenek Remes, Martin Ledinsky, Guus Rijnders, and Monica Morales-Masis. "Single-Source Pulsed Laser Deposition of MAPbI3." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518799.
Full textTan, Yang, Ben Xiang, Taoyu Zou, Chuan Liu, Kai Wang, Jun Chen, and Hang Zhou. "Optimization of PMMA:PCBM Interlayer for MAPbI3/IGZO Phototransistor." In 2020 4th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). IEEE, 2020. http://dx.doi.org/10.1109/edtm47692.2020.9117819.
Full textXu, Xiaote, Wen Luo, Mei Yuan, Songnan Du, Chuan Liu, and Hang Zhou. "Capping IGZO transistor with MAPbI3 perovskite light absorber." In 2017 IEEE 12th Nanotechnology Materials and Devices Conference (NMDC). IEEE, 2017. http://dx.doi.org/10.1109/nmdc.2017.8350557.
Full textSeshaiah, Katta Venkata, Lata Chouhan, Vasudevanpillai Biju, and Sai Santhosh Kumar Raavi. "SPR induced photoluminescne quenching in Quantum MAPbBr3 -QD/TiO2 inteface." In Optical Devices and Materials for Solar Energy and Solid-state Lighting. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/pvled.2020.pvtu3g.4.
Full textHsieh, Yu-Chin, Jun-Yu Huang, and Yuh-Renn Wu. "Optimization of MAPbI3 Perovskite Solar Cell with Nano Structures." In 2018 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD). IEEE, 2018. http://dx.doi.org/10.1109/nusod.2018.8570292.
Full textPeshek, Timothy J., Kyle M. Crowley, William Delmas, Sayantani Ghosh, Jennifer W. Williams, and Lyndsey McMillon-Brown. "On the Performance of MAPbI3 in the Space Environment." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518552.
Full textSaliba, Michael. "Bright and Fast Scintillation of Organolead Perovskite MAPbBr3 at Low Temperatures." In nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.319.
Full text