Academic literature on the topic 'Many-body quantum mechanic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Many-body quantum mechanic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Many-body quantum mechanic"
Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.
Full textShigeta, Yasuteru, Tomoya Inui, Takeshi Baba, Katsuki Okuno, Hiroyuki Kuwabara, Ryohei Kishi, and Masayoshi Nakano. "Quantal cumulant mechanics and dynamics for multidimensional quantum many-body clusters." International Journal of Quantum Chemistry 113, no. 3 (March 14, 2012): 348–55. http://dx.doi.org/10.1002/qua.24052.
Full textLuchnikov, Ilia A., Alexander Ryzhov, Pieter-Jan Stas, Sergey N. Filippov, and Henni Ouerdane. "Variational Autoencoder Reconstruction of Complex Many-Body Physics." Entropy 21, no. 11 (November 7, 2019): 1091. http://dx.doi.org/10.3390/e21111091.
Full textColcelli, A., G. Mussardo, G. Sierra, and A. Trombettoni. "Free fall of a quantum many-body system." American Journal of Physics 90, no. 11 (November 2022): 833–40. http://dx.doi.org/10.1119/10.0013427.
Full textGoihl, Marcel, Mathis Friesdorf, Albert H. Werner, Winton Brown, and Jens Eisert. "Experimentally Accessible Witnesses of Many-Body Localization." Quantum Reports 1, no. 1 (June 17, 2019): 50–62. http://dx.doi.org/10.3390/quantum1010006.
Full textFRÖHLICH, J., and U. M. STUDER. "GAUGE INVARIANCE IN NON-RELATIVISTIC MANY-BODY THEORY." International Journal of Modern Physics B 06, no. 11n12 (June 1992): 2201–8. http://dx.doi.org/10.1142/s0217979292001092.
Full textNandkishore, Rahul, and David A. Huse. "Many-Body Localization and Thermalization in Quantum Statistical Mechanics." Annual Review of Condensed Matter Physics 6, no. 1 (March 2015): 15–38. http://dx.doi.org/10.1146/annurev-conmatphys-031214-014726.
Full textWyllard, Niclas. "(Super)conformal many-body quantum mechanics with extended supersymmetry." Journal of Mathematical Physics 41, no. 5 (May 2000): 2826–38. http://dx.doi.org/10.1063/1.533273.
Full textLev, F. M. "On the many-body problem in relativistic quantum mechanics." Nuclear Physics A 433, no. 4 (February 1985): 605–18. http://dx.doi.org/10.1016/0375-9474(85)90020-x.
Full textALBEVERIO, SERGIO, LUDWIK DABROWSKI, and SHAO-MING FEI. "A REMARK ON ONE-DIMENSIONAL MANY-BODY PROBLEMS WITH POINT INTERACTIONS." International Journal of Modern Physics B 14, no. 07 (March 20, 2000): 721–27. http://dx.doi.org/10.1142/s0217979200000601.
Full textDissertations / Theses on the topic "Many-body quantum mechanic"
CARACI, CRISTINA. "Bose-Einstein condensation for two dimensional interacting bosons: mean field and Gross-Pitaevskii scalings." Doctoral thesis, Gran Sasso Science Institute, 2021. http://hdl.handle.net/20.500.12571/23210.
Full textBenedikter, Niels [Verfasser]. "Effective Evolution Equations from Many-Body Quantum Mechanics / Niels Benedikter." Bonn : Universitäts- und Landesbibliothek Bonn, 2014. http://d-nb.info/1052061079/34.
Full textSengupta, Sanghita. "Quantum Many - Body Interaction Effects In Two - Dimensional Materials." ScholarWorks @ UVM, 2018. https://scholarworks.uvm.edu/graddis/939.
Full textBertini, Bruno. "Non-equilibrium dynamics of interacting many-body quantum systems in one dimension." Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:1e2c50b9-73b3-4ca0-a5f3-276f967c3720.
Full textErne, Sebastian Anton [Verfasser], and Thomas [Akademischer Betreuer] Gasenzer. "Far-From-Equilibrium Quantum Many-Body Systems: From Universal Dynamics to Statistical Mechanics / Sebastian Anton Erne ; Betreuer: Thomas Gasenzer." Heidelberg : Universitätsbibliothek Heidelberg, 2018. http://d-nb.info/1177252805/34.
Full textHafver, Andreas. "The formalism of non-commutative quantum mechanics and its extension to many-particle systems." Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5255.
Full textENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities.
AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
Paolini, Fabio. "Dinâmica gaussiana de sistemas atômicos de Bose-Einstein frios." Universidade de São Paulo, 2005. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-24042009-145044/.
Full textWe study low-lying excitations of a spinless, homogeneous bose gas, with repulsive interaction, at zero temperature, in terms of a gaussian mean field approximation. The dynamical equations of this approximation have been linearized in small displacements from the well known static Hartree-Fock-Bogoliubov solution. We obtain a gapped continous band of excitations above a discrete branch with phonon behavior at large wavelengths. We also discuss the allowed forms of excitations and conclude that restrictions exist for the allowed deviations of the general set of gaussian mean field parameters, when they are generated in first orders by infinitesimal unitary transformations.
Ricaud, Julien. "Symétrie et brisure de symétrie pour certains problèmes non linéaires." Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0849.
Full textThis thesis is devoted to the mathematical study of two quantum systems described by nonlinear models: the anisotropic polaron and the electrons in a periodic crystal. We first prove the existence of minimizers, and then discuss the question of uniqueness for both problems. In the first part, we show the uniqueness and nondegeneracy of the minimizer for the polaron, described by the Choquard--Pekar anisotropic equation, assuming that the dielectric matrix of the medium is almost isotropic. In the strong anisotropic setting, we leave the question of uniqueness open but identify the symmetry that can possibly be degenerate. In the second part, we study the electrons of a crystal in the periodic Thomas--Fermi--Dirac--Von~Weizsäcker model, varying the parameter in front of the Dirac term. We show uniqueness and nondegeneracy of the minimizer when this parameter is small enough et prove the occurrence of symmetry breaking when it is large
Lentz, Simon. "Exact eigenstates of the Inozemtsev spin chain." Thesis, KTH, Fysik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297571.
Full textDen här avhandlingen behandlar följande frågeställning: finns det fler egenfunktioner än de redan kända till spinnkedjan med elliptisk växelverkan känd som Inozemtsevs spinnkedja? Inozemtsevs spinnkedja interpolerar mellan Heisenbergs spinnkedja och Haldane-Shastrys spinnkedja som båda ärkvant-integrerbara. Därför är det intressant att vidare utforska egenfunktionerna hos Inozemtsevs spinnkedja. Det finns kopplingar mellan spinnkedjor och spinnfria en-dimensionella kontinuumsystem, nämligen Calogero-Sutherlands system; en sådan koppling mellan Haldane-Shastrysspinnkedja och Calogero-Sutherlands modell med trigonometrisk växelverkan härleds i denna avhandling. Dessa kopplingar konstaterar att egenfunktionerna för Calogero-Sutherland systemet är egenfunktioner för spinnkedjan också. En koppling existerar mellan Calogero-Sutherland modellen med elliptisk växelverkan och Inozemtsevs spinnkedja vilket ger exakta egenfunktioner hos Inozemtsevs modell med enkla poler vid sammanfallande argument. Däremot existerar det egenfunktioner till Calogero-Sutherland modellen med elliptisk växelverkan med andra ordningens nollor vid sammanfallande argument istället för enkla poler. Det är därför intressant att undersöka om det existerar en koppling mellan dessa två system med egenfunktioner med andra ordningens nollor; det här skulle då ge exakta egenfunktioner till Inozemtsevs spinnkedja med andra ordningens nollor. Detta är huvudsyftet med avhandlingen. Egenfunktioner med andra ordningens nollor för två magnoner undersöks. Avhandlingen använder sig av analytisk metod och har prövats med numeriska metoder. De numeriska resultaten indikerar att de undersökta funktionerna i denna avhandling misslyckas med att parametrisera egenfunktionerna till Inozemtsevs spinnkedja förutom vissa specifika fall.
Hanssen, James Louis. "Controlling atomic motion: from single particle classical mechanics to many body quantum dynamics." Thesis, 2004. http://hdl.handle.net/2152/1193.
Full textBooks on the topic "Many-body quantum mechanic"
March, Norman H. The many-body problem in quantum mechanics. New York: Dover Publications, 1995.
Find full textBethe, Hans Albrecht. Quantum mechanics of one- and two-electron atoms. Mineola, N.Y: Dover Publications, 2008.
Find full textVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. 2nd ed. Hackensack, NJ: World Scientific, 2008.
Find full textVan, Neck Dimitri, ed. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Hackensack, NJ: World Scientific, 2005.
Find full textDickhoff, Willem Hendrik. Many-body theory exposed!: Propagator description of quantum mechanics in many-body systems. Singapore: World Scientific, 2006.
Find full textBalslev, Erik, ed. Schrö'dinger Operators The Quantum Mechanical Many-Body Problem. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/3-540-55490-4.
Full textErik, Balslev, ed. Schrödinger operators: The quantum mechanical many-body problem. Berlin: Springer-Verlag, 1992.
Find full textM, Eisenberg Judah, ed. Quantum mechanics of many degrees of freedom. New York: Wiley, 1988.
Find full textTrump, M. A. Classical Relativistic Many-Body Dynamics. Dordrecht: Springer Netherlands, 1999.
Find full textMathematical methods of many-body quantum field theory. Boca Raton: Chapman & Hall/CRC, 2005.
Find full textBook chapters on the topic "Many-body quantum mechanic"
Bes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 95–118. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05384-3_7.
Full textBes, Daniel R. "Many-Body Problems." In Quantum Mechanics, 109–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20556-9_7.
Full textHecht, K. T. "Many-Body Formalism." In Quantum Mechanics, 721–38. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_78.
Full textFlügge, Siegfried. "IV. Many-Body Problems." In Practical Quantum Mechanics, 379–470. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-61995-3_4.
Full textHecht, K. T. "Many-Body Techniques: Some Simple Applications." In Quantum Mechanics, 739–52. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_79.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 335–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-57974-5_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 367–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56826-8_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-662-00707-5_14.
Full textGreiner, Walter. "Elementary Aspects of the Quantum-Mechanical Many-Body Problem." In Quantum Mechanics, 259–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-30374-0_14.
Full textSalasnich, Luca. "Quantum Mechanics of Many-Body Systems." In UNITEXT for Physics, 139–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-93743-0_9.
Full textConference papers on the topic "Many-body quantum mechanic"
Briegel, Hans. "Entanglement in quantum many-body systems far away from thermodynamic equilibrium." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Full textZhao, Xuncheng, Mingfan Li, Qian Xiao, Junshi Chen, Fei Wang, Li Shen, Meijia Zhao, et al. "AI for Quantum Mechanics: High Performance Quantum Many-Body Simulations via Deep Learning." In SC22: International Conference for High Performance Computing, Networking, Storage and Analysis. IEEE, 2022. http://dx.doi.org/10.1109/sc41404.2022.00053.
Full textKoch, S. W., F. Jahnke, and H. C. Schneider. "Theory of Semiconductor Microcavities and Lasers." In Quantum Optoelectronics. Washington, D.C.: Optica Publishing Group, 1995. http://dx.doi.org/10.1364/qo.1995.qfb1.
Full text