Dissertations / Theses on the topic 'Manufacturing of Metals'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Manufacturing of Metals.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Orrling, Diana. "Towards Abatement of Selected Emissions from Metals Manufacturing." Doctoral thesis, KTH, Materialens processvetenskap, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-26107.
Full textQC 20120326
Voisey, Kathleen Theresa O'Sullivan. "Laser drilling of metals and ceramics." Thesis, University of Cambridge, 2002. https://www.repository.cam.ac.uk/handle/1810/272329.
Full textFan, Zongyue. "A Lagrangian Meshfree Simulation Framework for Additive Manufacturing of Metals." Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619737226226133.
Full textShen, Ninggang. "Microstructure prediction of severe plastic deformation manufacturing processes for metals." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6282.
Full textHolt, Linda Ann. "A Cross-Regional Comparison of Fabricated Metals' Manufacturing Sector Resiliency." ScholarWorks, 2015. https://scholarworks.waldenu.edu/dissertations/1704.
Full textJefferson, Bea A. "Clusters and cluster policy : advanced manufacturing and metals industries in South Yorkshire." Thesis, University of Sheffield, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412792.
Full textBerglund, Lina, Filip Ivarsson, and Marcus Rostmark. "Crucial Parameters for Additive Manufacturing of Metals : A Study in Quality Improvement." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254785.
Full textProduktion genom Additiv Tillverkning möjliggör tillverkande av skräddarsydda produkter i små batcher och med mindre material än vid traditionell tillverkning. Det är ett mer hållbart tillverkningssätt och mer passande för nischprodukter, men innebär nya produktionskrav för att säkerhetsställa bra kvalitet. Målet med denna studie är att definiera de viktigaste parametrarna vid Additiv Tillverkning av produkter i metall och föreslå verktyg för att förbättra dem. Detta genom analys av tidigare studier och utvärdering av klassiska produktionsrutiner för Selective Laser Melting. Resultaten från denna studie visar att porositet och formfel är de vanligaste faktorerna som leder till bristande kvalitet. För att undvika detta är de viktigaste parametrarna att ta i beaktande; parametrar kopplade till "laser freeform fabrication"-system, distans mellan laserstrålar, kraft på lasern, lagertjocklek, skanningsmönster, fart på skanningen och flytbarhet på pulvret. Slutsatsen pekar även på att avgörande parametrar inom Additiv Tillverkning beror på definitionen av kvalitet för en speciell produkt och kan därför variera. Genom kontinuerlig insamling och analys av data kommer förbättringen av kvalitet förenklas markant.
Moseley, Steven Glyn. "The diffusion bonding of ceramics to metals by hot isostatic pressing." Thesis, University of Sheffield, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364380.
Full textDavis, Trevor. "Formability and strength of sheet metals subjected to complex strain paths." Thesis, Aston University, 1985. http://publications.aston.ac.uk/11872/.
Full textPAKKANEN, JUKKA ANTERO. "Designing for Additive Manufacturing - Product and Process Driven Design for Metals and Polymers." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2714732.
Full textHurd, Trace Q. "Chemistry, Detection, and Control of Metals during Silicon Processing." Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4771/.
Full textAl-Dira'a, Ali Abood Essa. "An investigation into the friction welding of ceramics to metals and nimonic to nimonic." Thesis, Queen's University Belfast, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.357458.
Full textJuckem, John R. "Aligning Sheboygan Area School District's metals/manufacturing machine tool curriculum to meet local needs." Menomonie, WI : University of Wisconsin--Stout, 2005. http://www.uwstout.edu/lib/thesis/2005/2005juckemj.pdf.
Full textMylett, Terri. "The intensification of labour market polarisation in metals manufacturing in Australia in the 1990s." Thesis, School of Management, Marketing and Employment Relations, 2003. https://ro.uow.edu.au/theses/2034.
Full textDimitrov, D., P. A. Hugo, and B. Deez. "Suitability of layer manufacturing technologies for rapid tooling development in investment casting of light metals." Journal for New Generation Sciences, Vol 8, Issue 2: Central University of Technology, Free State, Bloemfontein, 2010. http://hdl.handle.net/11462/558.
Full textRapid tooling (RT) in the context of this research presents the possibility of improving the traditional investment casting process by shortening lead times while still maintaining affordable costs and required quality. Various rapid prototyping processes are available that can be used to create direct metal, polymer or wooden dies for this casting technology. This paper presents results gained in an AMTS project, focusing on RT development for investment casting of light metals. One of the most widely used layer manufacturing processes available in South Africa is selective laser sintering. A machine produced by the German manufacturer EOS (process known as laser sintering) utilising this technology was selected for the study. Two of the materials that are suitable for rapid die making are used, which in tum reflects different mechanical properties and process economics. A standard benchmark part was used as a study base. Two dies were built, one in alumide and one in polyamide. A comprehensive measurement programme was conducted, followed by an appropriate statistical analysis and evaluation regarding accuracy and surface finish. A number of wax patterns were produced. The best wax patterns from each die were selected and evaluated. The subsequently produced castings in AI, Mg and TI were further examined and evaluated. Various issues concerning the reinforcement, wax injection, pattern removal, accuracy and surface finish of the dies are discussed in the paper. The research concludes that rapid tooling techniques can be successfully used for creating accurate dies in order to shorten lead times in the investment casting process chain.
Mun, Jiwon. "Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting." Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc822758/.
Full textKasonde, Maweja. "Optimising the mechanical properties and microstructure of armoured steel plate in the quenched and tempered condition." Pretoria : [s.n.], 2005. http://upetd.up.ac.za/thesis/available/etd-11022006-192139.
Full textGriffiths, Robert Joseph. "Dynamic and Post-Dynamic Microstructure Evolution in Additive Friction Stir Deposition." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104664.
Full textDoctor of Philosophy
The microstructure of a material describes the atomic behavior at multiple length scales. In metals this microstructure generally revolves around the behavior of millions of individual crystals of metal combined to form the bulk material. The state and behavior of these crystals and the atoms that make them up influence the strength and usability of the material and can be observed using various high fidelity characterization techniques. In metal additive manufacturing (i.e. 3D printing) the microstructure experiences rapid and severe changes which can alter the final properties of the material, typical to a detrimental effect. Given the other benefits of additive manufacturing such as reduced costs and complex part creation, there is desire to predict and control the microstructure evolution to maximize the usability of printed material. Here, the microstructure evolution in a solid-state metal additive manufacturing, Additive Friction Stir Deposition (AFSD), is investigated for different metal material systems. The solid-state nature of AFSD means no melting of the metal occurs during processing, with deformation forcing material together layer by layer. The conditions experienced by the material during printing are in a thermomechanical regime, with both heating and deformation applied, akin to common blacksmithing. In this work specific microstructure evolution phenomena are discussed for multiple materials, highlighting how AFSD processing can be adjusted to change the resulting microstructure and properties. Additionally, specific AFSD process interactions are studied and described to provide better insight into cumulative microstructure evolution throughout the process. This work provides the groundwork for investigating microstructure evolution in AFSD, as well as evidence and results for a number of popular metal systems.
Liou, Jiann-Haw. "Study of stress developments in axi-symmetric products fabricated by forging and machining /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9737869.
Full textWolcott, Paul Joseph. "Ultrasonic Additive Manufacturing: Weld Optimization for Aluminum 6061, Development of Scarf Joints for Aluminum Sheet Metal, and Joining of High Strength Metals." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1449162671.
Full textLindén, Marcus. "Merging Electrohydrodynamic Printing and Electrochemistry : Sub-micronscale 3D-printing of Metals." Thesis, Uppsala universitet, Tillämpad materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-330958.
Full textJohnston, Andrew. "Knowledge spillovers among small firms : a case study of South Yorkshire's advanced manufacturing and metals cluster." Thesis, University of Sheffield, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.421131.
Full textKhan, Abdullah. "An investigation into improving the functioning of manufacturing executions system at the Impala base metals refinery." Thesis, Stellenbosch : University of Stellenbosch, 2009. http://hdl.handle.net/10019.1/6408.
Full textTonelli, Lavinia <1987>. "Additive Manufacturing by LPBF and WAAM of metals: correlation between production process, microstructure and mechanical properties." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amsdottorato.unibo.it/9629/1/LaviniaTonelli_PhDThesis.pdf.
Full textPromoppatum, Patcharapit. "Numerical Modeling of Thermal and Mechanical Behaviors in the Selective Laser Sintering of Metals." Research Showcase @ CMU, 2018. http://repository.cmu.edu/dissertations/1181.
Full textMoneghan, Matthew John. "Microstructural Deformation Mechanisms and Optimization of Selectively Laser Melted 316L Steel." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/104170.
Full textMaster of Science
Many researchers have studied the impacts of laser parameters on the bulk material properties of SLM printed parts; few if any have studied how these parts break at a microstructural level. In this work we show how SLM printed parts with complex microstructures including grains, meltpools, and cells, deform and break. The cellular network that occurs in some SLM printed parts leads to a multi-material hierarchical structure, with a stiff network of thin boundaries, and a bulk "matrix" of soft cell material. This leads to similar properties as some composites, whereby the stiff network of cell boundaries leads to increased damage tolerance. We show both computationally through finite element analysis, and experimentally through multi-material 3D fabrication, that the microstructure leads to increased crack length in failure, as well as lower toughness loss and strength loss in the event of a crack. Essentially, the complex nature of the formation of these parts (high heating and cooling rates from laser melting) leads to a beneficial microstructure for damage tolerance that has not been studied from this perspective before.
Palanivel, Sivanesh. "Thermomechanical Processing, Additive Manufacturing and Alloy Design of High Strength Mg Alloys." Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc849628/.
Full textSchunemann, Esteban. "Paste deposition modelling : deconstructing the additive manufacturing process : development of novel multi-material tools and techniques for craft practitioners." Thesis, Brunel University, 2015. http://bura.brunel.ac.uk/handle/2438/13803.
Full textStephenson, Richard C. "Comparing the Feasibility of Cutting Thin-Walled Sections from Five Commonly Used Metals Utilizing Wire Electric Discharge Machining." Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1948.pdf.
Full textSquires, Lile P. "Friction Bit Joining of Dissimilar Combinations of Advanced High-Strength Steel and Aluminum Alloys." BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4104.
Full textPeterson, Rebecca Hilary. "Friction Bit Joining of Dissimilar Combinations of DP 980 Steel and AA 7075." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6030.
Full textMartins, Marcelo Matos. "Análise da extrusão de metais pelo método dos volumes finitos." [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264430.
Full textTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-21T04:08:51Z (GMT). No. of bitstreams: 1 Martins_MarceloMatos_D.pdf: 11233728 bytes, checksum: 163e9bff5c80ef1c025e8c1083bed472 (MD5) Previous issue date: 2012
Resumo: A simulação numérica computacional é nos dia de hoje frequentemente aplicada na elaboração de projetos ou análise dos processos de conformação plástica dos metais. A extrusão de metais é um dos principais processos de conformação plástica e largamente aplicado na fabricação de produtos e peças na indústria metal-mecânica. Tradicionalmente, essas análises são feitas utilizando o Método dos Elementos Finitos. Entretanto, há um aumento no interesse dos pesquisadores na utilização do Método dos Volumes Finitos para este fim. A literatura sugere que o escoamento na extrusão de metais pode ser analisado pela formulação do escoamento plástico (flow Formulation). No qual, pode-se assumir como o escoamento de um fluido incompressível e viscoso. Essa hipótese pode ser assumida já que o processo de extrusão é um processo isocórico. O método MacCormack é geralmente aplicado para simular os escoamentos de fluidos compressíveis pelo Método do Volumes Finitos. No escoamento de um fluido incompressível ou no escoamento de metal não existe uma equação para a evolução da variável pressão, sendo necessário a utilização de um método de acoplamento entre a pressão e a velocidade. Este trabalho trata da apresentação de um novo esquema numérico para a determinação de informações sobre o escoamento de um fluido incompressível e viscoso e sobre o escoamento de metal em um processo de extrusão direta, ambos em regime permanente. As equações governantes foram discretizadas pelo Método dos Volume Finitos através do Método de MacCormack explícito para uma malha estruturada e co-localizada. O acoplamento entre a pressão e a velocidade foi feita pelo método SIMPLE. O novo esquema numérico foi aplicado em escoamentos incompressíveis e viscosos para a glicerina e em escoamento de metais em processos de extrusão direta para o chumbo e uma liga de alumínio. O escoamento da glicerina foi avaliado para o caso entre placas paralelas e em dutos circulares sob condição axissimétrica e obtiveram boa concordância em relação ao resultados analíticos. Os campos de velocidades obtidos para a extrusão de metal alcançaram rápida convergência, em torno de 20000 iterações, essa quantidade de iterações foi inferior a quantidade que a glicerina necessitou. Para todos os materiais analisados os resultados numéricos tiveram boa concordância em comparação com resultados analíticos e experimentais obtidas da literatura. O método MacCormack produziu resultados coerentes para o escoamento da glicerina e dos metais sem a necessidade da adição de viscosidade artificial, como sugere a sua definição. Portanto, os resultados numéricos sugerem que o método MacCormack com o SIMPLE pode ser aplicado na resolução de escoamentos de fluidos incompressíveis e na conformação de metais além da sua tradicional aplicação na resolução de escoamentos compressíveis
Abstract: Computational numerical simulation is nowadays largely applied in the design and analysis of metal forming process. Extrusion of metals is one main forming process largely applied in the manufacturing of metallic products or parts. Historically, the Finite Element Method has been applied for decades in extrusion analysis. However, recently in the academy, there is a trend to use Finite Volume Method: literature suggests that metal flow by extrusion can be analysed by the flow formulation. Thus, metal flow can be modelled such us an incompressible viscous fluid. This hypothesis can be assumed because extrusion process is an isochoric process. The MacCormack Method is commonly used to simulate compressible fluid flow by the finite volume method. However, metal extrusion and incompressible fluid flow do not present state equations for the evolution of pressure, and therefore, a velocity-pressure coupling method is necessary to obtain a consistent velocity and pressure fields. Present work proposes a new numerical scheme to obtain information about both incompressible viscous fluid flow and metal flow in the extrusion process, in steady state. The governing equations were discretized by Finite Volume Method, using the Explicit MacCormack Method to structured and collocated mesh. The SIMPLE Method was applied to attain pressure-velocity coupling. These new numerical scheme was applied to incompressible viscous fluid flow of glycerine and forward extrusion process of lead and an aluminium alloy. The numerical results for glicerine fluid flow for parallel plates and axisymmetric flow in circular tube cases had quite good agreement in relation to the analytical solutions. The incompressible metal extrusion velocity fields achieved faster convergence than for liquid glycerine after 20.000 iterations and a good agreement with analytical and experimental results obtained from literature. The MacCormack Method applied for both glycerine and metals produced consistent results without the need of artificial viscosity as employed by the compressible flow simulation approaches. Hence, the present numerical results also suggest that MacCormack Method and SIMPLE can be applied in the solution of incompressible fluid flow and metal forming processes in adition to the traditional application for compressible fluid flow
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Morris, Jeffrey D. "Development of Experimental and Finite Element Models to Show Size Effects in the Forming of Thin Sheet Metals." ScholarWorks@UNO, 2019. https://scholarworks.uno.edu/td/2676.
Full textSlater, Rebecca Victoria. "Medieval iron wire : manufacture, materials and methods; an archaeological and scientific investigation of the manufacturing technology and use of specialist metals in the production of iron wire and wire fish hooks in medieval England." Thesis, University of Bradford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.525475.
Full textGardner, Rebecca. "An Experimental Investigation of Friction Bit Joining in AZ31 Magnesium and Advanced High-Strength Automotive Sheet Steel." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2159.
Full textAtwood, Lorne Steele. "Friction Bit Joining of Dissimilar Combinations of GADP 1180 Steel and AA 7085 – T76 Aluminum." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6400.
Full textTurner, David Bentley. "An assessment of Magic Metal Company." Online version, 1998. http://www.uwstout.edu/lib/thesis/1998/1998turnerd.pdf.
Full textPEDEMONTE, LAURA CHIARA. "Laser in Metal Additive Manufacturing." Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/973605.
Full textJaques, Mark W. S. "Design by manufacturing simulation." Thesis, University of Portsmouth, 1994. https://researchportal.port.ac.uk/portal/en/theses/design-by-manufacturing-simulation(73339fbe-283d-4a11-a225-33cabf5e7332).html.
Full textFarshbaf, Mohamad Reza. "Mixed metal forming/machining flexible manufacturing system." Thesis, Open University, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277924.
Full textByron, Andrew James. "Qualification and characterization of metal additive manufacturing." Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/104315.
Full textThesis: S.M. in Engineering Systems, Massachusetts Institute of Technology, Department of Aeronautics and Astronautics, 2016. In conjunction with the Leaders for Global Operations Program at MIT.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 119-123).
Additive manufacturing (AM) has emerged as an effective and efficient way to digitally manufacture complicated structures. Raytheon Missile Systems seeks to gain limited production capability with metals AM, which can only be achieved with qualified, predictable processes that reduce variation. The project documented in this thesis produced two results needed to qualify AM for use on flight-critical parts: i) creation of a standard qualification process building upon Raytheon's product development knowledge, and ii) selection and identification of key metals AM process factors and their corresponding experimental responses. The project has delivered a qualification test plan and process that will be used next year to drive adoption and integration of Raytheon's metals AM technology. The first phase of the designed experiment on AM process factors was completed by experimenting with coupon orientation, position on the build platform, coupon shape and hot isostatic pressing (HIP) post-treatment for an Al alloy (AlSi10Mg) produced via laser powder bed fusion using 400-watt laser equipment. Only coupon orientation had a statistically significant effect on dimensional accuracy, increasing the variance of y-axis (within the build plane) error by ~50%, although this is considered a small increase. HIP decreased yield and ultimate stresses by ~60% while increasing ultimate strain by ~250%. Vertical orientation of coupons decreased yield and ultimate stresses by ~25% and increased ultimate strain by ~30%. Small coupon area on the build platform, associated with thin rectangle coupons, decreased yield stress and ultimate strain by ~5%. The processes and case study from this thesis represent a general advance in the adoption of metals AM in aerospace manufacturing.
by Andrew James Byron.
M.B.A.
S.M. in Engineering Systems
McCarthy, David Lee. "Creating Complex Hollow Metal Geometries Using Additive Manufacturing and Metal Plating." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/43530.
Full textMaster of Science
Nyembwe, Kasongo Didier. "Tool manufacturing by metal casting in sand moulds produced by additive manufacturing processes." Thesis, Bloemfontein : Central University of Technology, Free State, 2012. http://hdl.handle.net/11462/162.
Full textIn this study an alternative indirect Rapid Tooling process is proposed. It essentially consists of producing sand moulds by Additive Manufacturing (AM) processes followed by casting of tools in the moulds. Various features of this tool making method have been investigated. A process chain for the proposed tool manufacturing method was conceptually developed. This process chain referred to as Rapid Casting for Tooling (RCT) is made up of five steps including Computer Aided Design (CAD) modeling, casting simulation, AM of moulds, metal casting and finishing operations. A validation stage is also provided to determine the suitability of the tool geometry and material for RCT. The theoretical assessment of the RCT process chain indicated that it has potential benefits such as short manufacturing time, low manufacturing cost and good quality of tools in terms of surface finish and dimensional accuracy. Focusing on the step of AM of the sand moulds, the selection of available AM processes between the Laser Sintering (LS) using an EOSINT S 700 machine and Three Dimensional Printing using a Z-Corporation Spectrum 550 printer was addressed by means of the Analytic Hierarchy Process (AHP). The criteria considered at this stage were manufacturing time, manufacturing cost, surface finish and dimensional accuracy. LS was found to be the most suitable for RCT compared to Three Dimensional Printing. The overall preferences for these two alternatives were respectively calculated at 73% and 27%. LS was then used as the default AM process of sand moulds in the present research work. A practical implementation of RCT to the manufacturing of foundry tooling used a case study provided by a local foundry. It consisted of the production of a sand casting pattern in cast iron for a high pressure moulding machine. The investigation confirmed the feasibility of RCT for producing foundry tools. In addition it demonstrated the crucial role of casting simulation in the prevention of casting defects and the prediction of tool properties. The challenges of RCT were found to be exogenous mainly related to workmanship. An assessment of RCT manufacturing time and cost was conducted using the case study above mentioned as well as an additional one dealing with the manufacturing of an aluminium die for the production of lost wax patterns. Durations and prices of RCT steps were carefully recorded and aggregated. The results indicated that the AM of moulds was the rate determining and cost driving step of RCT if procurement of technology was considered to be a sunk cost. Overall RCT was found to be faster but more expensive than machining and investment casting. Modern surface analyses and scanning techniques were used to assess the quality of RCT tools in terms of surface finish and dimensional accuracy. The best surface finish obtained for the cast dies had Ra and Rz respectively equal to 3.23 μm and 11.38 μm. In terms of dimensional accuracy, 82% of cast die points coincided with die Computer Aided Design (CAD) data which is within the typical tolerances of sand cast products. The investigation also showed that mould coating contributed slightly to the improvement of the cast tool surface finish. Finally this study also found that the additive manufacturing of the sand mould was the chief factor responsible for the loss of dimensional accuracy. Because of the above, it was concluded that light machining will always be required to improve the surface finish and the dimensional accuracy of cast tools. Durability was the last characteristic of RCT tools to be assessed. This property was empirically inferred from the mechanical properties and metallographic analysis of castings. Merit of durability figures of 0.048 to 0.152 were obtained for the cast tools. It was found that tools obtained from Direct Croning (DC) moulds have merit of durability figures three times higher than the tools produced from Z-Cast moulds thus a better resistance to abrasion wear of the former tools compared to the latter.
GALATI, MANUELA. "Design of product and process for Metal Additive Manufacturing - From design to manufacturing." Doctoral thesis, Politecnico di Torino, 2017. http://hdl.handle.net/11583/2688272.
Full textTrumper, Richard Leslie. "Fabrication of metal matrix composites by low pressure liquid metal infiltration." Thesis, University of Bath, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358941.
Full textScott, Andrew James. "Automated nesting of sheet metal parts." Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320561.
Full textKodira, Ganapathy D. "Investigation of an Investment Casting Method Combined with Additive Manufacturing Methods for Manufacturing Lattice Structures." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc283786/.
Full textRanjan, Rajit. "Design for Manufacturing and Topology Optimization in Additive Manufacturing." University of Cincinnati / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1439307951.
Full textHoltz, Heath M. (Heath Mikal). "Re-sourcing manufacturing processes in metal forming operations." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/34859.
Full textIncludes bibliographical references (p. 75-76).
Deciding which activities to conduct in-house and which to outsource has become increasingly important due to its implications on a company's supply chain and overall business model. A number of factors can lead a company to outsource manufacturing processes. As a result of this outsourcing, the supply chain can become very complex and overwhelming to manage. This thesis will analyze this situation from the perspective of one manufacturer, American Axle and Manufacturing, Inc. (AAM). AAM's Metal Formed Products (MFP) Division currently has a number of challenges: rising steel prices, fixed labor costs and declining sales. All these factors have significantly impacted profitability, forcing senior management to take a comprehensive look at the division and consider developing a plan to improve divisional operations. As a part of this plan, MFP Division's senior management asked for a thorough look into all of the manufacturing processes performed by the division both internally and by outside suppliers. In addition to identifying the processes and suppliers, senior management sought to highlight opportunities for improving the process flow through the re-sourcing of manufacturing processes. This project develops a framework to analyze and evaluate these re-sourcing decisions. This framework employs a five-step approach and incorporates a number of diverse analytical tools. Process flow mapping provided a tool to visually highlight the best opportunities to resource. In addition to a visual representation, process flow mapping also provided the data to financially evaluate alternatives. Strategic and market factors were identified in order to target and prioritize re-sourcing efforts.
(cont.) This framework provides a structure for sourcing decisions that balances the financial and strategic concerns. The project concluded in a $2M investment to re-source heat treating to AAM facilities.
by Heath M. Holtz.
S.M.
M.B.A.
Pereira, M. F. V. T., M. Williams, and R. Bruwer. "Rapid die manufacturing using direct laser metal deposition." Journal for New Generation Sciences, Vol 7, Issue 3: Central University of Technology, Free State, Bloemfontein, 2009. http://hdl.handle.net/11462/542.
Full textGlobal issues such as energy and climate changes have impacted on both the automotive and aerospace industries, forcing them to adopt measures to produce products that consume fewer combustibles and emit less carbon dioxide. Making vehicles lighter is one of the logical ways of reducing fuel consumption. The need for light components, able to fulfil technical and quality specifications, led to market growth for tooling that is able to mass produce parts using manufacturing processes such as high pressure die casting. Competitive pressures to reduce the lead time required for tooling-up has also increased dramatically. For this reason research into various methods, techniques and approaches to tool manufacture is being undertaken globally. This paper highlights the work undertaken at the CSIR on the issue of rapid die manufacturing through the application and evaluation of a rapid prototyping technique and coating technologies applied to die components of a high pressure casting die for the production of aluminium components. Criteria for determining suitability were developed against which the technique was evaluated that included time, cost and life-expectancy. Results of accelerated testing procedures to evaluate the die material produced by the rapid prototyping technique and surface coatings and treatments of die materials for their resistance to washout, erosion, heat checking and corrosion in a high pressure die casting environment, are presented. The outcomes of this research will be used for further development and application of specific techniques, design principles and criteria for this approach.