Dissertations / Theses on the topic 'Manganese ore'

To see the other types of publications on this topic, follow the link: Manganese ore.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 49 dissertations / theses for your research on the topic 'Manganese ore.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Apostolopoulos, D. G. "The manganese oxide ore deposits of the Nevrokopi district, Macedonia, Greece." Thesis, University of Reading, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Akil, Cem. "Optimization Of Conditions To Produce Manganese And Iron Carbides From Denizli-tavas Manganese Ore By Solid State Reduction." Master's thesis, METU, 2007. http://etd.lib.metu.edu.tr/upload/12608188/index.pdf.

Full text
Abstract:
Main purpose of this study was to find the optimum conditions to produce a charge material for ferromanganese production or steelmaking with high content of iron and manganese carbides from Denizli-Tavas manganese ore by carbothermic reduction and investigate the effects of temperature, time, amount of active carbon addition and CaO addition on this reduction. The ore was calcined and then mixed with active carbon and CaO. Experiments were performed in a horizontal tube furnace that can be heated up to 1700 º
C with MoSi2 heating elements. After each experiment weight loss data were obtained and converted to percentage reduction. X-Ray, SEM-EDS and chemical analyses were done in order to determine whether or not carbide phases have been obtained, and calculate the composition of the product. Considering the experimental results, the optimum conditions found for reduction of Denizli-Tavas manganese ore were 1250 °
C, 4 hours, 100% of stoichiometric amount of active carbon and 5% CaO addition. Under the optimum conditions 83.85% reduction of calcined ore was obtained.
APA, Harvard, Vancouver, ISO, and other styles
3

Åberg, Franz. "Mineralogical Study of Manganese Bearing Skarn Minerals and Manganese Content in Magnetite in the Dannemora Skarn Iron Ore Deposit." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-263473.

Full text
Abstract:
The Dannemora skarn iron ore deposit is located in the northeastern part of Bergslagen. The deposit has been mined from the 1400’s and stopped in 1992, the mine was reopen in 2012 and it will close in 2015. The Dannemora deposit is hosted by 1.9 Ga old sedimentary and volcanic rocks. The deposit consists of both manganese rich and manganese poor iron ore. The purpose of this study is to investigate the controlling factors for manganese content in both magnetite and surrounding silicate minerals, especially when garnets is present. Also the mineral assemblage and association with different host rocks lithologies shall be investigated. Petrographical and chemical studies indicate the occurrence of both calcic amphibole and Mg-Fe-Mn-Li type amphibole. The calcic amphibole is found in the majority of the samples and is dominant in manganese poor samples where as Mg-Fe-Mn-Li-type amphibole is more abundant in the manganese rich samples. Generally in the manganese rich samples garnet and epidote become more abundant, particularly if the sample is taken close to a volcanic section.
Skarn-järnmalmsfyndigheten i Dannemora är belägen i den nordöstra delen av Bergslagen. Järnmalm och mindre sulfidmineraliseringar har blivit brutna sedan 1400-talet. Gruvan stängde 1992 men togs i produktion igen under 2012. Gruvan stängs återigen under 2015. Fyndigheten är omgiven av 1.9 Ga gamla sedimentära och vulkaniska bergarter. Järnmalmsfyndigheten innehåller både manganrika och manganfattiga järnmalmer. Syftet med denna studie är att undersöka varför fyndigheten har förhöjda halter av mangan. Förändringar av manganhalter och olika värdbergarter borde ge en annorlunda mineralsammansättning i de olika miljöerna. För att svara på dessa frågor skall både mikroskopiska och kemiska undersökningar göras för att bestämma och identifiera olika mineralogiska associationer. Petrografiska och kemiska studier indikerar två olika huvudtyper av amfiboler: kalciumhaltiga amfiboler och Mg-Fe-Mn-Li-amfiboler. Kalciumamfibolerna är generellt mer spridda i proverna medan Mg-Fe-Mn-Li-amfibolerna är mer koncentrerade till de mer manganrika sektionerna. När koncentrationen av mangan är högre blir granater och även epidot och olivin vanligare, speciellt närmare vulkaniska bergarter.
APA, Harvard, Vancouver, ISO, and other styles
4

Kiracofe, Zachary Aaron. "Assessing the geologic sources of manganese in the Roanoke River watershed." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52890.

Full text
Abstract:
Elevated manganese (Mn) concentrations have been measured in groundwater within the Roanoke River watershed, Virginia. Concentrations of Mn often exceed the secondary drinking water standard. A historic belt of Mn ores, the James River-Roanoke River Manganese District (JRRRMD), occurs in the eastern part of the watershed. The project objectives were to 1) evaluate the formation of the JRRRMD ore deposits and 2) analyze existing groundwater chemistry data to evaluate sources and processes that control groundwater Mn. Analysis of ore minerals, morphologies, and chemistry provides support that the ore deposits are supergene in origin, consistent with previous work. Spatial correlations between Mn ore locations and stream terrace deposits support a model of ore formation in which Mn-oxides were precipitated near discharge zones as anoxic groundwater mixed with oxic groundwater. Terrace deposits present at elevations higher than modern streams suggests that topography has been inverted, allowing ores to be found at higher elevations than what is typically associated with ores formed in discharge zones. Analysis of groundwater chemistry data shows positive correlations between Mn, calcium and bicarbonate concentrations in groundwater, suggesting that carbonate-bearing lithologies are probable sources of Mn to groundwater. Regionally, groundwater flows toward the Roanoke River where the flowpath terminus is marked by elevated Mn. The inverse correlation of Mn with dissolved oxygen suggests that reducing conditions that develop along flowpaths allow for Mn to persist in groundwater. Overall, results suggest that the same processes that allowed for formation of the JRRRM ore deposits continue to occur today.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
5

Harawa, Esau Tonderai. "Mineralogy and geochemistry of structurally-controlled metasomatic alteration of carbonate-rich manganese ore at Mamatwan Mine, Kalahari Manganese Field." Thesis, Rhodes University, 2017. http://hdl.handle.net/10962/4717.

Full text
Abstract:
The Kalahari Manganese Field (KMF) located in the Northern Cape Province about 700km south west of Johannesburg contains 80% of the world manganese ore reserves. Mamatwan Mine is hosted within the low grade Mamatwan type ore and is located in the southernmost tip of the KMF. This mine is an open pit mine which is divided into three benches namely the top cut, middle cut and bottom cut. These three benches are structurally controlled by faults which influence the overall grade of the manganese ore. This study is a follow up work to the previous two studies carried out at Wessels Mine and Mamatwan Mine by (Gutzmer and Beukes) in 1995 and 1996 respectively with regards to alteration processes around fault controlled systems in which they concluded that epithermal fluids caused local reduction and bleaching of ore followed by oxidation and carbonate leaching of manganese ore through ascending oxidized groundwater. Metasomatic activity around fault controlled systems is controlled by three main processes namely redistribution, enrichment and depletion. These processes are determined by mobility/immobility of elements from the fault which are introduced into the pre-existing braunite carbonate rich ore. Elements such as Ca, Mg, Si, Fe, C and Mn interact with pre-existing ore due to temperature, fluid pressure, physico-chemical property of fluid gradient. Structurally, faulting and folding contribute to the movement of elements as one end of the system gets depleted the other end of the system gets enriched and vice versa. To better understand this metasomatic activity, it is crucial to conduct mass balance studies of these elements. Grant (1986) introduced the isocon diagram which is a modification of Gresen’s equation (1967) to ascertain which elements are directly or indirectly related to alteration through enrichment and depletion of Ca, Mg, Si, Fe, C and Mn. As the section approaches from altered to less altered manganese ore the mineral chemistry gradually changes from a manganese rich matrix composed of manganomelane and todorokite to a carbonate rich matrix composed of braunite, dolomite, kutnohorite and Mn-rich calcites.
APA, Harvard, Vancouver, ISO, and other styles
6

Cardakli, Ismail Seckin. "Production Of High Carbon Ferromanganese From A Manganese Ore Located In Erzincan." Master's thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/12612604/index.pdf.

Full text
Abstract:
Main purpose of this study was to investigate the production of high carbon ferromanganese by smelting a manganese ore located in Erzincan. Time, charge basicity, fluorspar addition and coke to ore weight ratio were used as experimental variables. After characterization of the ore, a mixture of 100 grams of uncalcined manganese ore and carefully weighed amounts of coke powder, lime, fluorspar and scrap iron were put into a conical graphite crucible. The graphite crucible with its contents was covered with a graphite lid and placed in an electronically controlled muffle furnace. The furnace was heated to 1600 oC and held at this temperature for a predetermined time and cooled to room temperature. The crucible was taken out of the furnace and the metal and slag phases formed were removed from the crucible by breaking the crucible and carefully weighed. Finally, the metal and slag phase were subjected to chemical analysis. The experimental results show that Erzincan manganese ore can be used in the production of high carbon ferromanganese.
APA, Harvard, Vancouver, ISO, and other styles
7

Upp, Oden Karen Lee 1959. "Bacterially catalyzed reductive dissolution of manganese for the liberation of silver from refractory ore." Thesis, The University of Arizona, 1991. http://hdl.handle.net/10150/277986.

Full text
Abstract:
This research focuses on the development of a biological treatment process to enhance silver recovery from a low grade, silver-bearing manganese ore. These manganese oxide ores have been classified as refractory and thereby characterized noncommercial for the recovery and production of silver by conventional methods. A species of Bacillus polymyxa, which was isolated from the Crystal Hill Mine in southern Colorado, facilitated the reductive dissolution of manganese dioxide. Insoluble Mn(IV) was reduced to soluble Mn(II), and silver ions contained within the manganese oxide lattice were released and/or exposed, making them amenable to cyanide extraction. A direct relationship was observed between the biological transformation of Mn(IV) to a lower valence and increased silver recovery following cyanidation. Batch studies, with ore passing minus 10 mesh (0.14 inch diameter), had silver recoveries that were twice the amount extracted by chemical treatment alone over a 120-hour period. However, rates of reductive dissolution diminished significantly as ore particle size increased and specific surface area decreased.
APA, Harvard, Vancouver, ISO, and other styles
8

Bodiba, A. L. "X-ray spectroscopic method development for quantitative analysis of manganese ore in the Kalahari basin." Thesis, Vaal University of Technology, 2016. http://hdl.handle.net/10352/386.

Full text
Abstract:
Manganese is a crucial element in the manufacturing of steel, which in turn is an essential material in many industries including construction and transportation. Its use in the steel making process results in increased strength and resistance. Manganese samples are analyzed quantitatively by volumetric titration techniques. These wet chemistry methods are simple, accurate, and are sufficiently detailed for ordinary personnel to follow with ease. The research method used included the investigation of using secondary standard created from the current mining activities to match the matrix and mineralogy. The matrix matching standard has shown that the mineralogical effect and matrix effect can be controlled by creating the ore specific program. The matrix and mineralogical effect are the main sources of errors in wavelength dispersive X-ray fluorescence analysis with pressed powder pellets. No fundamental parameters corrections and empirical coefficient correction were made on the press pellets calibration lines. The fusion method was investigated as a universal method that can produce fused beads retaining all the elements of interest. The calibration lines were developed from certified reference material and the results were accurate, substantiating that the fusion method elimination the mineralogical effect, matrix effect and particle size effects. Fusion and press pellet methods were compared with the traditional wet chemical method and the results shows no significant difference between the methods. The new methods were tested against three proficiency schemes for manganese and the results were satisfactory, the z-score was below ±3 for all the elements. The participants used different methods including traditional wet chemical analysis and Inductive coupled plasma (ICP). The press pellets method has shown a good correlation with a fusion method were certified reference material was used for calibrations. The new methods were validated using different statistical methods. All the validation criteria were satisfactory. The calibration range for all the lines were satisfactory. The Limit of quantification (LOQ) values for Mn, Fe, CaO, SiO2, MgO, Al2O3, and P were very low. The new methods for the analysis are therefore sensitive enough to give good results for the expected concentration ranges of each element. The statistical analysis performed between fusion and press pellets methods has proven that there was no significant difference between the methods. The conclusion made after the validation procedures was that the methods Page | iv developed for the analysis of manganese ore was fit for purpose of the analysis of the elements of interest for the Kalahari manganese ore. The study confirmed that the newly developed press pellets methods can be used to analyse routine production samples based on the ore type or the area. Borates fusion method can be used for geological explorations, consignment and trade samples. The proposed XRF methods can replace the traditional wet chemical analysis which is time-consuming, toxic and labourintensive.
APA, Harvard, Vancouver, ISO, and other styles
9

Kononov, Ring Materials Science &amp Engineering Faculty of Science UNSW. "Carbothermal solid state reduction of manganese oxide and ores in different gas atmospheres." Publisher:University of New South Wales. Materials Science & Engineering, 2008. http://handle.unsw.edu.au/1959.4/41459.

Full text
Abstract:
The aim of the project was to establish rate and mechanisms of solid state reduction of manganese ores. The project studied carbothermal reduction of manganese oxide MnO, two Groote Eylandt (Australian) and Wessels (South African) manganese ores in hydrogen, helium and argon atmospheres at temperatures up to 1400C for MnO and 1200C for manganese ores. Experiments were conducted in the fixed bed reactor with on-line off-gas analysis. The major findings are as follows. ?? Rate and degree of reduction of MnO and ores increased with increasing temperature. ?? Reduction of MnO and manganese ores at temperatures up to 1200C was faster in helium than in argon, and much faster in hydrogen than in helium. The difference in MnO reduction in hydrogen and helium decreased with increasing temperature to 1400C. ?? Addition of up to 7 vol% of carbon monoxide to hydrogen had no effect on MnO reduction at 1200C. ?? In the process of carbothermal reduction of ores in hydrogen at 1200C, silica was reduced. ?? Reduction of both GE ores was slower than of Wessels ore. This was attributed to high content of iron oxide in the Wessels ore. ?? Carbon content in the graphite-ore mixture had a strong effect on phases formed in the process of reduction; thus, in the reduction of Wessels ore with 12-16 wt% C, a-Mn and Mn23C6 were formed; when carbon content was above 20 wt%, oxides were reduced to carbide (Mn,Fe)7C3. ?? Kinetic analysis showed that mass transfer of intermediate CO2 from oxide to graphite in carbothermal reduction in inert atmosphere was a contributing factor in the rate control. ?? High rate of reduction of manganese oxide in hydrogen was attributed to formation of methane which facilitated mass transfer of carbon from graphite to oxide. Hydrogen was also directly involved in reduction of manganese ore reducing iron oxides to metallic iron and higher manganese oxides to MnO. Reduction of Wessels and Groote Eyland Premium Fines ores in the solid state is feasible at temperatures up to 1200C; while temperature for solid state reduction of Groote Eyland Premium Sands is limited by 1100C.
APA, Harvard, Vancouver, ISO, and other styles
10

Andrade, Emily Mayer de. "Estudo de depressores na flotação de finos de minério de manganês com oleato de sódio." Programa de Pós-Graduação em Engenharia Mineral. Departamento de Engenharia de Minas, Escola de Minas, Universidade Federal de Ouro Preto, 2010. http://www.repositorio.ufop.br/handle/123456789/2379.

Full text
Abstract:
Submitted by Stéfany Moreira (stemellra@yahoo.com.br) on 2013-02-25T18:42:27Z No. of bitstreams: 1 DISSERTAÇÃO_EstudoDepressoresFlotação.pdf: 2366097 bytes, checksum: 9beeb25612b4624e59d30fb2c2743275 (MD5)
Approved for entry into archive by Neide Nativa (neide@sisbin.ufop.br) on 2013-02-27T15:01:23Z (GMT) No. of bitstreams: 1 DISSERTAÇÃO_EstudoDepressoresFlotação.pdf: 2366097 bytes, checksum: 9beeb25612b4624e59d30fb2c2743275 (MD5)
Made available in DSpace on 2013-02-27T15:01:23Z (GMT). No. of bitstreams: 1 DISSERTAÇÃO_EstudoDepressoresFlotação.pdf: 2366097 bytes, checksum: 9beeb25612b4624e59d30fb2c2743275 (MD5) Previous issue date: 2010
Neste trabalho foram efetuados estudos de depressores na flotação de uma amostra de finos de minério sílico-carbonatado de manganês (estocados como rejeito) da Unidade Morro da Mina / RDM, localizada em Conselheiro Lafaiete-MG. Foram realizados testes de microflotação em tudo de Hallimond modificado, curvas de potencial zeta dos minerais puros na presença e ausência de reagentes e ensaios de flotação em bancada com amostra do resíduo do minério deslamado. Os reagentes estudados foram: fluorsilicato de sódio, metasilicato de sódio, amido de milho, dextrina branca e alguns tipos de quebracho (Floatans T0, T1, T5 e M3) utilizando-se oleato de sódio como coletor. A eficiência dos depressores testados na microflotação em relação à seletividade para a separação do quartzo dos minerais de manganês foi: floatan M3 > floatan T1> fluorsilicato de sódio > metassilicato de sódio > amido de milho > floatan T0 > dextrina > floatan T5. Os pontos isoelétricos dos principais minerais de Mn e ganga presentes neste minério foram determinados: rodonita (pH 2,8), rodocrosita (pH 10,5) e quartzo (pH 1,8). O estudo da adsorção que caracteriza a interação dos reagentes com as superfícies dos minerais mostrou ser de caráter específico. Os depressores mais eficientes na flotação em bancada entre os minerais de Mn e de ganga foram: floatan M3, floatan T1 e fluorsilicato de sódio, onde foram obtidos concentrados com teores de Mn, SiO2 e Al2O3 de aproximadamente 30, 17 e 10 %, respectivamente, para os três depressores testados. No entanto, a recuperação metalúrgica de Mn foi de 72,5 % para o floatan M3, 51 % para o floatan T1 e 45,2 % para o fluorsilicato de sódio. Posteriormente, efetuaram-se estudos preliminares de calcinação desse minério deslamado. O mais alto teor de Mn encontrado foi de aproximadamente 30 % com perda de massa de 11,2 % para temperatura de 1000 °C. ____________________________________________________________________________________________________
ABSTRACT: Flotation depressants were studied from silicate-carbonate manganese ore samples (waste) at RDM – Morro da Mina, in Conselheiro Lafaiete – MG, Brazil. Micro-flotation tests were conducted in a modified Hallimond cell, also zeta potential curves for pure minerals in the presence or lack of reagents and bench-scale flotation tests for deslimed ore waste sample. The following reagents were studied: sodium fluorosilicate, waterglass, starch, white dextrin, some quebracho kinds (Floatans T0, T1, T5 e M3) and sodium oleate as a collector. The efficiency of the depressants during the micro-flotation regarding the selection for separation of quartzo from manganese mineral was as it follows: floatan M3> floatan T1> sodium fluorosilicate > waterglass > starch > floatan T0 > dextrin > floatan T5. The isolectric points (pl) of the main ore were also determined as rhodonite (pH 2.8), rhodochrosite (pH 10.5) and quartz (pH 1.8). The adsorption test, characterized by the interaction of reagents and mineral surfaces, indicates its specific nature. The most efficient depressants in bench-scale flotation test among Mn ore and ganga were floatan M3, floatan T1 and sodium fluorosilicate containing Mn, SiO2 and Al2O3 concentrations of approximately 30, 17 and 10%, respectively, for all depressants herein mentioned. However, the metallurgical recovery for Mn was 72,5 % when using floatan M3, 51 % for floatan T1 and 45,2% for sodium fluorosilicate. Furthermore, calcination preliminary studies were conducted and the highest concentration of Mn found was approximately 30%, with an 11.2% weight loss for a 1000°C temperature.
APA, Harvard, Vancouver, ISO, and other styles
11

Polteau, Stéphane. "The early proterozoic Makganyene glacial event in South Africa : its implication in sequence stratigraphy interpretations, paleoenvironmental conditions and iron and manganese ore deposition." Thesis, Rhodes University, 2005. http://hdl.handle.net/10962/d1007612.

Full text
Abstract:
The Makganyene Formation forms the base of the Postmasburg Group in the Transvaal Supergroup in the Griqualand West Basin. It consists of diamictites, sandstones, banded iron-formations (BIFs), shales, siltstones and carbonates. It is generally accepted that the Makganyene Formation rests on an erosive regional unconformity throughout the Northern Cape Province. However this study demonstrates that this stratigraphic relationship is not universal, and conformable contacts have been observed. One of the principal aims of this study is to identify the nature of the Makganyene basal contact throughout the Griqualand West Basin. Intensive fieldwork was carried out from Prieska in the south, to Danielskuil in the north. In the Sishen and Hotazel areas, only borehole material was available to assess the stratigraphy. The Griquatown Fault Zone delimits the boundary between the deep basin and platform facies. The Koegas Subgroup is only present south of the Griquatown Fault Zone, where it pinches out. However, the transition Griquatown BIFs-Koegas Subgroup occurs in lacustrine deposits on the Ghaap platform (Beukes, 1983). The Griquatown Fault Zone represents the edge of the basin, which corresponds to a hinge rather than a fault zone. The Makganyene Formation rests with a conformable contact on the Koegas Subgroup south of the Griquatown Hinge Zone, and north of it the Makganyene Formation lies unconformably on the Asbestos Hills Subgroup. The Makganyene Formation displays lateral facies changes that reflect the paleogeography of the Griqualand West Basin, and the development of ice sheets/shelves. The Ghaap platform is characterised by coarse immature sand interbedded with the diamictites. The clasts in this area contain local Asbestos Hills material and no dropstones are present. Such settings are typical of sediments that are being deposited below a grounded ice mass. At the Griquatown Hinge Zone, the sandstone lenses are smaller, and the clasts consist of chert, of which a great number are striated and faceted. In the Matsap area, the presence of dropstones is strong evidence for the presence of a floating ice shelf that released its material by basal melting. Further south, the Makganyene Formation contains stromatolitic bioherms that only form if clastic contamination is minimal and therefore the ice that transported the detritus to the basin did not extend far into open sea conditions. The base of the Hotazel Formation also contains diamictite levels. Dropstones have been identified, implying a glacial origin. The Hotazel diamictites are interbedded with hyaloclastites and BIFs. The Makganyene glacial event, therefore, was not restricted to the Makganyene Formation, but also included the Ongeluk Formation, through to the base of the Hotazel Formation. Petrographic studies of the Makganyene Formation and the base of the Hotazel Formation reveal mineral assemblages that are diagnostic of early to late diagenetic crystallisation and of low-grade metamorphism not exceeding the very low green-schist facies. The facies identified display the same sense of basin deepening, from shallow high-energy Hotazel area on the Ghaap platform, to the deep basin in the Matsap area. Whole-rock geochemical analyses reveal that the elemental composition of the Makganyene Formation is very similar to that of the Asbestos Hills BIFs, which were the most important source of clastic detritus for the Makganyene Formation. However, minor amounts of carbonates of the Campbellrand Subgroup, as well as a felsic crustal input from the Archean granitoid basement, made contributions. On the Ghaap platform, the Makganyene diamictite is enriched in iron, calcium, and magnesium, while in the deeper parts of the basin the diamictites are enriched in detrital elements, such as titanium and aluminium, which occur in the fine clay component. The Hotazel diamictite displays a distinct mafic volcanic input, related to the extrusion of the Ongeluk basaltic andesites, which was incorporated in the glacial sediments. Sequence stratigraphy is based on the recognition of contacts separating the different systems tracts that compose a depositional sequence. However, because the basal contact of the Makganyene Formation has not been properly identified in previous work, no correct model has been proposed so far. Therefore correlations between the Griqualand West and the Transvaal basins, based on lithostratigraphic similarities and extrapolations of unconformities, have to be reviewed, especially since the publication of new radiometric ages contradict all previously proposed correlations. It is proposed here that the Transvaal Supergroup in the Griqualand West Basin represents a continuous depositional event that lasted about 200 Ma. The Makganyene glacial event occurred during changing conditions in the chemistries of the atmosphere and ocean, and in the continental configuration. A Snowball Earth event has been proposed as the causative process of such paleoenvironmental changes. However, evidence presented here of less dramatic glacial conditions, with areas of ice-free waters, implies an alternative to the Snowball Earth event. The paleoenvironmental changes are thought to represent a transition from an anaerobic to aerobic atmosphere, that was responsible for the global cooling of the surface of the Earth, Such a glacial event may have aided in the large-scale precipitation of iron and manganese in areas of intense upwellings.
APA, Harvard, Vancouver, ISO, and other styles
12

Del, Rio Salas Rafael Eduardo. "METALLOGENESIS FOR THE BOLÉO AND CANANEA COPPER MINING DISTRICTS: A CONTRIBUTION TO THE UNDERSTANDING OF COPPER ORE DEPOSITS IN NORTHWESTERN MÉXICO." Diss., The University of Arizona, 2011. http://hdl.handle.net/10150/145742.

Full text
Abstract:
Northwestern Mexico is characterized by different metallogenic provinces that are included along the Basin and Range, the Sierra Madre Occidental, and the Baja California geological provinces. With the purpose of contribute to the current understanding of the mineralizing processes, the present study focused on two important copper metallogenic provinces: the Cananea Porphyry District in Sonora, and the Sediment-hosted Stratiform Copper- and Mn-deposits in Baja California Sur. The U-Pb zircon ages from the mineralizing porphyries from Cananea district suggest a continued magmatic activity period of ~6 Ma. Also suggests a period of ~20 Ma for the entire magmatic activity in the district. The Re-Os molybdenite ages demonstrate five well-constrained mineralization events in the district; the main mineralization is constrained over a short period of time (~4 Ma). The new molybdenite age from the Pilar deposit documents the oldest mineralizing pulse, suggesting possibly the initiation of the Laramide mineralization in northern Sonora. A detailed study of Mariquita porphyry Cu and Lucy Cu-Mo deposits in the Cananea district was performed. Four hydrothermal stages were defined in Mariquita, whereas a single hydrothermal pulse characterizes Lucy. Emplacement depths between 1-1.2 km, and temperatures between 430-380ºC characterized the mineralization from Mariquita, whereas deeper emplacement depths and higher mineralization temperatures characterized Lucy. The stable isotope systematic and fluid inclusion data determined that the mineralizing fluids in Mariquita deposit are essentially magmatic during the earlier hydrothermal stages, whereas the last stage is the mixing between magmatic and winter meteoric-waters. The mineralizing fluids from Lucy deposit are magmatic in origin. A comprehensive study was performed in the Cu-Co-Zn-Mn ineralization of the Boléo District, and Mn-oxide mineralization along the eastern coast Baja California Sur. The REE and trace element in the Mn-oxides demonstrated the exhalative nature of the mineralizing hydrothermal fluids, and exclude the hydrogenous nature. The stable isotope systematic in ore and gangue minerals, along with the Cu-isotope data helped to decipher the nature of mineralizing and non-mineralizing fluids. The application of Pb, Sr and Re-Os isotope systems was applied to constrain the nature of the fluids involved during the mineralization processes and that the metal sources.
APA, Harvard, Vancouver, ISO, and other styles
13

Tsikos, Harilaos. "Petrographic and geochemical constraints on the origin and post-depositional history of the Hotazel iron-manganese deposits, Kalahari Manganese Field, South Africa." Thesis, Rhodes University, 2000. http://hdl.handle.net/10962/d1005599.

Full text
Abstract:
The giant Palaeoproterozoic manganese deposits of the Kalahari manganese field (KMF), Northern Cape Province, South Mrica, have been a world renowned resource of manganese ore for many decades. In recent years, the mineralogical composition, geochemistry and genesis of these deposits have been the objects of many geological investigations, yet their origin remains contentious up to the present day. A characteristic feature of the Kalahari deposits is the intimate association of manganese ore and iron-formation of the Superior-type, in the form of three discrete sedimentary cycles constituting the Hotazel Formation. This striking lithological association is an almost unique feature on a global scale. From that point of view, the present study is effectively the first attempt to shed light on the origin and post-depositional history of the Hotazel succession, using as prime focus the petrographic and geochemical characteristics ofthe host iron-formation. Petrographic and whole-rock geochemical information of iron-formation from the southern parts of the KMF, suggests that the Hotazel iron-formation is almost identical to other iron-formations of the world of similar age and petrological character. The rock exhibits essentially no high-grade metamorphic or low-temperature alteration effects. Mineralogically, it contains abundant chert, magnetite, subordinate amounts of silicate minerals (greenalite, minnesotaite, stilpnomelane) and appreciable concentrations of carbonate constituents in the form of coexisting calcite and ankerite. Such mineralogical composition is indicative of processes occurring in a diagenetic" to burial (up to very low-greenschist facies) metamorphic environment. Bulk-rock geochemical data point towards a simple composition with Si02, total Fe-oxide and CaO being the chief major oxide components. Whole-rock rare-earth element data suggest that the iron-formation precipitated from a water column with chemical signatures comparable to modern, shallow oceanic seawater. The virtual absence of positive Eu anomalies is a feature that compares well with similar data from Neoproterozoic, glaciogenic iron-formations of the Rapitan type, and suggests but only a dilute hydrothermal signal, poten!ially derived from distal submarine volcanic activity. Carbon and oxygen isotope data from iron-formation and Mn-bearing carbonates as well as overlying ferriferous limestone of the Mooidraai Formation, compare well with the literature. The former exhibit variable depletion relative to seawater in terms of both BC and 180, while the latter have signatures comparable to normal marine bicarbonate. Isotopic variations appear to be related to fluctuations in the amount of co-precipitated marine carbonate, in conjunction with processes of coupled organic matter oxidation - FelMn reduction in the diagenetic environment. Oxygen isotope data from quartz-magnetite-calcite triplets suggest that crystallisation took place under open-system conditions, with magnetite being the most susceptible phase in terms of fluid-rock isotopic exchange. Data also suggest that the calcite-magnetite pair may constitute a more reliable geothermometer than the quartz-magnetite one, mainly due to the interlinked diagenetic histories between calcite and magnetite. Iron-formation from the northern parts of the KMF can by categorised into three main classes, namely pristine, altered and oxidised. Pristine iron-formation is identical to the one seen in the southernmost parts of the field. Altered iron-formation corresponds to a carbonate-free derivative of intense oxidation and leaching processes at the expense ofpristine iron-formation, and contains almost exclusively binary quartz-hematite mixtures. The rock appears to have lost essentially its entire pre-existing carbonate-related components (i.e., Ca, Mg, Sr, most Mn and Ba) and displays residual enrichments in elements such as Cr, Th, V, Ni and Pb, which would have behaved as immobile constituents during low-temperature alteration. The low temperature origin of altered iron-formation is supported by oxygen isotope data from quartz-hematite pairs which indicate that isotopically light hematite would have derived from oxidation of magneftte and other ferroussilicate compounds in the presence of a low-temperature meteoric fluid, while quartz would have remained isotopically unchanged. Occasional occurrences of acmite-hematite assemblages suggest localised metasomatic processes related to the action ofNaCI-rich fluids at the expense of altered iron-formation. The conditions of acmite genesis are very poorly constrained due to the very broad stability limits of the mineral in environments ranging from magmatic to surface-related. Oxidised iron-formation constitutes a distinct rock-type and shares common attributes with both the pristine and the altered iron-formation. The rock contains hematite as an important constituent while the amount of magnetite is substantially reduced. With regard to carbonate nlinerals, calcite contents are clearly very low or absent, having being replaced in most instances by a single, Mgenriched, dolomite/ankerite:type species. Oxidised iron-formation contains somewhat higher amounts of iron and reduced amounts of Sr and Ba relative to pristine iron-formation, whereas enrichments in elements such as Ni, Th, Pb, Cr, and V are seen, similar to altered iron-formation. Oxidised iron-formation appears to have originated from processes of dissolution-mobilisationreprecipitation of solutes derived primarily from leaching that produced altered iron-formation. It is proposed that the Hotazel iron-formation and associated manganese deposits were formed as a result of episodic sea-level fluctuations in a stratified depositional environment that gradually evolved into a shallow carbonate platform. A critical parameter in the development of manganese sediment may include regional climatic patterns related to a glacial event (Makganyene diamictite) prior to deposition of the Hotazel strata. This suggestion draws parallels with processes that are believed to have led to the formation of worldwide iron-formations and associated manganese deposits subsequent to Neoproterozoic episodes of glaciation. Submarine volcanism related to the underlying Ongeluk lavas appears to have had very little (if any) metallogenic significance, while evidence for a sudden rise in the oxygen contents of the atmosphere and ambient waters is lacking. With regard to later alteration processes, combination of geological and geochemical data point towards the potential influence of surface weathering prior to deposition of rocks of the unconformably overlying Olifantshoek Supergroup, possibly coupled with fault- and/or thrustcontrolled fluid-flow and leaching of the Hotazel succession during post-Olifantshoek times.
APA, Harvard, Vancouver, ISO, and other styles
14

FERNANDES, ALBERTO de A. "Desenvolvimento de processo quimico para obtencao da nsutita (gama-MnO sub(2)) de alta densidade empregada na fabricacao de pilhas." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11021.

Full text
Abstract:
Made available in DSpace on 2014-10-09T12:47:03Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:08:48Z (GMT). No. of bitstreams: 1 07916.pdf: 4553798 bytes, checksum: eb42be1de889c1f95e7ccdc661406a8d (MD5)
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
APA, Harvard, Vancouver, ISO, and other styles
15

Feng, Yuexing. "40Ar/39Ar dating of young supergene Mn-Oxides : implication for late Cainozoic weathering history and landscape evolution, Mary Valley, Southeast Queensland, Australia /." [St. Lucia, Qld.], 2005. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe19080.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Knaust, Jacqueline M. "Self-assembly of one-, two, and three-dimensional coordination networks /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p3091937.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Fairey, Brenton John. "Genesis of karst-hosted manganese ores of the Postmasburg Manganese Field, South Africa with emphasis on evidence for hydrothermal processes." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1020904.

Full text
Abstract:
The Postmasburg Manganese Field (PMF), located in the Northern Cape Province of South Africa, once represented one of the largest sources of manganese ore worldwide. However, the discovery of the giant manganese deposits of the Kalahari Manganese Field (KMF) led to the gradual decline in manganese mining activity in the PMF. Two belts of manganese ore deposits have been distinguished in the PMF, namely the Western Belt of ferruginous manganese ores and the Eastern Belt of siliceous manganese ores. Prevailing models of ore formation in these two belts invoke karstification of manganese-rich dolomites and residual accumulation of manganese wad which later underwent diagenetic and low-grade metamorphic processes. For the most part, the role of hydrothermal processes in ore formation and metasomatic alteration is not addressed. The identification of an abundance of common and some rare Al-, Na-, K- and Ba-bearing minerals, particularly aegirine, albite, microcline, banalsite, sérandite-pectolite, paragonite and natrolite in the PMF ores studied in this thesis, is indicative of the influence of hydrothermal activity. Enrichments in Na, K and/or Ba in the ores are generally on a percentage level for the majority of samples analysed through bulk-rock techniques. The discovery of a Ba-Mn arsenate/vanadate similar to gamagarite may also indicate that the hydrothermal fluid affecting the ores was not only alkali-rich but also probably contained some As and V. The fluid was likely to be oxidized and alkaline in nature and is thought to have been a mature basinal brine. Various replacement textures, particularly of Na- and Krich minerals by Ba-bearing phases, suggest sequential deposition of gangue as well as oreminerals from the hydrothermal fluid, with Ba phases being deposited at a later stage. The stratigraphic variability of the studied ores and the deviation of their character from the pigeon-hole-type classification of ferruginous and siliceous ores in the literature, suggests that a re-evaluation of genetic models is warranted. The discovery of hydrothermallydeposited alkali-rich assemblages in the PMF and KMF provides grounding for further investigation into a possible regional-scale hydrothermal event at least re-constituting the ores. Some shortcomings in previous works include disregard for the highly variable nature of the PMF deposits, the effects of hydrothermal activity of the ores and the existence of stratigraphic discrepancies. This study provides a single, broad model for the development of all manganese deposits of the PMF. The source of metals is attributed to all formations that stratigraphically overly the Reivilo Formation of the Campbellrand Subgroup (including the Reivilo Formation itself). The main process by which metals are accumulated is attributed to karstification of the dolomites. The interaction of oxidized, alkaline brines with the ores is considered and the overlying Asbestos Hills Subgroup BIF is suggested as a potential source of alkali metals.
APA, Harvard, Vancouver, ISO, and other styles
18

Rasmeni, Sonwabile. "Lithostratigraphic correlation, mineralogy and geochemistry of the lower manganese orebody at the Kalagadi Manganese Mine in the Northern Cape Province of South Africa." Thesis, University of Fort Hare, 2012. http://hdl.handle.net/10353/d1016155.

Full text
Abstract:
The Kalagadi Manganese mine in the Kuruman area of the Northern Cape Province of South Africa contains reserves of Mn ore in excess of 100Mt. Mineralization in the mine lease area is restricted within the Hotazel Formation of the Voȅlwater Subgroup, belonging to the Postmasburg Group, the upper subdivision of the Transvaal Supergroup. Surface topography is characterized by flat lying, undulation with minimal faulting and the ore are slightly metarmophosed. This study investigates the general geology of the mine, lithostratigraphic subdivision and correlation of the economic Lower Manganese Orebody (LMO) of the Kalagadi Manganese Mine in order to guide mining plan and operations once the mine is fully commissioned. At the commencement of this study, Kalagadi Manganese mine was a project under exploration with no specific geology of the mine lease area and no lithostratigraphic subdivision. The study also aimed determining the extent of lithostratigraphic correlation between the LMO economic orebodies of the Kalagadi Manganese mine with that of underground Gloria and open-pit Mamatwan mines. Four methods including petrographic microscope, Scanning electron Microscope (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) analyses were applied mainly for the mineral identification, chemical composition and ore characterization of the Lower Manganese Orebody (LMO) at Kalagadi Manganese mine. The results of this study indicates the following: (1) Eleven textural distinct zones with economic zones restricted to the middle while the lower grade zones are confined to the top and bottom of the LMO; (2) The economic zones, comprising of Y, M, C and N subzones attain an average thickness of 10 m and are graded at an average of 40% Mn while the Mn/Fe ratio varies from 6 to 9; (3) The most economic zones are M and N subzones which are mostly characterized by oxidized ovoids and laminae, a characteristic applicable even to other zones of economic interest; (4) Braunite is the main mineral of the manganese ore and is often integrown with kutnahorite and other minerals (hematite, hausmannite, Mg-calcite, calcite, jacobsite, serpentine and garnet) which are present in variable amounts; (5) The Mg-rich calcite (Ca, Mg)CO3 is the second dominant manganese carbonate mineral and it corresponds to elevated MgO concentration and is often associated with marine environment. The occurrence of the Mgcalcite is not common in the manganese ore of this area except for the Mn-calcite, which was not determined by XRD analyses in this study; (6) MnO is the most abundant major oxide in the manganese ore while other major oxides present in decreasing order of abundance are CaO, SiO2, Fe2O3, and MgO. The oxides TiO2, Na2O, K2O, Al2O3, and Cr2O3 are depleted and are mostly  0.01wt% and  0.001wt% respectively while P2O5 concentrations are low ranging from 0.02wt% to 0.3wt%. The trace element concentrations of Ba, Zn and Sr in most borehole samples are slightly elevated ranging from 100ppm to 3.9% (36000pm) while Co, Cu, Ni, Y, As, Zr, V and La rarely exceed 50ppm. The enrichments of Cu, Zn, Ni, Co and V that are commonly associated with volcanogenic hydrothermal input in chemicals may reach up to 70ppm; (7) The mineralogical and geochemical characteristics of the manganese ore in the Kalagadi Manganese mine lease area are similar to that of Low-Grade Mamatwan-Type ore. The cyclicity (Banded Iron Formation ↔ Hematite lutite ↔ braunite lutite) and alternation of manganese and iron formation have been confirmed; and (8) The oxygen δ18O isotope values (18‰ to 22‰) indicate a slight influence of metamorphism of the manganese ore. No positive correlation exists between δ13C vs δ18O values and Mn vs δ13C values. Such observations indicate minimal action of organic carbon during manganese precipitation where the organic matter was oxidized and manganese content reduced. On the other hand, the manganese carbonates (CaO) are positively correlated with carbon isotope, this indicates diagenetic alteration and the involvement of biogenic carbonate during the formation of manganese carbonates. It is concluded that the lithostratigraphic subdivision at Kalagadi Manganese mine is best correlated physically, mineralogically and geochemically with that of Gloria mine operating in the Low Grade Mamatwan - Type ore while correlation with an open-pit Mamatwan mine is also valid.
APA, Harvard, Vancouver, ISO, and other styles
19

Terracin, Matthew Theodore. "Petrography, geochemistry and origin of atypical sedimentary-igneous contact relationships at the base of the Hotazel Formation around Middelplaats, Northern Cape Province, RSA." Thesis, Rhodes University, 2014. http://hdl.handle.net/10962/d1012985.

Full text
Abstract:
In the Middelplaats mine area of the Kalahari manganese field, two drill holes (MP53 and MP54) intersected anomalously high-grade manganese ore sitting stratigraphically just above an igneous body (likely a dike or sill). Manganese ore located within approximate 5 meters of the contact with the underlying igneous rocks has been substantially metasomatically upgraded from 25 percent manganese, to over 40 percent whilst the dominant manganese species within the ore has been altered to hausmannite. This report demonstrates the metasomatic alteration is related to devolatilization (removal and/or remobilization of H₂O, CO₂ and CaO) due to contact metamorphism caused by the underlying igneous rocks. The Middelplaats mine is situated in the southwest corner of the Kalahari manganese field where the paleo basin shallows out and ends. Within the mine area, several stratigraphic units pinch out or are truncated by the side of the basin. This pinching out of lithological formations has led to the underlying Ongeluk Formation being in contact with the much younger units of the Hotazel Formation. Therefore, geochemical investigation into the nature and source of the igneous rocks was also undertaken to see if the rocks from the two drill holes were related to one another and/or the underlying Ongeluk Formation. Results of these geochemical studies have demonstrated that the Middelplaats igneous rocks (dolerites) from the two drill holes (MP53 and MP54) share a co-genetic source region. There is also reasonable geochemical evidence that the source region of the Middelplaats igneous rocks was substantially similar to the source region of the Ongeluk Formation. This may indicate that the source region of the Ongeluk Formation was reactivated at some later stage resulting in the emplacement of doleritic dikes or sills in the Middelplaats mine area. The Middelplaats igneous rocks were also found to have undergone a slight but pervasive potassic alteration; with most of the original plagioclase feldspar showing some level of replacement by a potassium enriched feldspar. Although no source for this potassic fluid was found, the devolatilization reaction within the manganese ore appears to have released some potassium into the surrounding rocks. This additional potassium may be responsible for some localized potassic alteration.
APA, Harvard, Vancouver, ISO, and other styles
20

Ryabova, Anna. "Électrocatalyse de la réduction de l'oxygène et du peroxyde d'hydrogène sur les oxydes de manganèse." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAF011/document.

Full text
Abstract:
Les oxydes de manganèse présentent un grand intérêt en raison de leur activité catalytique pour l'ORR (la réaction de réduction de l’oxygène) en milieu alcalin et peuvent être utilisés comme matériaux sans métaux nobles pour la cathode dans les piles à combustible. La présente thèse est consacrée à l’étude de l’activité d'oxydes de manganèse pour l’ORR. Il a été montré que Mn2O3 avec structure bixbyite a une meilleure activité catalytique vers l'ORR en milieu alcalin que les autres oxydes de manganèse étudiés. L'activité spécifique de Mn2O3 est seulement 4 fois inférieure à celle de Pt à une surtension de 0.3 V (ERH). Le lien entre la structure des oxydes de Mn et l'activité ORR est identifié: l'activité spécifique augmente exponentiellement avec le potentiel du couple redox Mn(III)/Mn(IV) de surface. Pour assurer l'activité électrocatalytique élevée de Mn2O3, il est nécessaire d'ajouter du carbone à la composition d'électrode, ainsi que de garder un potentiel supérieur à 0.7 V (ERH)
Manganese oxides are of great interest due to their catalytic activity towards the ORR (the oxygen reduction reaction) in alkaline media and can be used as noble metal-free materials for the cathode in liquid and polymer electrolyte alkaline fuel cells. The present thesis is devoted to the investigation of the ORR activity of manganese oxides. It was shown that Mn2O3 with bixbyite structure has a better catalytic activity toward the ORR in alkaline media than other investigated manganese oxide, the surface activity of Mn2O3 is only 4 times lower than that of Pt at an overvoltage of 0.3 V (RHE). The link between the structure of Mn oxides and the ORR activity is found: the specific ORR activity exponentially increases with the potential of the surface Mn(III)/Mn(IV) red-ox couple. To ensure the high electrocatalytic activity of Mn2O3, it is necessary to add carbon to the electrode composition, as well as to keep potential above 0.7 V (RHE)
APA, Harvard, Vancouver, ISO, and other styles
21

Guthrie, James McKamey. "Evaluating the suitability of the human toenail as a biomonitor for manganese status the one source cohort /." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4929.

Full text
Abstract:
Thesis (M.S.)--University of Missouri-Columbia, 2007.
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on October 25, 2007) Vita. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
22

Allen, George B. "Economic Geology of the Big Horn Mountains of West-Central Arizona." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/244099.

Full text
Abstract:
The Big Horn Mountains are a geologically complex range that extends over 500 square km in west-central Arizona. Three major lithologic terranes outcrop: (1) Proterozoic amphibolite, phyllite, schists, gneiss, and granite; (2) Mesozoic monzonite to diorite intrusives; and (3) Cenozoic mafic to silicic volcanic rocks and clastic rocks. The entire area is in the upper plate of a detachment fault and, consequently, contains many low- to high-angle normal faults. Each lithologic terrane has its associated mineral occurrences. The Big Horn district is exclusively hosted in the pre- Tertiary terrane. Most of its mineral occurrences are spatially related to the Late Cretaceous intrusive rocks. One occurrence, the Pump Mine, may be a metamorphic secretion deposit, and therefore, would be middle Proterozoic. The vast majority of the mineral occurrences in the Big Horn Mountains are middle Tertiary in age and occur in three districts: the Tiger Wash barite - fluorite district; the Aguila manganese district; and the Osborne base and precious metal district. Fluid inclusions from Tiger Wash fluorite (T(h) 120 to 210° C, NaCl wt. equivalent 17 to 18 percent not corrected for CO₂) and nearby detachment - fault- hosted Harquahala district fluorite (T(h) 150 to 230° C., NaC1 wt. equivalent 15.5 to 20 percent not corrected for CO₂) suggest cooling and dilution of fluids as they are presumed to evolve from the detachment fault into the upper plate. Mass-balance calculations suggest that the proposed evolution of fluids is sufficient to account for the observed tonnage of barite and fluorite. The Tiger Wash occurrences grade directly into calcite- gangue-dominated manganese oxides of the Aguila district. A wide range of homogenization temperatures (T(h) 200 to 370° C.), an absence of CO₂ and low salinities (NaC1 wt. equivalent 1 to 2 percent) in the Aguila district calcite-hosted fluid inclusions argue for distillation of fluids during boiling or boiling of non saline-meteoric waters. Mass - balance calculations modeling the evolution of Ca and Mn during potassium metasomatism of plagioclase in basalt suggest that little if any influx of these cations is necessary to form the calcite –dominated manganese oxide tonnage observed. The Aguila district grades directly to the east into the base-metal and precious-metal occurrences of the Osborne district. Preliminary data describing geological settings, fluid inclusions, and geochemistry suggest that the Osborne district has a continuum between gold-rich to silver-rich epithermal occurrences. The gold-rich systems have dominantly quartz gangue, with or without fluorite, and are hosted in a variety of rocks, but are proximal to Precambrian phyllite or mid-Tertiary rhyolite. Fluid inclusions from two occurrences representative of the gold -rich systems spread across a minor range (T(h) 190 to 230° C., NaC1 wt. equivalent 17 to 23 percent not corrected for CO₂). Dilution of highly saline fluids is the inferred mechanism for precipitation of gold in the gold-quartz systems. The silver-rich systems have dominantly calcite gangue with or without quartz, and are hosted in mid-Tertiary basalt. Calcite fluid inclusions from a representative high-silver occurrence display a wide range of homogenization temperatures and salinities (T(h) 120 to 370° C., NaC1 wt. equivalent 7 to 23 percent). Boiling and consequent neutralization of acidic solutions is the inferred mechanism for the silver-rich, calcite gangue systems. A model inferring a regional fluid-flow regime and local sources of metals is proposed. Four possible regional and local causes of fluid flow in upper-plate detachment regimes are proposed: (1) regional elevation of geothermal gradients as a result of middle-crustal, lower-plate rocks rising to upper crustal levels; (2) meteoric water recharge along the southeast flank of the Harquahala antiform and consequent displacement of connate waters in the upper-plate of the Big Horn Mountains; (3) local emplacement of feeder stocks to rhyolitic flows; (4) and tilting of major upper-plate structural blocks.
APA, Harvard, Vancouver, ISO, and other styles
23

AZZILEY, AZZIBROUCK GEORGES. "Sedimentologie et geochimie du francevillien b (proterozoique inferieur). Metallogenie des gisements de manganese de moanda, gabon." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ongen, Sinan. "Les échanges métasomatiques entre granitoïdes et encaissants particuliers (calcaires, dolomies, ultrabasites, séries manganésifères) : l’exemple de la péninsule de Biga, Anatolie nord-ouest, Turquie." Nancy 1, 1992. http://www.theses.fr/1992NAN10349.

Full text
Abstract:
En Turquie-nw, trois localités types ont été sélectionnées afin de montrer la diversité des skarns bi-metasomatiques et les minéralisations qui leur sont respectivement associées: à Karakoy, entre la granodiorite du pluton d'Euciler et les horizons calcareux du groupe de Kazdag, nous observons les paragenèses du skarn calcique et des cornéennes qui mettent en évidence les conditions de formation du facies des cornéennes à pyroxène (600-600c, (1,5-2,0 kb). L'important dépôt de wollastonite s'est forme au-dessus de 500c en raison de la forte activité de si et de h#2o ainsi que d'un dégagement rapide de co#2. A Bakirlik Tepe, entre la monzonite du pluton de gurece et les olistostromes calcareux de la formation de Karakaya, nous observons un skarn à pyroxène à minéraux manganésifères et une minéralisation zincifère dans les conditions suivantes: tc<400c, fugacité élevée de l'oxygène, environnement enrichi en h#2o. A Derekoy, entre la monzonite et la dolomie de Kapakli (jurassique supérieur), nous observons un endoskarn à composition de monzonite à olivine et un skarn magnésien à forsterite fassaite, ainsi qu'une importante minéralisation de magnétite
APA, Harvard, Vancouver, ISO, and other styles
25

Salomon, Hélène. "Les matières colorantes au début du paléolithique supérieur : sources, transformations et fonctions." Thesis, Bordeaux 1, 2009. http://www.theses.fr/2009BOR13971/document.

Full text
Abstract:
Les matières colorantes sont des vestiges encore mal connus de nos jours. L'intérêt qu'elles suscitent tient à ce qu'elles sont susceptibles de révéler des pratiques techniques diverses et complexes, mais il tient aussi à leur forte potentialité à traduire des pratiques symboliques du fait de leur pouvoir colorant intense et des couleurs exploitées : le rouge et le noir qui sont encore aujourd'hui investis d'une forte valeur symbolique. Dans un contexte aussi particulier que celui de la transition entre le Paléolithique moyen et le Paléolithique supérieur, ces vestiges ont été mis au jour en abondance et demandent à être analysés pour restituer les modes de vie des derniers hommes de Neandertal. C'est sur le gisement châtelperronien de la grotte du Renne à Arcy-sur-Cure (Yonne), fouillé de 1949 à 1963 par André Leroi-Gourhan, que les nombreuses matières colorantes découvertes ont conduit à échafauder des théories concernant leurs transformations et leurs utilisations qui méritaient d'être éprouvées. En effet, il est supposé, depuis leur découverte, qu'elles ont fait l'objet d'un chauffage contrôlé qui visait à en modifier la couleur, le chauffage permettant de transformer les matières colorantes jaunes en orangées, en rouges et en violacés. De cette hypothèse découle la théorie selon laquelle les Néandertaliens ont exploité les matières colorantes en tant que pigment pour des réalisations symboliques, voire d'ordre esthétique, ce qui n'a pas encore pu être prouvé. Notre étude, fondée sur le croisement des données issues des analyses de la nature physico-chimique et pétrographique des assemblages de matières colorantes, mais aussi sur leur intégration dans le gisement, en association avec des structures d'habitat dont la conservation est exceptionnelle, et sur une série d'expérimentations visant à caractériser les poudres obtenues par différents moyens (broyage et concassage d'une part, abrasion d'autre part) ont permis de définir les choix techniques qui ont présidé à l'approvisionnement en matières colorantes dans tous les niveaux d'occupation châtelperroniens de la grotte du Renne. Il a ainsi été possible de démontrer qu'aucune des matières colorantes, rouges ou noires, n'a fait l'objet d'un chauffage préalablement à son utilisation, bien au contraire de ce qui avait été supposé jusqu'ici. Ces matières colorantes ont fait l'objet d'un approvisionnement raisonné auprès de formations géologiques affleurant ponctuellement à plus de 10~km et à environ 5~km de la grotte. L'exploitation de ces gîtes de matières premières colorantes a été la même durant toute la séquence châtelperronienne et s'est orientée préférentiellement vers des matériaux que l'on peut aisément réduire en poudre. Une partie était grossièrement réduite en poudre afin de recouvrir de grandes surfaces (sols, peaux de bêtes) dans le but de les assainir, alors qu'une autre partie des matières colorantes était destinée à des activités plus minutieuses nécessitant leur emploi sous forme d'une poudre fine, régulière et extrêmement colorante. Dans ce dernier cas, les Néandertaliens de la grotte du Renne ont entrepris d'exploiter ces produits en association avec le travail des matières osseuses (os et ivoire de mammouth) mais aussi pour leur couleur. L'assemblage des matières colorantes de la grotte du Renne révèle un profond ancrage des connaissances et de la compréhension des multiples propriétés et qualités des matières colorantes intensément mises à profit de telle sorte que le gisement châtelperronien était tout de rouge et noir et la chaîne opératoire qu'il été possible de restituer relève d'inventions techniques abouties, très élaborées dans leur genre pour l'état des observations ingénieuses, des découvertes et donc de la pensée qu'elles supposent et des capacités dont elles témoignent
Despite an increasing number of studies, colouring materials are still poorly understood among excavation remains. Their attraction lies in their capacity to bring to light diverse and complex skills, but also in their intense colouring power and their contrasting colours: red and black, which still possess a symbolic value. These highly-symbolic materials may, therefore, highlight the “conceptual” practices of prehistoric men and give access to their symbolic world and thought. In such a particular context as the transition between the Middle and the Upper Palaeolithic, these remains, which are very abundant in most excavations, offer the possibility, through analysis, to get an exceptional insight into the way of life of the last Neanderthals. The Châtelperronian site of the “Grotte du Renne”, in Arcy-sur-Cure (Yonne), is a landmark. It was excavated beween 1949 and 1963 by André Leroi-Gourhan: Numerous colouring materials were discovered there, and Leroi-Gourhan developed theories about their transformation and uses which so far have not been tested, and have remained unchallenged. Since their discovery, the assumption is that those minerals were heated in a controlled way, in order to modify their colour. It is indeed well-known that heat transforms yellow materials (iron oxides) in orange, red or purple materials (other iron oxides). From this hypothesis originates the theory according to which Neanderthals exploited colouring materials as pigments for symbolic or even aesthetic purposes. But the theory has so far never been proved true. Our study combines several sets of data, obtained from different methods. Physico-chemical and petrological analyses were carried out on the colouring materials. These data were related to their location on the site, in association with exceptionally well preserved “hut” structures. Furthermore, a series of experimentations, aimed to characterize powders obtained via different methods (grinding and crushing on the one hand, abrasion on the other hand). The comparison of all these data enabled us to identify the various technical choices which informed the supply in colouring minerals in all the Châtelperronian levels of the Grotte du Renne. It was thus possible to demonstrate that none of these materials, either red or black, was heated before being used, contrary to what had been assumed so far. The supply in colouring materials was as carefully organised as for other materials (flint, for example); they were collected in geological formations occasionally showing on the surface, at more than 10 km from the cave. The exploitation of these geological sites did not vary during the whole Châtelperronian period, and privileged materials which can easily be ground into powder. Part of their supply was ground coarsely in order to cover large surface areas (soils or hides) as preservative or to clean them up. The remaining materials were destined to more meticulous activities, which required a fine, regular, and highly-colouring powder. In this latter case, the Neanderthals of the Grotte du Renne used those products when working on bone materials (bone or mammoth ivory), and used them also for their sheer colour. The set of colouring minerals from the Grotte du Renne reveals Neanderthals’ in-depth knowledge of materials; they understood perfectly well their properties and qualities, and used them extensively, so that the Châtelperronian site must have been a literally dazzling sight, all red and black. The “chaîne opératoire” which transpires from our analysis shows very sophisticated techniques, and an advanced “technological” knowledge. They are witness to surprising capacities and a highly-evolved pattern of thought. Keywords: Colouring materials; Ochre; Haematite; Manganese; Middle/Upper Palaeolothic transition; Châtelperronian; Arcy-sur-Cure; Grotte du Renne; Heating; Grinding; Skhul; Les Maîtreaux; Combe Saunière
APA, Harvard, Vancouver, ISO, and other styles
26

López, Hernández Irene. "Catalizadores metálicos estructurados en reacciones de Química Sostenible." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/172246.

Full text
Abstract:
[ES] En esta tesis doctoral se ha investigado sobre el empleo de catalizadores metálicos estructurados en diversas reacciones de Química Sostenible. En primer lugar, se ha estudiado la eliminación de los NOX mediante su reducción catalítica selectiva empleando amoniaco. Se han empleado catalizadores de Mn-Fe soportados sobre zeolitas con distinta relación Si/Al y morfología (BEA, CHA, ITQ-2 y FAU), materiales mesoporosos (MCM-41 y SBA-15) y óxidos metálicos (MgO, TiO2 y γ-Al2O3). Se ha comprobado que existe una fuerte influencia del tipo de soporte sobre la actividad catalítica, obteniéndose los mejores resultados con los catalizadores cuyos soportes presentaban propiedades ácidas y que tenían una elevada área superficial. Para el caso de las zeolitas, su morfología no influye tanto en la actividad catalítica como la relación Si/Al, obteniéndose los mejores resultados con los catalizadores soportados sobre zeolitas con alta relación Si/Al. En cuanto a los catalizadores soportados sobre óxidos metálicos, se han obtenido los mejores resultados con aquellos catalizadores soportados en óxidos con alta área superficial y propiedades ácidas. Los resultados más prometedores, sobre todo por su elevada estabilidad hidrotérmica, se obtuvieron con el catalizador preparado con la zeolita CHA (Si/Al = 10), que mantiene toda su actividad después de ser sometido a envejecimiento. En segundo lugar, se ha estudiado la reacción de oxidación de CO utilizando catalizadores basados en Ag y Ag-Au, soportados en la zeolita ITQ-2. Los catalizadores de plata se han empleado para estudiar la influencia de las especies de Ag en la actividad catalítica. Para ello, los catalizadores se han preparado mediante tres métodos diferentes que conducen a la formación de distintas especies de plata: impregnación a volumen de poro, intercambio iónico, y con nanoclusters de Ag25(SR)18 soportados. El análisis de los resultados catalíticos obtenidos, junto con los resultados de caracterización han permitido determinar que la especie activa es la plata metálica, logrando los mejores resultados con los catalizadores que presentaban una mayor cantidad de esta especie en su superficie, lo cual viene determinado por el método de adición de la plata y por la evolución de estas especies durante su activación y durante los sucesivos ciclos de reacción. Los catalizadores bimetálicos Ag-Au fueron preparados mediante la impregnación de nanoclusters AgxAu25-x(SR)18 sobre la zeolita ITQ-2. Los resultados mostraron que la mejor actividad era obtenida cuando se producía la formación de nanopartículas aleadas de Ag-Au, que favorecían la adsorción del CO y del O2. Estas partículas se formaban tras la destrucción parcial de los ligandos tiolatos. Se ha comprobado que, durante la reacción, todos los nanoclusters evolucionaban hacia la formación de nanopartículas Ag-Au independientemente del pretratamiento aplicado. Estos resultados, han permitido mostrar que la reacción de oxidación de CO es una herramienta muy útil para seguir la evolución de los nanoclusters metálicos durante los procesos de activación, y durante la reacción. Por último, se ha estudiado la actividad en la semihidrogenación del fenilacetileno a estireno de los catalizadores con nanoclusters de oro con distinto número de átomos, Au25 y Au11, y con diferentes ligandos (tiolato para Au25 y fosfina para Au11). Estos catalizadores fueron soportados sobre óxidos metálicos (MgO, γ-Al2O3 e hidrotalcita Mg/Al), observándose que la actividad depende tanto de la composición de los nanoclusters, como del soporte y del pretratamiento. Se ha determinado que la activación parcial del H2 es un factor clave, y está relacionado con las propiedades ácido/base del soporte. Los mejores resultados se obtuvieron con los catalizadores con nanoclusters Au25 sobre la hidrotalcita Mg/Al, la cual presenta una basicidad intermedia, lo que favorece la activación del hidrógeno, pero evita la sobrehidrogenación de los alquinos a alcanos. Los resultados obtenidos en las distintas reacciones con los diferentes catalizadores han mostrado que la interacción soporte-metal es fundamental a la hora de diseñar catalizadores activos para una reacción concreta. Esta interacción depende en gran medida de las propiedades ácido/base del soporte y de los pretratamientos aplicados a los catalizadores, y estos deben ser seleccionados para cualquier reacción en particular. Se ha comprobado, además, que los centros metálicos evolucionan a lo largo de la reacción pudiendo llevar a la formación de nuevas especies que serán más o menos activas según la reacción estudiada.
[CA] En aquesta tesi doctoral s'ha investigat sobre l'ús de catalitzadors metàl·lics estructurats en reaccions relacionades amb la Química Sostenible. En primer lloc, s'ha estudiat l'eliminació dels òxids de nitrogen mitjançant la seua reducció catalítica selectiva emprant amoníac. S'han emprat catalitzadors bimetàlics Mn-Fe suportats sobre zeolites amb diferent relació Si/Al i morfologia (BEA, CHA, ITQ-2 and FAU), materials mesoporosos (MCM-41 and SBA-15) i òxids metàl·lics (MgO, TiO2 and γ-Al2O3). S'ha comprovat que existeix una forta influència del tipus de suport sobre l'activitat catalítica, obtenint-se els millors resultats amb els catalitzadors els suports dels quals presentaven propietats àcides i que tenien una elevada àrea superficial. Per al cas de les zeolites, la seua morfologia no influeix tant en l'activitat catalítica com la relació Si/Al, obtenint-se els millors resultats amb els catalitzadors suportats sobre zeolites amb alta relació Si/Al. Els catalitzadors suportats sobre òxids metàl·lics han mostrat millors resultats amb aquells catalitzadors suportats en òxids que presenten alta àrea superficial i propietats àcides. Els resultats més prometedors, sobretot per la seua elevada estabilitat hidrotèrmica, es van obtindre amb el catalitzador preparat amb la zeolita CHA (Si/Al = 10), que manté tota la seua activitat després de ser sotmés a un envelliment. En segon lloc, s'ha estudiat l'activitat en l'oxidació de CO de catalitzadors basats en Ag i Ag-Au, suportats sobre la zeolita ITQ-2. Els catalitzadors de plata es van emprar per a estudiar la influència de la naturalesa de les espècies de Ag en l'activitat catalítica. Per a això, els catalitzadors s'han preparat mitjançant tres mètodes diferents: impregnació a volum de porus, intercanvi iònic, i amb nanoclusters de Ag25(SR)18 suportats. L'anàlisi dels resultats catalítics obtinguts amb els diferents materials, juntament amb els resultats de caracterització han permés determinar que l'espècie activa en aquesta reacció és la plata metàl·lica, aconseguint els millors resultats amb els catalitzadors que presentaven una major quantitat de d'aquesta espècie en la seua superfície, la qual cosa ve determinada pel mètode d'addició de la plata i per l'evolució de les espècies durant la seua activació i durant els cicles de reacció. D'altra banda, els catalitzadors bimetàl·lics Ag-Au van ser preparats mitjançant la impregnació de nanoclusters AgxAu25-x(SR)18 sobre la zeolita ITQ-2. Els resultats van mostrar que la millor activitat era obtinguda quan es produïa la formació de nanopartícules aliades de Ag-Au, que afavorien l'adsorció del CO i del O2. Aquestes partícules es formaven després de la destrucció incompleta dels lligands tiolats. Es va comprobar que, durant les condicions de reacció, tots els nanoclusters evolucionaven cap a la formació de nanopartícules Ag-Au independentment del pretractament aplicat. Aquests resultats han permés mostrar que la reacció d'oxidació de CO és una eina molt útil per a seguir l'evolució dels nanoclusters metàl·lics durant els processos d'activació i durant la reacción. Finalment, s'ha estudiat l'activitat en la semihidrogenació del fenilacetilè a estiré dels catalitzadors basats en nanoclusters d'or amb diferent nombre d'àtoms, Au25 i Au11, i amb diferents lligands (tiolat per a Au25 i fosfina per a Au11). Aquests catalitzadors van ser suportats sobre òxids metàl·lics (MgO, γ-Al2O3 i hidrotalcita Mg/Al), observant-se que l'activitat depén tant de la composició dels nanoclusters, com del suport i del pretractament emprat. S'ha determinat que l'activació de l'hidrogen és un factor clau, estant això directament relacionat amb les propietats àcid/base del suport. Els millors resultats es van obtindre amb els catalitzadors preparats amb nanoclusters Au25 sobre la hidrotalcita Mg/Al, la qual presenta una basicitat intermèdia, la qual cosa afavoreix l'activació de l'hidrogen, però evita la sobrehidrogenación dels alquins als alcans. Els resultats obtinguts en les diferents reaccions amb els diferents catalitzadors han mostrat que la interacció suport-metall és fonamental a l'hora de dissenyar catalitzadors actius en les reaccions estudiades. Aquesta interacció depén en gran manera de les propietats àcid/base del suport i dels pretractaments aplicats als catalitzadors. S'ha comprovat, a més, que els centres metàl·lics evolucionen al llarg de la reacción, podent portar a la formació de noves espècies que poden ser més o menys actives segons la reacció estudiada.
[EN] The use of structured metallic catalysts in reactions related to Sustainable Chemistry have been investigated in this Doctoral Thesis. Firstly, the removal of NOX through the selective catalytic reduction with ammonia has been studied. Mn-Fe catalysts supported on zeolites with different Si/Al ratio and morphology (BEA, CHA, ITQ-2 and FAU), on mesoporous materials (MCM-41 and SBA-15) and on metallic oxides (MgO, TiO2 and γ-Al2O3) have been employed. It has been proved that there is a strong influence of the type of support in the catalytic activity, obtaining the best results with the catalysts supported on materials with acidic properties and high surface area. The morphology of zeolite-based catalysts does not influence the catalytic activity as much as the Si/Al ratio does, obtaining the best results with the catalysts supported on zeolites with high Si/Al. It has been shown that the activity of the catalysts supported on metallic oxides is strongly influenced by the surface area of the support and by its acid/base properties, obtaining the best results with the catalysts supported on oxides with high surface area and acidic properties. Furthermore, all catalysts present a selectivity towards N2 greater than 90 %. The most promising results, mainly for its hydrothermal stability, are obtained with the catalysts prepared with CHA zeolite (Si/Al = 10), that maintain the activity after the aging. Secondly, the activity in the catalytic oxidation of CO of Ag and Ag-Au catalysts supported on ITQ-2 zeolite has been studied. Silver-based catalysts were used in order to investigate the influence of the nature of silver species in the catalytic activity. For this, catalysts were prepared using different methods, leading to different silver species: incipient wetness impregnation, ion exchange, and as supported Ag25(SR)18 nanoclusters. The catalytic results together with the characterization results have allowed to determine that metallic silver is the active specie in this reaction, obtaining the best results with the catalysts containing a higher concentration of this species on the surface. This is determined by the preparation method and by the evolution of these species during the activation and the reaction cycles. In the other hand, the Ag-Au bimetallic catalysts were prepared by the impregnation of AgxAu25-x(SR)18 nanoclusters on the ITQ-2 zeolite. The results showed that the best activity is obtained when Ag-Au alloy nanoparticles are formed, favouring the CO and O2 adsorption. These types of particles were formed after the partial destruction of thiolate ligands that are protecting the nanoclusters, that is favoured by the pretreatment with hydrogen. However, it has been shown that during reaction, nanoclusters evolved to the formation of Ag-Au alloyed nanoparticles regardless of the pretreatment applied. These results proved that the CO oxidation reaction is a useful tool to follow the metallic nanoclusters evolution during the activation processes and during reaction. Finally, the activity of catalysts based on gold nanoclusters with different number of atoms, Au25 y Au11, and different ligands (thiolates for Au25 and phosphines for Au11) in the semihydrogenation of phenylacetylene to styrene has been studied. These catalysts were supported on various metallic oxides (MgO, γ-Al2O3 and Mg/Al hydrotalcite), observing that catalytic activity depends on the nanoclusters composition, but also on the support and on the pretreatment. It has been shown that H2 partial activation is a key factor, which is directly related to the acid/base properties of the support. The best results were obtained with the catalysts prepared with Au25 nanoclusters supported on the Mg/Al hydrotalcite, that presents a medium basicity between MgO and alumina, favouring the hydrogen activation, but avoiding the overhydrogenation of alkynes to alkanes. The results obtained for the different reactions with the different catalysts have shown that the support-metal interaction is essential when designing active catalysts for a particular reaction. This interaction strongly depends on the acid/base properties of the supports and on the pretreatments, and they must be selected for any reaction. Moreover, it has been proved that metallic sites evolve during the reaction leading to new species that can be more or less active, depending on the studied reaction.
López Hernández, I. (2021). Catalizadores metálicos estructurados en reacciones de Química Sostenible [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172246
TESIS
APA, Harvard, Vancouver, ISO, and other styles
27

Ourari, Ali. "Étude de deux réactions d'électrocatalyse : hydrogénation électrocatalytique sur des films de polymères contenant des microparticules de métaux nobles et activation de l'oxygène par des complexes Mn(III) - bases de Schiff." Université Joseph Fourier (Grenoble ; 1971-2015), 1995. http://www.theses.fr/1995GRE10171.

Full text
Abstract:
Ce travail est relatif a l'etude de deux reactions d'electrocatalyse. La premiere partie concerne la mise au point de cathodes moleculaires, realisees par l'inclusion de microparticules de metaux nobles dans des films de polypyrrole fonctionnalise et a leur application en hydrogenation electrocatalytique. L'etude de l'hydrogenation de deux substrats test, le limonene et la carvone, a montre qu'il est possible d'orienter la selectivite de ces electrodes modifiees selon la nature du metal incorpore (pt, pd ou rh). Le resultat le plus significatif est que l'incorporation dans le meme film de polymere de deux metaux d'activite catalytique differente (pt + pd ou rh + pd) conduit a des cathodes dont l'efficacite et la selectivite sont largement superieures a celle des cathodes basees sur un seul metal. La deuxieme partie de ce travail est consacree a l'etude de l'activation electrochimique de l'oxygene par des complexes mn (iii) - bases de schiff. Il apparait que le complexe mn (ii) - salen substitue en 5,5 par des atomes de chlore est le catalyseur le plus stable et le plus efficace pour la reaction test d'epoxydation du cyclooctene. D'autre part, la rigidification du complexe par l'utilisation d'un pont 1,2-cyclohexylidene ou 1,2-phenylene reliant les deux motifs salicylaldehyde du ligand, a la place du groupe ethylidene ligand salen, entraine une forte diminution de l'activite catalytique des complexes correspondants. Ce systeme electrocatalytique a egalement ete applique a l'oxydation de la tetraline et de la triphenylphosphine
APA, Harvard, Vancouver, ISO, and other styles
28

Allam, Lévi. "Etude de la diffusion unidimensionnelle dans les chaines finies : application au tmmc-cd." Toulouse 3, 1987. http://www.theses.fr/1987TOU30063.

Full text
Abstract:
Etude rpe de (ch::(3))::(4) nmn::(1-x) cd::(x) cl::(5) entre 20 et 300 k, pour x = 0,02; 0,08 et 0,2; mesure des temps de relaxation spin-reseau. Mise en evidence de variations importantes en fonction de la composition. Interpretation des resultats au moyen du formalisme de la fonction memoire et d'un modele de la fonction de correlation de spins des chaines finies
APA, Harvard, Vancouver, ISO, and other styles
29

Pappas, Adlreburg Nickolas. "To Make Iron of Iron : A Comprehensive Analytical Study of Spade Shaped Iron Bars." Thesis, Stockholms universitet, Arkeologiska forskningslaboratoriet, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-145694.

Full text
Abstract:
This thesis aims to provide adequate analytical information on the spade shaped iron bars of Norrland and central Sweden. While their significance has been thoroughly debated for decades, analytical research on them has been confined to cases of single artefacts or theoretical interpretations of their value, meaning and origin. In this study a comprehensive approach is taken into consideration. Based on X-Ray fluorescence (XRF), scanning electron microscopy (SEM) and metallographical analysis this thesis seeks to facilitate new interpretations on quality, production centres and usage based on analytical results. Aiming to settle some of the long lasting questions regarding the artefacts while producing results which can further the discussion by raising new questions, previously unasked.
APA, Harvard, Vancouver, ISO, and other styles
30

Jones, Clive John. "Continuous leaching of a reduced manganese ore." Thesis, 2015. http://hdl.handle.net/10539/17469.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Preston, Paula Cristina Canastra Ramos. "Physical and chemical characterization of the manganese ore bed at the Mamatwan mine, Kalahari manganese field." Thesis, 2009. http://hdl.handle.net/10210/1967.

Full text
Abstract:
M.Sc.
The Mamatwan mine is situated at the most southern end of the world’s largest landbased resource of manganese, the Kalahari manganese field. The mine is operated by South African Manganese Corporation Limited (SAMANCOR) and is the largest open pit manganese mine in the world. The sedimentary manganese ore bed is interbedded with iron-formation of the Hotazel Formation of the Early Paleoproterozoic Voëlwater Subgroup of the Transvaal Supergroup. The open pit Mamatwan mine has a proven economic ore reserve of between 300 and 400Mt and produces 1.2Mt of manganese ore annually, of which 0.5Mt of ore is beneficiated and shipped through the harbour at Port Elizabeth. The remaining ore is railed to ferro-alloy plants at Meyerton and Newcastle. Carbonate-rich manganese lutite mined at the Mamatwan Mine is widely known as Mamatwan-type ore. It has a manganese content ranging from 30 – 38%. Only a small portion (15m of a total thickness of 49m) of the ore bed, containing an average of 38% Mn, is being mined and processed at present. The larger portion of the ore bed is not utilized. This study focuses on the physical and chemical characteristics of the ore bed in more detail in order to make suggestions on how to a) reduce waste by upgrading the upper parts of the lower manganese ore bed, or b) to improve the current recovery from the present economic zone. A second part of this study pays special attention to the lithostratigraphy of the lower manganese ore bed. The focus is on the paragenetic sequence and the diagenetic evolution of the braunite lutite that constitutes the manganese ore. The Mamatwan-type ore can be described as diagenetic to very low-grade metamorphic carbonate-bearing braunite manganolutite. Based on geochemical and mineralogical data, the lower manganese ore body was previously subdivided into eleven lithogically distinct zones. Based on detailed diamond drill core logging and with the aid of geochemical and physical data of two selected drill cores, an additional thirteen subzones were identified in this study. These new subzones were found to be consistent across the entire study area, located to the west and north of the present Mamatwan open pit. The paragenetic sequence recognised in the ore of the lower manganese ore bed can be subdivided into four stages, namely: (a) sedimentation, which is represented by fine lamination and the presence of fine-grained “dusty hematite”. (b) early diagenesis as represented by micritic carbonate matrix and possibly braunite, (c) late diagenesis or low-grade metamorphism are represented by coarse grained hausmannite, specularitic hematite, partridgeite and Mn-calcite, and supergene alteration that occurs immdediately below the contact of the ore bed to the unconformably overlying Tertiary Kalahari Formation. This supergene altered zone is marked by the presence of Mn4+ oxides such as cryptomelane, manjiroite, romanechite and pyrolusite, in addition to barite. The results obtained in this study permit definition of two sedimentary cycles within the manganese ore bed at the Mamatwan mine. Both cycles are defined by a carbonate-rich finely laminated zone at the base, overlain by a central manganese-rich economic zone, capped by manganese lutite that is enriched in carbonate ovoids. The two manganeserich zones are known as the M (lower) and X (upper) zone, and are characterized by the replacement of carbonate ovoids by hausmannite. The two Mn-rich zones are chemically and physically almost identical, with the M zone 7.5m thick and the X zone 5.5m thick. However, in the present mining configuration only the M zone is being mined. The most important result arising from the present study is the recommendation to restructure the future mining operation in order to mine not only the M zone, but also the X zone.
APA, Harvard, Vancouver, ISO, and other styles
32

Burucu, E. "Kinetics and mechanism of the reduction of Mamatwan manganese ore fines by solid carbon." Thesis, 1991. http://hdl.handle.net/10539/22033.

Full text
Abstract:
A dissertation submitted to the Faculty of Engineering, University of Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Engineering Johannesburg, 1991
The kinetics of reduction of the manganese ore from the Mamatwan mine has been studied by thermogravimetric (TGA) analysis, x-ray diffraction analysis (XRD), optical microscopy, and energy dispersive analysis of x-rays (EDAX) between 1100 and 1350 degree celcius with pure graphite under argon atmosphere. It has been observed that the rate and degree of reduction increased with increasing temperature and decreasing particle size. The effect of the different reaction atmosphere has also been investigated by replacing argon atmosphere with carbonmonoxide (CO) and carbondioxide (C02)' The results clarified importance of some reactions in the reduction mechanism of the ore. In early stages of reduction, up to about 4 minutes of reaction time, carbothermic reduction of higher oxides of manqanase and iron (Mn203 and Fe2o3) to manganeous oxide (MnO) and metallic iron respectively was observed which was controlled by diffusional process across the boundary layer between the solid phases. Apparent activation energy is calculated as 61.03 kJ for this stage which corresponds to about 30 percent reduction. Metallization started as random nucleation of iron rich carbides around Mno grains inside the particle. After 30 percent reduction the formation of a silicate phase was observed. Up to 70 percent reduction at 1350oC, reduction rate was controlled by chemical reaction between oxide phase and gaseous phase with an apparent. activation energy of 153 32 kJ.
MT2017
APA, Harvard, Vancouver, ISO, and other styles
33

Burger, Albert Meiring. "Fault-controlled hydrothermal alteration of Palaeoproterozoic manganese ore in Wessels Mine, Kalahari Managanese Field." Thesis, 2014. http://hdl.handle.net/10210/9945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

"Geochemistry and mineralogy of supergene altered manganese ore below the Kalahari unconformity in the Kalahari manganese field, Northern Cape Province, South Africa." Thesis, 2009. http://hdl.handle.net/10210/1958.

Full text
Abstract:
M.Sc.
It is the focus of the study to qualitatively describe and then quantify the mineralogical and geochemical changes associated with the supergene alteration of carbonate-rich braunite lutite (Mamatwan-type ore) immediately below the Kalahari unconformity along the southeastern suboutcrop perimeter of the Hotazel Formation in the Kalahari deposit. It was also the objective of this study to determine the timing and duration of supergene alteration. Samples for polished thin sections were carefully selected from eight representative boreholes to be representative of all the lithostratigraphic zones and ore types. The thin sections were used to study mineralogy by means of reflected light microscopy and scanning electron microscopy. X-ray powder diffractometry on representative powder samples were used to study the mineralogy and geochemistry of the samples. Microprobe analyses were also performed on the representative samples. Finally the samples were submitted for 40Ar/39Ar geochronology. In this supergene enrichment zone carbonates are leached (associated with an increase in porosity) and Mn2+/Mn3+ -bearing minerals (kutnahorite, Mn-calcite an braunite) are altered to supergene Mn4+-bearing mineral phases (todorokite and manganomelane) and minor quartz. This process upgrades ore from 38 wt% Mn to ore with more than 40 wt% Mn. Element fluxes, enrichment and depletion of major and trace elements were quantified by mass balance calculations. Na2O, K2O, Sr, Ba, Zn and H2O were enriched, while Mn3O4, Fe2O3, CaO, MgO, P, B and CO2 were leached from the ore during supergene alteration. Results of this study suggest that the development of Post African I erosional surface may have taken place 45 Ma ago. The bottom of the weathering profile gives a well-defined peak at ca. 5 Ma that may possible coincide with the development of Post African II erosional surface. The major characteristics of the alteration process of the unaltered Mamatwan-type ore to supergene altered braunite lutite can be summarized as follow: • Leaching of Mn carbonates and Mn2+/Mn3+-oxides. • Formation of Mn4+-oxyhydroxides and quartz. • Decrease in relative density of the ore. • Increase in porosity of the ore. • Leaching of Mn3O4, Fe2O3, CaO, MgO, P, B, CO2. • Enrichment of Na2O, K2O, Sr, Ba, Zn, H2O. Chemical weathering processes along the Cenozoic Kalahari unconformity appear to have affected the manganiferous lithologies of the Hotazel Formation from 45 Ma onwards to 5 Ma. The weathering front processes very slowly through the Mn-rich braunite lutite (<10m in 40 Ma; <0.25m/Ma); producing a very uniform and microcrystalline supergene mineral assemblage with distinct characteristics.
APA, Harvard, Vancouver, ISO, and other styles
35

Van, Staden Anelda. "Characterisation of the lowermost manganese ore bed of the Hotazel Formation, Gloria Mine, Northern Cape Province." Thesis, 2009. http://hdl.handle.net/10210/1975.

Full text
Abstract:
M.Sc.
This dissertation describes the N1 manganese ore bed at Gloria Mine in the Kalahari Manganese Field, Northern Cape Province. It also compares the ore bed at Gloria Mine with the correlative bed further to the south at Mamatwan Mine. The ore bed at Gloria Mine can be subdivided into ten texturally distinct zones that are laterally consistent throughout the mine lease area. The mineralogy and geochemistry of the various lithostratigraphic zones are described from two drill cores (GL28 and GL24), situated away from any known structural features or unconformities that could have affected the properties of the Ore. The ore in drill core GL28 has a mineralogical composition similar to that of typical Mamatwan-type ore described at Mamatwan Mine with braunite and kutnahorite as the main minerals. However, in drill core GL24 the ore has a very different mineralogical composition although it is texturally and geochemically rather similar to Mamatwan-type ore. The ore is composed of hausmannite, calcite and jacobsite and is apparently related to a post-depositional alteration event that did not effect Mamatwan-type ore in the Mamatwan Mine area. This altered ore is similar in composition to low-grade leastaltered manganese ores in the cores of fault blocks at Wessels and N’Chwaning Mines i.e. the area known for its hydrothermally altered high-grade manganese ores in the northern part of the Kalahari Manganese Field. In addition to the above, the N1 manganese ore bed at Gloria Mine also underwent ferruginisation close to certain joints and normal faults. No obvious alteration could be detected where the ore bed is unconformably overlain by Dwyka diamictite, nor associated with a thrust fault displacing the ore.
APA, Harvard, Vancouver, ISO, and other styles
36

(9673769), William E. Odom III. "Dating the Cenozoic incision history of the Tennessee and Shenandoah Rivers with cosmogenic nuclides and 40Ar/39Ar in manganese oxides." Thesis, 2020.

Find full text
Abstract:
The post-orogenic history of the Appalachian Mountains, particularly the persistence of rough topography and the degree of river incision throughout the region, has been a longstanding focus of geomorphology studies. Numerous models have been developed to explain the evolution of this landscape, variously invoking episodic or continuous processes of uplift and erosion to drive the generation or reduction of topographic relief. Recently, late Cenozoic uplift has found favor as a mechanism for rejuvenating the topography of the southern and central Appalachians. This hypothesis has drawn on longitudinal river profiles, seismic tomography, and offshore sediment records as evidence of Neogene uplift.

Radiometric dating of surficial deposits provides a means to directly test models of episodic and continuous landscape evolution, as well as the Neogene uplift hypothesis. The research described in this thesis dates surficial sediments (river terraces, alluvial fans, and a filled sinkhole) and supergene manganese oxides using 26Al/10Be burial dating and 40Ar/39Ar geochronology, respectively. Our cosmogenic 26Al/10Be dating provides detailed histories of aggradation and incision along the Shenandoah and Tennessee Rivers since the early Pliocene. 40Ar/39Ar dating of manganese oxides permits estimates of surface preservation and denudation in the Shenandoah Valley and nearby watersheds throughout the Cenozoic.

The results of our work in the Shenandoah Valley, Tennessee River basin, and intervening areas indicate that the Appalachians experienced no significant pulse of uplift during the Cenozoic. Long-term preservation of supergene manganese oxides dates as far back as the Eocene, demonstrating minimal denudation and discontinuous formation that lend evidence to episodic landscape evolution models. Cosmogenic26Al/10Be burial ages along the Shenandoah and Tennessee Rivers reveal Pliocene aggradation, with enhanced deposition in the Shenandoah Valley during the mid-Piacenzian Warm Period. Both rivers likely experienced incision during the Pleistocene, likely due to climatic fluctuations. These results demonstrate that while the Appalachian landscape has remained largely unchanged for tens of millions of years, rapid Pleistocene changes in base level recently triggered significant incision of major drainages.
APA, Harvard, Vancouver, ISO, and other styles
37

Bhalla, Amit. "Hydrocarbon reduction of manganese ores." Thesis, 2018. https://hdl.handle.net/10539/25884.

Full text
Abstract:
A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy. Johannesburg, March, 2018
Reduction behavior of South African Mamatwan manganese ore using methane-argon- hydrogen gas mixture was investigated experimentally in the temperature range of 1050ºC to 1250ºC. The effect of changing gas mixture composition, time and temperature was studied using a vertical tube furnace. After each test, three representative samples were prepared; one was analyzed by chemical analysis to obtain metallization results as a function of each reducing condition for each time interval over the total reduction period of two hours. Second sample was analyzed by X-ray diffraction to determine the progress of phase changes; the third sample was mounted, polished and submitted for SEM-EDAX in order to examine the morphology of the ore and its changes in the course of reduction. It was seen that CH4 was an effective reductant as it cracked, supplying the reaction site with hydrogen gas and very fine solid carbon. The excess carbon from cracking of methane ensures regeneration of reductants CO and H2 from reaction product gases of CO2 and H2O ensuring low partial pressure of oxygen at the reaction site. Hydrogen gas may also be involved in the reduction of iron oxide components of the ore. Moreover, depending upon temperature and CH4/H2 ratio in the gas phase the activity of carbon in the system reaches values much higher than unity, shifting the reduction reaction by carbon to lower temperatures. It was observed that bulk of the metallization occurred in the first thirty to forty minutes and the metallization reached some kind of a reduction maximum at 73% metallization. The Mn/Fe ratios in the resulting alloy were higher than those in ordinary carbothermic solid-state reduction, indicating the simultaneous reduction of Fe and Mn at these low reducing temperatures due to a low oxygen potential set up by the methane bearing gas mixtures. It was seen that metallization of Mamatwan ore proceed in two stages. First, reduction of the higher oxides to MnO and metallic iron. Second, reduction of any remaining oxides and MnO to mixed carbide of iron and manganese. During first stage values of effective CO-CO2 diffusivities generated by the model were found to lie in the range from 1.45 *10-6 cm2sec-1 to 8.43*10-6 cm2sec-1 at 1100ºC. Apparent activation energy for first stage calculated in the temperature range of 1050ºC to 1250ºC varied from 1.47 kJ/mol to 24.72 kJ/mol indicating possibility of diffusional control. For the second stage the experimental curves could be duplicated with the mathematical model reasonably well with a maximum difference between the experimental and predicted values being about 5 percent. Rate of metallization values during the second stage (Ms) changed between 1.83*10-8 mol.sec-1.cm-2 and 8.55*10-8 mol.sec-1.cm-2. Specific rate constant values (ks) for the second stage, varied from 5.53*10-6 cm/sec to 3.16*10-5 cm/sec which are much smaller than specific rate constant for the first stage of reduction (kf), which varied from 1.64*10-4 cm/sec to 1.15*10-4 cm/sec, as the rate of second stage of the reduction is much slower than the rate of the first stage. X ray analysis revealed that manganese ore was reduced primarily to carbide Mn7C3 at lower temperature range of the experiments, but at 1200ºC the dominant reaction product was Mn5C2 in both mixtures of methane-argon and methane-hydrogen. The S.E.M images revealed that the product metallic phase occurred all throughout the surface, with globular formation in case of reduction where hydrogen was the carrier gas.
MT 2018
APA, Harvard, Vancouver, ISO, and other styles
38

Gutzmer, Jens. "Genesis and alteration of the Kalahari and Postmasburg manganese deposits, Griqualand West, South Africa." Thesis, 2012. http://hdl.handle.net/10210/5803.

Full text
Abstract:
Ph.D.
The economically important sedimentary manganese deposits of the Paleoproterozoic Kalahari and Postmasburg manganese fields, are situated in close geographic vicinity to each other in the Griqualand West region of the Northern Cape Province, South Africa. This thesis describes aspects of mineralogy, petrography and geochemistry of the manganese ores with the purpose to establish genetic models for genesis and alteration of manganese ores of both manganese fields. The Kalahari manganese field, situated some 60 km northwest of Kuruman, is the largest known land-based manganese deposit. Manganese ores occur interbedded with iron-formations of the Hotazel Formation of the Voelwater Subgroup of the Late Archean-Paleoproterozoic Transvaal Supergroup. The sediments of the Voelwater Subgroup are preserved in five erosional relics, of which the Kalahari manganese deposit is by far the largest and the only one of economic importance. Two types of ore are mined, low-grade sedimentary Mamatwan-type ore and high-grade Wesselstype ore. Mamatwan-type ore is represented by microcrystalline laminated braunite-lutite composed of kutnahorite, Mn-calcite, braunite and hematite, modified by the occurrence of late diagenetic or metamorphic hausmannite, partridgeite, manganite and calcite. Mamatwan-type ore contains up to 38 mass % Mn and constitutes about 97 % of the ore reserves in the Kalahari manganese deposit. High-grade Wessels-type ore, with a manganese content of between 42 to 48 mass % Mn (on average), constitutes about 3 % of the ore reserves. It occurs only in the northwestern part of the main Kalahari deposit, and in small deposits at Hotazel and Langdon, in association with a system of north-south striking normal faults. The Wessels alteration event is thought to be related to the Kibaran orogenetic event (about 1.1 Ga). Fault zones are ferruginized and alongside faults sedimentary Mamatwan-type ore has been hydrothermally upgraded to Wessels-type ore. Metasomatic fronts are defined by changing mineral associations. These associations clearly illustrate that decreasing degrees of alteration relate to increasing distance from the fluid feeders. Areas of unaltered Mamatwan-type ore are preserved in the core of fault blocks. Wessels-type ore consists mostly of hausmannite, bixbyite, braunite II and manganite and subordinate gangue minerals such as clinochlore and andradite but the mineral assemblage associated with the Wessels alteration event is unusually diverse. More than 100 minerals have been identified, amongst them 8 new mineral species and an unusual, ferrimagnetic, Fe-rich variety of hausmannite. Mass balance calculations illustrate that the upgrading of the Wessels-type manganese ore is a consequence of leaching of CaO, MgO, CO 2, and Si02 from a low-grade Mamatwan-type precursor. This metasomatic process results in increasing secondary porosities, compaction of the orebody to two thirds of its original thickness and consequently residual enrichment of manganese in the ores. Three younger alteration events are observed in the Kalahari manganese deposit. These are only of minor economic importance. Wallrock alteration associated with the Mamatwan alteration event is characterized by reductive leaching of Fe and Mn around syntectonic veins and joints with pyritechalcopyrite- carbonate mineralization. The alteration is explained by infiltration of epithermal solutions that were introduced along veins or joints. The timing of the alteration event has tentatively been placed into the Pre-Karoo era. The Smartt alteration event is associated with intensive faulthosted brecciation and replacement of braunite and carbonates of the Mamatwan-type ore by todorokite and manganomelane, a process that causes considerable upgrading of the manganese ore next to a fault breccia at Mamatwan mine, and the formation of stratiform cross-fibre todorokite veins at Smartt mine. The Smartt alteration event postdates the Mamatwan alteration event and has tentatively been correlated with Pre-Kalahari groundwater circulation. Supergene alteration of the ores took place in Kalahari and Post-Kalahari times. It is characterized by the occurrence of cryptomelane, pyrolusite and other typically supergene manganese oxides along the suboutcrop of the Hotazel Formation beneath the Cenozoic Kalahari Formation. The Postmasburg manganese field is situated about 120 km to the south of the Kalahari manganese field on the Maremane dome. Two arcuate belts of deposits extend from Postmasburg in the south to Sishen in the north. Two major ore types are present. The ferruginous type of ore is composed mainly of braunite, partridgeite and bixbyite and occurs along the centre of the Gamagara Ridge, or Western belt. The siliceous type of ore consists of braunite, quartz and minor partridgeite and occurs in small deposits along the Klipfontein Hills (or Eastern belt) and the northern and southern extremities of the Gamagara Ridge. Geological and geochemical evidence suggest that the manganese ores represent weakly metamorphosed wad deposits that accumulated in karst depressions during a period of lateritic weathering and karstification in a supergene, terrestrial environment during the Late Paleoproterozoic. The dolomites of the Campbellrand Group of the Transvaal Supergroup are host and source for the wad accumulations. Contrasting geological settings are suggested for the accumulation of the siliceous and the ferruginous types of ore respectively. The former originated as small pods and lenses of wad in chert breccia that accumulated in a karst cave system capped by the hematitized Manganore iron-formation of the Transvaal Supergroup. The cave system finally collapsed and the hematitized iron-formation slumped into the sinkhole structures. The ferruginous type of ore accumulated as mixed wad-clay sediment trapped in surficial sinkhole depressions in the paleokarst surface. The orebodies are conformably overlain by the Doornfontein hematite pebble conglomerate or aluminous shales belonging to the Gamagara Formation of the Late Paleoproterozoic Olifantshoek Group. Well preserved karst laterite paleosol profiles, described from the basal section of the Gamagara Formation, provide a strong argument for the terrestrial, supergene origin of the manganese ores. The manganese ores in the Postmasburg manganese field were affected by diagenesis and lower greenschist facies metamorphism. Metamorphism resulted in recrystallization to braunite in the siliceous ores of the Eastern belt, and to massive or mosaic textured braunite and idioblastic partridgeite in the ferruginous environment of the Western belt. Secondary karstification and supergene weathering are evidence for renewed subaerial exposure of the manganese ore and their host rocks. The metamorphic mineral assemblage is replaced by abundant romanechite, lithiophorite and other supergene manganese oxides. Comparison between the Kalahari- and the Postmasburg manganese field shows that sedimentary manganese accumulation took place in entirely different depositional environments and owing to different mechanisms. Their close geographic relationship appears to be coincidental. Apparent similarities arise as a consequence of regional geological events that postdate the deposition of the manganese ores. These similarities include the lower greenschist facies metamorphic overprint, an event tentatively related to thrusting and crustal thickening during the Kheis orogenetic event, and syn- to Post-Kalahari supergene alteration. The correlation of structurally controlled hydrothermal alteration events in the Kalahari manganese field and the Postmasburg manganese field remains difficult due to the absence of the necessary geochronological constraints.
APA, Harvard, Vancouver, ISO, and other styles
39

"Mineralogiese ondersoek van hoë-temperatuur-reduksieprodukte van mangaanerts vanuit die Mamatwanmyn, Kalaharimangaanveld." Thesis, 2015. http://hdl.handle.net/10210/14487.

Full text
Abstract:
M.Sc.
This investigation is a mineralogical study of the reduction products formed during the reduction of Mamatwan manganese ore, as well as presentation of a possible reduction mechanism for this ore type. Cubes, 20 millimeter in dimensions, of Mamatwan manganese ore were reduced in a vertical tube resistance furnace at temperatures varying from 1200 to 1500°C with various reductants and retention times...
APA, Harvard, Vancouver, ISO, and other styles
40

Van, Bart Adrian. "Structure, stratigraphy and sedimentology of the paleoproterozoic Nsuta manganese deposit, Ghana." Thesis, 2008. http://hdl.handle.net/10210/812.

Full text
Abstract:
The Nsuta manganese deposit is located in the Western Region of Ghana, approximately five kilometers south of Tarkwa Goldfields. The deposit has been an important source of manganese ore since mining began in 1916. The purpose of this project was to produce a concise model of the stratigraphy, sedimentology and structural evolution of the deposit in support of future exploration projects. The manganese ores occur as an up to 45m thick carbonate bed in a thick turbidite-greenstone succession that is part of the ~2.2 Ga Birimian Supergroup. Calc-alkaline volcanics, volcaniclastics, turbidites, argillites and phyllites are thought to have been deposited in a backarc basin environment. The entire sedimentary succession, including the manganese orebody, is a thick turbidite package hosted between an upper and lower greenstone unit consisting predominantly of volcaniclastic material. The entire lithological succession at Nsuta is interpreted to have been deposited within the middle to lower reaches of a submarine fan environment. Field evidence suggests a simple stratigraphy, commencing with a lower greenstone unit composed largely of volcaniclastic material. This is followed by an upward-fining lower turbidite unit deposited in response to a marked transgression and sea level rise. Maximum rate of sea level rise provided ideal conditions for manganese precipitation and concentration, as detrital influx ceased. The central portion of the carbonate orebody that formed hosts the manganese orebody. An upward-coarsening turbidite unit follows above the carbonate unit. This upward-coarsening succession reflects a regression and a highstand systems tract in terms of sequence stratigraphic principles. It is capped by an unconformity that formed during a period of rapid relative sea level fall. It is overlain by a second upward-fining turbidite succession. This succession is not fully preserved as there is a sheared contact between it and the overlying upper greenstone unit. Post-depositional deformation and metamorphic alteration are largely attributed to the Paleoproterozoic Eburnean Orogeny. A first phase of compression was directed along a NW-SE axis and produced a series of isoclinal anticlines and synclines (F1) with NE-SW striking axial planes. This was followed by thrusting between the anticlines and synclines. The age of this deformation and closely associated greenschist metamorphism can be accurately constrained between 2.09 Ga and 2.07 Ga. E-W oriented oblique listric faulting has a prominent effect on the appearance of the Nsuta manganese deposit, as it produced a series of imbricate fault blocks dipping to the north. Associated with this period of deformation is small-scale cross folding with axes plunging to the east (F2). The faults post-date the Eburnean Orogeny and must be associated with a second major tectonic event. Finally, a NNE-SSW striking normal fault, locally known as the German Line, caused further block rotation, notably in the northern parts of the mining concession. Late Mesozoic deep lateritic weathering and incision of the lateritic peneplane by modern rivers have resulted in the complex dissected appearance of the Nsuta orebody. However, based on the detailed structural analysis provided in this study, a feasible target for future exploration of manganese ore buried beneath Late Mesozoic and Cenozoic sediments and soils, has been identified. This target is located to the west of Hills A and B.
Dr. J.M. Huizenga Prof. Nic Beukes Prof. J. Gutzmer
APA, Harvard, Vancouver, ISO, and other styles
41

"A geometallurgical evaluation of the ores of the northern Kalahari manganese deposit, South Africa." Thesis, 2010. http://hdl.handle.net/10210/3223.

Full text
Abstract:
D. Phil.
The Kalahari Manganese Deposit (KMD) is the largest of five erosional relics of the Hotazel Formation that are located near Kuruman in the Northern Cape Province of South Africa. Manganese ores are exploited from the lowermost of three manganiferous beds that are interbedded with banded iron-formation (BIF) and hematite lutite, that together constitute the Hotazel Formation. Two major ore types have been delineated previously, viz. low grade braunite lutite of the Mamatwan-type, and high grade oxidic ores of the Wessels-type, with the latter spatially restricted to the northern KMD. Genesis of the ores was temporally distinct, with the Mamatwan-type ore considered as a sedimentary-diagenetic precursor to the hydrothermally altered Wessels-type ore. Drill core samples from the Nchwaning-Gloria area of the northern KMD were analysed, with the aim to better characterise ore genesis, with emphasis on ore alteration. A second part of the study aimed at the application of mineralogical and geochemical information to aspects of ore smelting for the production of Mn alloy for use in the steel industry. Methods employed were drill core logging, X-ray diffraction (XRD), petrography, electron probe microanalysis (EPMA), major and trace element (including REE) analysis (employing artificial neural networks for evaluation of elemental trends), and stable isotope (C and O) analysis. Significant effort was invested in method development for quantitative mineralogical modal analysis using Rietveld refinement of XRD data. The study shows that a number of ore types can be differentiated in the northern KMD on the basis of mineral assemblage, grade, texture and geochemical characteristics. The ores are broadly classified into least altered (LA), partially altered (PA) and advanced altered (AA) types. The LA ores are low grade (<40 wt%Mn) Mn lutites, with dolomite-group carbonate a significant component in addition to braunite. Serpentine is a ubiquitous trace mineral, and boron is a characteristic trace element hosted predominantly by braunite in these ores. Ores of the PA type comprise either braunite-hausmannite-calcite or hausmannite-calcite assemblages, are fine to coarse grained, and display intermediate Mn grades (40-45 wt%Mn). They exhibit a transitional trace element signature. Advanced altered ores may be classified into five different types, based on mineral assemblages that contain hausmannite and/or braunite as significant minerals. Carbonates occur predominantly in the form of calcite, present in minor to trace proportions. Textures vary from fine to very coarse grained, and high Mn grades (typically >45 wt%Mn), are recorded. Trace elements of significance include Zn, associated with hausmannite, B, associated with massive braunite and a number of trace minerals, and P, typically present in trace quantities of apatite. In terms of ore genesis, mineralogical, geochemical and geological considerations suggest that Mn (and Fe) originated from submarine hydrothermal vents, from which it travelled in hydrothermal plumes, prior to rapid deposition ~2.2 Ga ago. Diagenesis followed soon after deposition, through redox reactions involving organic matter and higher oxides of Mn to produce the braunite-carbonate assemblage primarily observed in LA ores. The carbonate:oxide ratio and nature of the carbonates varied slightly depending on fluctuations in organic matter flux to the sediment, as well as marine bicarbonate concentrations. Metamorphism, in relation to diagenesis and metasomatism, is poorly understood, but is perceived to have resulted in serpentine formation, as observed in LA and PA ores.
APA, Harvard, Vancouver, ISO, and other styles
42

Schutte, Sabine Silke. "Ongeluk volcanism in relation to the Kalahari manganese deposits." Thesis, 2011. http://hdl.handle.net/10210/4101.

Full text
Abstract:
D.Phil.
The Ongeluk Formation is a laterally extensive sequence of ≈2200 Ma tholeiitic basaltic andesites in the upper Griqualand West Sequence of the northern Cape Province. The stratigraphic thickness is about 500 m and the Ongeluk Formation underlies the ore-bearing strata of the Kalahari Manganese Field. The formation comprises massive lavas, pillow lavas and hyaloclastite beds in close association. These rocks were extruded under water in a marginal basin within the continental setting of the Kaapvaal Craton. The Hekpoort Basalt Formation of the Transvaal is magmatically cogenetic with the Ongeluk, having indistinguishable geochemistry and sharing a stratigraphically related hiatus in Cr values. The best age estimate for the two formations is 2193 ± 71 Ma, from Rb-Sr data of two previous workers for Hekpoort samples. The Ongeluk Formation shows a mild "regional" geochemical alteration and a profound "Kalahari" alteration beneath the Kalahari Manganese Field. Geochemical screening was used to reconstruct the magmatic composition from a selected dataset. Three stages in the development of regional alteration are ascribed to sea water-rock interaction at different temperatures, and have distinct geochemical signatures. The pervasive Kalahari alteration is characterised by a purple colouration and the decoupled alteration of alkali and high field strength elements. It is due to the development of major hydrothermal systems close to a volcanic vent which are analogous to modern mid-ocean ridge systems. A multi-system isotopic study showed that most of the isotope systems were modified by sea-floor alteration. The similarity of the 2237 ± 23 Ma Pb-Pb errorchron age with the Rb-Sr Hekpoort age reflects changes in U-Pb ratios with minor changes in Pb isotope ratio. Evidence was found in the Rb-Sr system for a minor disturbance at ≈ 1100 Ma, also reported by previous workers. This event is related to the Namaqua tectogenesis, while no isotopic evidence was found for the enigmatic ≈ 2200 to 1750 Ma Kheis orogeny, regarded as the cause of thrust faulting in the region. A genetic connection between the Ongeluk lava and the Kalahari Manganese deposits was established. The manganese ores contain evidence for both marine and hydrothermal contributions to chemical sedimentation. Negative Ce anomalies characterise an oxygenated sea in which the interaction between global oceanic and continental influences is seen. Heavy rare earth enrichment reflects volcanic hydrothermal exhalations from the Kalahari Ongeluk system. Mass balance calculations show that the entire 9 billion tons of Kalahari Manganese ore could have been derived from the Ongeluk Formation. A new model describing the origin and evolution of the Kalahari Manganese Field places a strong emphasis on the role of the syngenetic hydrothermal exhalation and upgrading.
APA, Harvard, Vancouver, ISO, and other styles
43

"Genesis and characteristics of the Wolhaarkop breccia and associated manganore iron formation." Thesis, 2009. http://hdl.handle.net/10210/1970.

Full text
Abstract:
M.A.
Hematized iron formation known as the Manganore iron formation is slumped into sinkhole structures in the Campbellrand Subgroup, Transvaal Supergroup, on the Maremane dome. These iron deposits are underlain by manganiferous breccias known as the Wolhaarkop Breccia. Known iron and manganese deposits of this type occur in an arc from Sishen in the north to Postmasburg in the south. The area is not being mined for manganese at the moment due to the relatively high grade of the Kalahari manganese field situated to the north of this area. The iron deposits, though, are some of the richest in the world. The aim is to establish the mode of origin for the Wolhaarkop Breccia. The Wolhaarkop Breccia is interpreted as being a residual ancient manganese wad from a karst environment in manganese rich dolostones of the Campbellrand Subgroup. This siliceous breccia contains authigenic megaquartz and angular poorly sorted clasts of chalcedony and quartz, set in a braunite-hematite matrix. Fluid inclusions in the authigenic quartz of the Wolhaarkop Breccia have been studied to establish the source of the fluid responsible for quartz precipitation in the Wolhaarkop Breccia, and indirectly, for the formation of the Wolhaarkop Breccia. Thermometric data was used to determine the maximum possible pT and depth conditions under which the quartz might have been precipitated. Fluid chemistry was determined using the bulk crush-leach method to shed some light on the fluid origin. It was established that the fluid responsible for chert recrystallization and precipitation of authigenic quartz and chalcedony had a meteoric source. Considering the results of the above-mentioned analysis, it was concluded that the iron and manganese deposits were formed during a cycle of uplift followed by subsidence. During the period of uplift, erosion in a karst environment and enrichment of iron formation in a supergene environment concentrated manganese as a manganese wad, and iron as a residual iron-oxide laterite. Meteoric water was the main fluid present during this period. Later, during a stage of subsidence, the Wolhaarkop Breccia underwent diagenesis and later lower greenschist-facies metamorphism. During a final stage of uplift the deposit was exposed to the atmosphere again, the dolostones were weathered away and the residual Manganore iron formation and Wolhaarkop Breccia were exposed to supergene alteration.
APA, Harvard, Vancouver, ISO, and other styles
44

Channon, Walter Patrick. "The reduction of fluxed and non-fluxed manganese ores by ferromanganese-silicide." Thesis, 2014. http://hdl.handle.net/10539/15969.

Full text
Abstract:
A Dissertation Submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg for the Degree of Master of Science in Engineering. Johannesburg, 1975
Medium- and low- carbon ferromanganese are produced by the silicotherm ic redixction of slags containing MnO, Because of its importance in the production of refined ferromanganese, the reaction between a premelted Mamatwan manganese ore and various ferromanganese «silicide reducing alloys has been studied with and without additions of fluxing agents. This relatively low grade manganese ore is partially self-fluxing and it is necessary to optimize the amounts and timing of fluxing additions during the production of refined ferromanganese to ensure both efficient electric furnace operation and manganese extraction from the premelt. Therefore, throughout the laboratory investigation, emphasis has been placed on the implications for industrial practice, Alloys containing different silicon concentrations were added to a premelted sample of Mamatwan ore before the sample was introduced into a molybdenum-wound resistance furnace,. The reaction was carried out under an argon atmosphere and the parameters varied were reaction time reaction temperature, alIoy~to*ore ratio, fluxing additions and the silicon contents of the reducing alloy. The effect of stirring of the reacting melt was also examined. The highly exothermic nature of the reactions involved in this investigation constituted a m ajor obstacle to any attempt to maintain close control of temperature in the system. This also adversely affected the possibilities of carrying out controlled equilibrium and kinetic studies in this slag-m etal system* Because of the highly exothermic reaction, temperature appeared to have little effect on the rates of manganese transfer to the metal and silicon transfer to the slag and an apparent equilibrium was rapidly approached, Limits were determined for the favourable effects of fluxing additions and manganese recoveries declined as the CaQ"to~MgO ratio decreased for any percentage of basic flux additions, As the silicon content of the alloy was progressively increased, the recovery of manganese i passed through a maximum and subsequently decreased, Similar results ■were obtained with variations in the a lloy-to-ore ratio/ When aluminium was used as a reducing agent together with silicon, substantial increases in manganese recovery were achieved because the aluminoi >- „ , ,o « resection displaced the apparent equilibrium. The s.ilicor • ’»■* . . of the resulting alloy was above the specifications for refine ' : cioo .anganese. Stirring of the reacting melts decreased the manganese . .-tcovery and this result conflicts with the results of a previous investigation but may be explained by theexotherrnic nature of the silicon reduction reaction. The results obtained when used in conjunction with other physicochem ical data related to this slag^metal system suggest optimum slag compositions fo r m ore efficient manufacture of m edium- and low -carbon ferromanganese ■fom vlamatwan ore, -
APA, Harvard, Vancouver, ISO, and other styles
45

Chisonga, Benny Chanda. "Metasedimentary manganese ores of the Serra do Navio deposit, Amapa Province, Brazil." Thesis, 2009. http://hdl.handle.net/10210/1952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Hou, Baohong. "Geology and genesis of Dounan manganese deposits, Yunnan Province, P. R. China / Baohong Hou." 1993. http://hdl.handle.net/2440/21425.

Full text
Abstract:
Bibliography: leaves 280-288.
xix, 288, [36] leaves, [15] leaves of plates : ill. (some col.), maps ; 30 cm.
Title page, contents and abstract only. The complete thesis in print form is available from the University Library.
This study examines the medium sized sedimentary manganese deposit of Dounan, Yunnan Province of China, to determine the sedimentary environments controlling the distribution of ores and rocks, and to establish the relationships between ore mineralization and changes in the sedimentary environment. The thesis also aims to work out the sequence of events after the primary ore is formed, to determine which processes lead to secondary enrichment of the ore.
Thesis (Ph.D.)--University of Adelaide, Dept. of Geology and Geophysics, 1994
APA, Harvard, Vancouver, ISO, and other styles
47

Huq, Mohammad Mahmudul, and 馬皓翔. "One-step electrophoretic fabrication of graphene and carbon nanotube-based scaffold for manganese-based pseudocapacitors." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/77904412234324024871.

Full text
Abstract:
碩士
元智大學
化學工程與材料科學學系
104
This study develops an one-step method of electrophoretic deposition (EPD) of carbon nanotubes (CNTs) and graphene nanosheets (GNs) as a scaffold for manganese-based pseudocapacitors. In this study, two different scaffolds for manganese deposition were fabricated: one having 2D GNs and another with 3D GN/CNT nano-porous structure (designated as GN-Mn and GN-CNT-Mn respectively). Manganese was deposited in-situ during the EPD fabrication process. For comparison one 3D nanoporous electrode was made without any Mn deposition by the same method. The microstructure and morphology of as-prepared electrodes were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). X-ray diffraction spectroscopy was carried out in order to evaluate the crystalline nature of the electrodes. The amount of carbon materials (GNs and CNTs) in the electrodes was estimated by thermogravimetric analysis (TGA). The capacitive performance of the electrodes was examined by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) cycle and electrochemical impedance spectroscopy (EIS) in 1 M Na2SO4 electrolyte, using a three electrode system with platinum wire and Ag/AgCl electrode as counter electrode and reference electrode, respectively. In order to evaluate the cyclic stability of the GN-CNT-Mn electrode CV test for 2000 cycles was carried out, achieving 95% of capacitance retention, clearly showing the capability of EPD method to fabricate GN/CNT based scaffold for Mn-based electrode. A gravimetric capacitance of 240 F g-1 was achieved for GN-CNT-Mn electrode at a current density of 0.5 A g-1, calculated from GCD curve. The areal capacitance of the electrode was calculated as 200 mF cm-2 at the same current density. The excellent capacitive performance of GN-CNT-Mn can be ascribed to the unique three dimensional structure created by CNTs and GNs that facilitates more accessible electroactive area. The weight loading and the thickness of the electrode was precisely controlled by tuning the EPD deposition time. As the weight loading of the as prepared electrode was increased the gravimetric capacitance decreased significantly, proving existence of dead zones, the area inaccessible to electrolytes in the electrode structure. On the other hand areal capacitance was found to be an increasing function of the weight loading. At a relatively low weight loading of 0.31 mg cm-2 the gravimetric capacitance was 407 F g-1 at a current density of 0.1 A g-1. Conversely the areal capacitance rose to 350 mF cm-2 at a weight loading of 1.88 mg cm-2 at 0.1 A g-1. Overall, the study suggests that EPD method is precisely tunable, which is very important in industrial applications. Keywords: Supercapacitor; Electrophoretic deposition; Manganese oxides; Graphene sheets; Carbon nanotube; Areal capacitance
APA, Harvard, Vancouver, ISO, and other styles
48

Ahamed, Mohamed Muzamil. "Mode of occurrence, mineralogy, textures palynology and origin of manganese ores of North Kanara District, Karnataka." Thesis, 1991. http://hdl.handle.net/2009/2716.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

"Luminescence studies of one-dimensional manganese salts and d(8)-d(8), d(8)-d(6) dimeric complexes." Tulane University, 1990.

Find full text
Abstract:
Luminescence decay curves from one dimensional mixed crystals of CsMn$\sb{\rm x}$ (Mg or Cd)$\sb{\rm 1-x}$Br$\sb3$ with small fraction of Mn (x = 0.02 $\sim$ 0.3) have been analyzed to gain insight into the energy migration. As the temperature is raised, exciton migration between pairs and single ions is observed. Information about exciton migration process between pairs and single ions was obtained by analyzing the kinetics of decay curves obtained at different excitation wavelength. By varying the concentration of Mn$\sp{2+}$ ions, it is possible to determine the critical limit for exciton migration in lattice. Luminescence decays of (CH$\sb3$)$\sb4$NMnCl$\sb3$ doped with Cu$\sp{2+}$ and/or Cd$\sp{2+}$ were measured at various temperatures. By using the HRM model to simulate data, detailed insight into the rates and energy barriers of the different exciton migration processes were obtained The luminescence studies on dimeric d$\sp8$-d$\sp8$ complex K$\sb{4}\{$Pt$\sb2$(PCP)$\sb4\}\cdot$6H$\sb2$O (PCP = $\mu$-P,P,-HO(O)PCH$\sb2$P(O)OH$\sp{2-}$) have been conducted. At room temperature in aqueous solution, the $\sp3$A$\sb{\rm 2u}$ excited state of Pt$\sb2$(PCP)$\sb4\sp{4-}$ has a lifetime of only 0.055 $\mu$s. Measurements of the lifetimes of the excited states of Pt$\sb2$(PCP)$\sb4\sp{4-}$ at various pH and solvent viscosity values were carried out. Small shifts in absorption and emission maxima were observed between the solid and fluid solutions. The activation energy for the nonradiative decay is 1200 $\pm$ 100 cm$\sp{-1}$. The short lifetime of $\sp3$A$\sb{\rm 2u}$ state in solution is likely due to the presence of a manifold of twisted excited state rotamers. The phosphorescent lifetime of the compound shows a temperature dependence that is consistent with a zero field splitting of 39 cm$\sp{-1}$ in the triplet manifold of excited states The unique dimeric Rh complex $\{$Rh$\sb2$(PNP)$\sb4\}$((C$\sb6$H$\sb5$)$\sb4$B)$\sb2$ (PNP = CH$\sb3$N(P(OCH$\sb3$)$\sb2$)$\sb2$) is rather flexible and adopts a number of distinct conformational forms in solid state. Luminescence spectra and emission dynamics of two crystalline forms of the complex show a dramatic temperature dependence which is consistent with a thermally activated structural transformation of the phosphorescent excited state The X-ray diffraction data of the d$\sp8$-d$\sp6$ complexes MM$\sp\prime$D$\sb2$(CO)$\sb4$Cl where M = Rh(I) or Ir(I) and M$\sp\prime$ = Mo(0) or W(0), D = bidentate ligand (CH$\sb3$NP(OC$\sb3$H$\sb7$)$\sb2$)$\sb2$ indicated the presence of a metal-metal bond. The absorption and emission spectra were used to assign the electronic structure. Luminescence lifetimes for this novel type of d$\sp8$-d$\sp6$ dimer were also obtained
acase@tulane.edu
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography