Academic literature on the topic 'Manganese'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Manganese.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Manganese"
Idrus, Arifudin, E. M. Ati, A. Harijoko, and F. M. Meyer. "Characteristics and Origin of Sedimentary-Related Manganese Layers in Timor Island, Indonesia." Indonesian Journal on Geoscience 8, no. 4 (December 28, 2013): 191–203. http://dx.doi.org/10.17014/ijog.8.4.191-203.
Full textIslamadina, B., and I. W. Warmada. "Mineralogy and geochemistry of Kliripan manganese ore deposit, Hargorejo Village, Kokap District, Kulonprogo Regency." IOP Conference Series: Earth and Environmental Science 1071, no. 1 (August 1, 2022): 012026. http://dx.doi.org/10.1088/1755-1315/1071/1/012026.
Full textRybenko, I. A., I. D. Rozhikhina, O. I. Nokhrina, and M. A. Golodova. "Rational application of high quality manganese concentrate." Izvestiya. Ferrous Metallurgy 67, no. 2 (April 21, 2024): 237–44. http://dx.doi.org/10.17073/0368-0797-2024-2-237-244.
Full textWinslow, James W. W., Kirsten H. Limesand, and Ningning Zhao. "The Functions of ZIP8, ZIP14, and ZnT10 in the Regulation of Systemic Manganese Homeostasis." International Journal of Molecular Sciences 21, no. 9 (May 7, 2020): 3304. http://dx.doi.org/10.3390/ijms21093304.
Full textFafure, A. A., A. O. Adekeye, L. A. Enye, A. A. Tijani, M. M. Ajao, and E. E. Edem. "Ficus exasperata vahl improves manganese-induced neurotoxicity and motor dysfunction in mice." Anatomy Journal of Africa 7, no. 2 (July 4, 2018): 1206–19. http://dx.doi.org/10.4314/aja.v7i2.174140.
Full textRaimo, Luis Augusto Di Loreto Di, Alexandra De Paiva Soares, Ricardo Santos Silva Amorim, Diana Medina Espinoza, Wellington De Azambuja Magalhães, and Gilmar Nunes Torres. "APLICAÇÃO CONJUNTA DE MICRONUTRIENTE (Mn) E FUNGICIDA EM CULTIVO DE SOJA." Nativa 6, no. 1 (February 28, 2018): 09. http://dx.doi.org/10.31413/nativa.v6i1.4664.
Full textYang, Xin Sheng, Li Qin Yang, Li Lv, and Yong Zhao. "Preparation and Properties of Novel Bonded Perovskite Manganite Oxides." Advanced Materials Research 79-82 (August 2009): 1723–26. http://dx.doi.org/10.4028/www.scientific.net/amr.79-82.1723.
Full textНовохацкая, А. А., and Г. Я. Акимов. "Роль избыточного марганца в формировании структуры и транспортных свойств манганита (Nd-=SUB=-0.67-=/SUB=-Sr-=SUB=-0.33-=/SUB=-)-=SUB=-1-x-=/SUB=-Mn-=SUB=-1+x-=/SUB=-О-=SUB=-3-=/SUB=- (x=0; 0.2), спеченного при 1273-1473 K." Физика твердого тела 60, no. 7 (2018): 1378. http://dx.doi.org/10.21883/ftt.2018.07.46127.009.
Full textObeng, Sarfo Kwaku, Martin Kulhánek, Jiří Balík, Jindřich Černý, and Ondřej Sedlář. "Manganese: From Soil to Human Health—A Comprehensive Overview of Its Biological and Environmental Significance." Nutrients 16, no. 20 (October 11, 2024): 3455. http://dx.doi.org/10.3390/nu16203455.
Full textAbe, Keita, Yuji Chiba, and Yuzo Nishida. "Facile Uptake of Manganese(III) by Apo- Transferrin: Possible Origin of Manganism." Zeitschrift für Naturforschung C 63, no. 1-2 (February 1, 2008): 154–56. http://dx.doi.org/10.1515/znc-2008-1-228.
Full textDissertations / Theses on the topic "Manganese"
EMANE, MBA SEVERIN. "Evolution morphogenique et pedogenetique du plateau manganesifere okouma (haut-ogooue, gabon). Consequences sur l'environnement." Université Louis Pasteur (Strasbourg) (1971-2008), 1997. http://www.theses.fr/1997STR1GE03.
Full textThe okouma plateau is situated in the haut-ogooue province in gabon, beetween 13'10' and 13'15' of east longitude and 1'25' and 1'30' of south latitude. It is owned at an old planation surface and has economic contents in manganese. Its studie permits to wonder about paleoclimatic environments since the eocene, to separate in the morphogenic evolution an old shaping and another more recent, to porpose a dynamic of the present evolution of the okouma morphology, to define the mechanisms occuring in morphogenesis and pedogenesis and finally to specify environmental consequences of morphogenesis and pedogenesis. The methods used are : granulometry, morphoscopy, atterberg limits and evaluations. The plateau evolution appears strongly linked to climatic changes, river erosion, physics characteristics of superficial deposits and pedogenesis. Those different factors enrol in 5 distinct stages since eocene to present times. They are characterised by contrasted seasons climats alternation and hot and humid seasons. The climats determine the orientations of fluviatile morphogenesis, pedogenesis and mechanical weathering. Fluviatile morphogenesis is differential. It depends on the geological nature of rocks, of their degree of hardness and of superficial deposits consistency. The recent pedogenetical events are ferralitization (neo-formed minerals are metahalloysite, kaolinite, gibbsite, goethite and anatase) and clay impoverishment. Mechanical weathering is limited on the area. It affects more easily soft formations than hard or hardened formations. Deposits substracted from the okouma plateau, rich in manganese, have an impact on the soil because it becomes acid and rich in toxic mn2+. The landscapes resultint of morphogenesis and pedogenesis is constitued by half-orange hills
Annie, Lundberg. "Environmental transformations of Manganese and Manganese oxide nanoparticles." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-289637.
Full textIndustriella nanopartiklar används i allt större utsträckning. Därför är det av stor vikt attundersöka hela livscykeln som dessa produkter går igenom for att säkerhetsställa att de inte utgör någon fara för miljön och ekosystemen som de kan komma att hamna i. Som ett resultat av deras storlek interagerar nanopartiklar annorlunda med sin omgivning om man jämför med bulkmaterial av samma sammansättning, detta nanopartiklar både sina unika fördelar och risker. Riskerna innefattar ofta oönskade interaktioner med biologiska kretslopp som kan resultera i toxicitet. I den här rapporten läggs fokus på just denna typ av kemiska omvandlingar som nanopartiklar av mangan och manganoxid kan tänkas genomgå i det naturliga kretsloppet. Applikationer man ofta ser dessa partiklar i är batteriteknologi och katalys. De medium som används för att studera omvandlingarna är en lösning som efterliknar ytvatten från en klar sjö. Exponeringar gjordes både med denna lösning så som den är och med tillsatt naturligt organiskt material, NOM.En rad olika experiment gjordes så som analyser med AAS för att undersöka partiklarnas upplösning, NTA för partikelstorlekar och ATR-FTIR som undersökte adsorption på partiklarna. Även en studie med en DCFH metod där ökat ROS aktivitet undersöktes och en rad med SHM simuleringar gjorda i Visual MINTEQ utfördes. Resultaten från NTA och AAS analysen visade sig inte vara särskilt tillförlitliga på grund av tvetydliga resultat som troligen orsakats av problem med provpreparationen. Men resultaten från båda dessa pekar mot att upplösningshastigheten blir något hämmad då man tillsätter naturligt organiskt material, för båda partiklarna. Från ART-FTIR och simuleringarna kunde de säkerhetsställas att adsorption av NOM, karbonat och svavel sker på båda partiklarna, möjligen i fler än ett lager. När det kommer till ROS studien kunde inga bevis på ökad ROS aktivitet hittas med den använda metoden. Dock så kunde inte ökat väteperoxid aktivitet mätas med den metod som användes så detta hade varit av intresse att testa i framtiden. Andra studier som också skulle vara hjälpsamma för att ge en mer nyanserad bild av detta system är en studie om partiklarnas zeta potential och merundersökningar om vilken typ av adsorptions mekanism som sker vid partiklarnas yta.
Novokhatska, A. O., G. Ya Akimov, A. V. Zhebel, O. I. Linnik, V. T. Dovgiy, and V. V. Burkhovetskiy. "Forming of Nanoscale Structure in Manganite Ceramics with Superstoichiometric Manganese." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35335.
Full textSayyari, Zahan Mohammad Hassan. "Manganese efficiency and manganese uptake kinetics of different crop species." Göttingen Cuvillier, 2008. http://d-nb.info/991005724/04.
Full textSantos, Bruno Adriano Schaustz dos [UNESP]. "Otimização de procedimentos para a determinação de maganês em amplo intervalo de concentração por espectrometria de absorção atômica em chama." Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/97831.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Este trabalho descreve estratégias instrumentais para a determinação de Mn em amplo intervalo de concentração por espectrometria absorção atômica em chama com fonte contínua e de alta resolução (HR-CS FAAS), por meio do uso de diferentes linhas atômicas (principal, secundária, alternativa ou o ajuste do arranjo instrumental) desde que seus intervalos de concentração se completem, sem a necessidade de amplas diluições da amostra. O método proposto foi aplicado as amostras de água de abastecimento, fertilizante foliar, poli vitamínico e material certificado de ligas metálicas. A exaltidão e precisão foram avaliadas por testes de significância (t de student e t - pareado), adição e recuperação, e materiais de referência do Instituto de Pesquisa Tecnológica do Estado de São Paulo, e os resultados foram concordantes ao nível de 95% de confiança em sua grande maioria. Obteve-se curvas analíticas nos intervalos 0,1-2 mg L-1 (279,482 nm), 2-25 mg L-1 (403,075 nm), 25-500 mg L-1 (209,250 nm ou 403,075 nm com queimador a 90 graus), com coeficiente de correlação linear melhor do que 0,9936 em ambas as técnicas (utilizou a espectrometria de absorção atômica em chama com fonte de linhas - LS FAAS - como técnica comparativa). Os limites de detecção para a HR-CS FAAS foram 1,1x10-3 mg L-1 (279,482 nm), 9,8 x 10-3 mg L-1 (403,075 nm), 1,7 mg L-1 (209,250 nm), 7,3x10-2 mg L-1 (403,075 nm com queimador a 90 graus), e para a LS FAAS foram 1,0x10-2 mg L-1, 0,10 mg L-1, 24,8 mg L-1, 7,0 mg L-1, respectivamente. Em HR-CS FAAS, o RSD% variou 0,9 a 1,3, enquanto para a LS FAAS variou 1,1 a 11,8%. As concentrações encontradas pela HR-CS FAAS foram: < 1,1x10-3 mg L-1 (água de abastecimento)...
This paper describes instrumental strategies for the determination of Mn in a wide range concentration by high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) by means of different atomic lines (primary, secondary, alternative or adjusting the instrumental arrangement) provided that their concentration intervals complete one another, without need for large sample dilutions. The proposed method was applied to water, foliar fertilizer, poly vitamin and metal alloys certified materials. Accuracy and precision were evaluated by tests of significance (Student's t test and paired - t test), addition and recovery, and reference materials from the Institute of Technological Research of São Paulo. Analytical curves in the intervals 0.1-2 mg L-1 (279.482 nm), 2-25 mg L-1 (403.075 nm), 25-500 mg L-1 (209.250 nm or 403.075 nm burner 90 degrees) were obtained with linear correlation coefficient better than 0.9936. Line source flame atomic absorption spectrometry (LS FAAS) were used as a comparative technique. The detection limits HR-CS FAAS were 1.1x10-3 mg L-1 (279.482 nm), 9.8 x 10-3 mg L-1 (403.075 nm), 1.7 mg L-1 (209.250 nm), 7.3x10-2 mg L-1 (403.075 nm burner 90 degrees). And by LS FAAS were 1.0x10-2 mg L-1, 0.10 mg L-1, 24.8 mg L-1, 7.0 mg L-1 respectively. In HR-CS FAAS, the RSD ranged from 0.9 to 1.3%, while for LS FAAS from 1.1 to 11.8%. The Mn concentrations found by HR-CS FAAS were < 1.1x10-3 mg L-1 (water supply), 4728 ± 62 mg L-1 (foliar fertilizer), 3.65 ± 2 mg g-1 (poly vitamin), 0.709 ± 0.116 mg L-1 (Alloy 14A), 0.998 ± 0.042 mg L-1 (alloy 25). For LS FAAS, the concentrations wer... (Complete abstract click electronic access below)
Santos, Bruno Adriano Schaustz dos. "Otimização de procedimentos para a determinação de maganês em amplo intervalo de concentração por espectrometria de absorção atômica em chama /." Araraquara, 2012. http://hdl.handle.net/11449/97831.
Full textCoorientador: Adriana Paiva de Oliveira
Banca: Márcia Andreia Mesquita Silva da Veiga
Banca: Gian Paulo Giovanni Freschi
Resumo: Este trabalho descreve estratégias instrumentais para a determinação de Mn em amplo intervalo de concentração por espectrometria absorção atômica em chama com fonte contínua e de alta resolução (HR-CS FAAS), por meio do uso de diferentes linhas atômicas (principal, secundária, alternativa ou o ajuste do arranjo instrumental) desde que seus intervalos de concentração se completem, sem a necessidade de amplas diluições da amostra. O método proposto foi aplicado as amostras de água de abastecimento, fertilizante foliar, poli vitamínico e material certificado de ligas metálicas. A exaltidão e precisão foram avaliadas por testes de significância (t de student e t - pareado), adição e recuperação, e materiais de referência do Instituto de Pesquisa Tecnológica do Estado de São Paulo, e os resultados foram concordantes ao nível de 95% de confiança em sua grande maioria. Obteve-se curvas analíticas nos intervalos 0,1-2 mg L-1 (279,482 nm), 2-25 mg L-1 (403,075 nm), 25-500 mg L-1 (209,250 nm ou 403,075 nm com queimador a 90 graus), com coeficiente de correlação linear melhor do que 0,9936 em ambas as técnicas (utilizou a espectrometria de absorção atômica em chama com fonte de linhas - LS FAAS - como técnica comparativa). Os limites de detecção para a HR-CS FAAS foram 1,1x10-3 mg L-1 (279,482 nm), 9,8 x 10-3 mg L-1 (403,075 nm), 1,7 mg L-1 (209,250 nm), 7,3x10-2 mg L-1 (403,075 nm com queimador a 90 graus), e para a LS FAAS foram 1,0x10-2 mg L-1, 0,10 mg L-1, 24,8 mg L-1, 7,0 mg L-1, respectivamente. Em HR-CS FAAS, o RSD% variou 0,9 a 1,3, enquanto para a LS FAAS variou 1,1 a 11,8%. As concentrações encontradas pela HR-CS FAAS foram: < 1,1x10-3 mg L-1 (água de abastecimento)... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: This paper describes instrumental strategies for the determination of Mn in a wide range concentration by high-resolution continuum source flame atomic absorption spectrometry technique (HR-CS FAAS) by means of different atomic lines (primary, secondary, alternative or adjusting the instrumental arrangement) provided that their concentration intervals complete one another, without need for large sample dilutions. The proposed method was applied to water, foliar fertilizer, poly vitamin and metal alloys certified materials. Accuracy and precision were evaluated by tests of significance (Student's t test and paired - t test), addition and recovery, and reference materials from the Institute of Technological Research of São Paulo. Analytical curves in the intervals 0.1-2 mg L-1 (279.482 nm), 2-25 mg L-1 (403.075 nm), 25-500 mg L-1 (209.250 nm or 403.075 nm burner 90 degrees) were obtained with linear correlation coefficient better than 0.9936. Line source flame atomic absorption spectrometry (LS FAAS) were used as a comparative technique. The detection limits HR-CS FAAS were 1.1x10-3 mg L-1 (279.482 nm), 9.8 x 10-3 mg L-1 (403.075 nm), 1.7 mg L-1 (209.250 nm), 7.3x10-2 mg L-1 (403.075 nm burner 90 degrees). And by LS FAAS were 1.0x10-2 mg L-1, 0.10 mg L-1, 24.8 mg L-1, 7.0 mg L-1 respectively. In HR-CS FAAS, the RSD ranged from 0.9 to 1.3%, while for LS FAAS from 1.1 to 11.8%. The Mn concentrations found by HR-CS FAAS were < 1.1x10-3 mg L-1 (water supply), 4728 ± 62 mg L-1 (foliar fertilizer), 3.65 ± 2 mg g-1 (poly vitamin), 0.709 ± 0.116 mg L-1 (Alloy 14A), 0.998 ± 0.042 mg L-1 (alloy 25). For LS FAAS, the concentrations wer... (Complete abstract click electronic access below)
Mestre
AL, ALI NAJLA HUSSEIN. "Relation Between Dietary Manganese Intake and Biological Markers of Manganese Exposure." University of Cincinnati / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1211985289.
Full textWei, Duo. "Iron, manganese and rhenium-catalyzed (de)hydrogenation and hydroelementation reactions." Thesis, Rennes 1, 2019. http://www.theses.fr/2019REN1S105.
Full textThis research work is aimed at developing advanced eco-friendly methodologies in the area of iron, manganese and rhenium-catalyzed (de)hydrogenation and hydroelementation reactions. Initially, we reported the first examples of highly selective catalytic direct C-H borylation of styrene derivatives and terminal alkynes with pinacolborane using Fe(PMe3)4 and Fe(OTf)2/DABCO as catalyst systems, respectively. Afterwards, N-heterocyclic carbene (NHC) based iron complexes Fe(CO)4(IMes) and [CpFe(CO)2(IMes)][I] were efficiently employed in the catalytic reductive amination reactions with hydrosilanes to access a large variety of cyclic amines (pyrrolidines, piperidines and azepanes). Interestingly, with the commercially available Mn2(CO)10 or Re2(CO)10 as catalyst and Et3SiH as an inexpensive hydrosilane source, carboxylic esters, acids and amides can be chemospecifically reduced to the corresponding acetals, alcohols and amines. Besides hydrosilylation, we also explored the application of a series of well-defined manganese pre-catalysts featuring readily available bidendate pyridinyl-phosphine and 2-picolylamine ligands in hydrogenation reactions of aldehydes, ketones and aldimines. In line with our interest in developing group 7 metals based catalysts, we have also demonstrated that a series of amino-bisphosphino ligands coordinated rhenium catalysts can efficiently promote the hydrogenation of carbonyl derivatives, the mono N-methylation of anilines with methanol and the dehydrogenative synthesis of substituted quinolines. Lastly we also developed the Mn-catalysed ligand- and additive-free aerobic oxidation of amines to prepare aldimines, N-heteroaromatics and benzoimidazole derivatives
Reginato, Nada McGlinchey Michael J. "Polycyclic compounds of manganese /." *McMaster only, 2003.
Find full textTurkeli, Altan. "Microsegregation in manganese steels." Thesis, University of Sheffield, 1990. http://etheses.whiterose.ac.uk/15023/.
Full textBooks on the topic "Manganese"
Saxton, Robert. Manganese. Manchester: Carcanet, 2003.
Find full textPhilippines. Lands Geological Survey Division., ed. Manganese. Quezon City: Lands Geological Survey Division, Mines and Geosciences Bureau, Dept. of Environment and Natural Resources, 2005.
Find full textUnited States. Agency for Toxic Substances and Disease Registry. Division of Toxicology and Environmental Medicine. Manganese. Atlanta, GA: Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 2008.
Find full text1944-, Levine Richard M., ed. The manganese industry of the U.S.S.R. Avondale, Md: U.S. Dept. of the Interior, Bureau of Mines, 1986.
Find full textBoucher, L. J., Karl Koeber, and Dieter Tille. Mn Manganese. Edited by Helga Demmer, Helga Köttelwesch, Edith Schleitzer-Rust, and Dieter Tille. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-08178-5.
Full textSarbas, Bärbel, and Wolfgang Töpper. Mn Manganese. Edited by Reiner Ditz and Wolfgang Töpper. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1.
Full textCairncross, B. The manganese adventure: The South African manganese fields. Johannesburg: Associated Ore & Metal Corp., 1997.
Find full textL, Pecoraro Vincent, ed. Manganese redox enzymes. New York, N.Y: VCH, 1992.
Find full textLula, R. A. Manganese stainlesss steels. Paris: Manganese Centre, 1986.
Find full textL, Pecoraro Vincent, ed. Manganese redox enzymes. New York: VCH, 1992.
Find full textBook chapters on the topic "Manganese"
Sarbas, Bärbel, and Wolfgang Töpper. "Natural Occurrence. Minerals." In Mn Manganese, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1_1.
Full textSarbas, Bärbel, and Wolfgang Töpper. "Native Element, Solid Solution, Silicide, and Carbide." In Mn Manganese, 9–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1_2.
Full textSarbas, Bärbel, and Wolfgang Töpper. "Sulfides and Related Compounds." In Mn Manganese, 14–137. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1_3.
Full textSarbas, Bärbel, and Wolfgang Töpper. "Halogenides and Oxyhalogenides." In Mn Manganese, 138–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1_4.
Full textSarbas, Bärbel, and Wolfgang Töpper. "Oxides." In Mn Manganese, 144–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08907-1_5.
Full textBoucher, L. J., Karl Koeber, Dieter Tille, Helga Demmer, Helga Köttelwesch, and Edith Schleitzer-Rust. "Coordination Compounds of Manganese." In Mn Manganese, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-08178-5_1.
Full textBoucher, L. J., Karl Koeber, Dieter Tille, Helga Demmer, Helga Köttelwesch, and Edith Schleitzer-Rust. "Complexes with Schiff Bases." In Mn Manganese, 3–238. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-08178-5_2.
Full textBoucher, L. J., Karl Koeber, Dieter Tille, Helga Demmer, Helga Köttelwesch, and Edith Schleitzer-Rust. "Complexes with Hydrazones or Related Compounds." In Mn Manganese, 239–364. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-08178-5_3.
Full textBoucher, L. J., Karl Koeber, Dieter Tille, Helga Demmer, Helga Köttelwesch, and Edith Schleitzer-Rust. "Complexes with Carbazones, Thiocarbazones, and Formazans." In Mn Manganese, 365–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-662-08178-5_4.
Full textDurand, B., J. M. Paris, E. Kostiner, and M. H. Rapposch. "Manganese Diphosphate (Manganese Pyrophosphate)." In Inorganic Syntheses, 121–23. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470132500.ch27.
Full textConference papers on the topic "Manganese"
Astuti, Widi, Slamet Sumardi, Fika Rofiek Mufakhir, Muhammad Fakhrudin, and Evvy Kartini. "Synthesis of manganese carbonate and manganese oxalate from Indonesian manganese ore as NMC cathode precursor." In INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING FOR EMERGING TECHNOLOGIES (ICOMEET 2021). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0121479.
Full textMorgan, Charles L. "Manganese nodules, again?" In OCEANS 2011. IEEE, 2011. http://dx.doi.org/10.23919/oceans.2011.6106912.
Full textKoshurba, Kaitlin, and Jena Johnson. "Hydrothermal braunite synthesized under simulated diagenesis of manganese oxides with reduced manganese: Implications for the ancient manganese cycle." In Goldschmidt2023. France: European Association of Geochemistry, 2023. http://dx.doi.org/10.7185/gold2023.20332.
Full textTastanova, Aisha, Yerzhan Kuldeyev, Gulnar Abdykirova, Alla Biryukova, and Saniya Temirova. "PROCESSING OF MANGANESE-CONTAINING WASTES TO PRODUCE MANGANESE PELLETS FOR FERROALLOY PRODUCTION." In 23rd SGEM International Multidisciplinary Scientific GeoConference 2023. STEF92 Technology, 2023. http://dx.doi.org/10.5593/sgem2023/4.1/s18.24.
Full textTastanova, A., G. Abdykirova, S. Temirova, and A. Biryukova. "Processing and production of pellets from poor-grade manganese-containing raw materials." In Challenges of Science. Institute of Metallurgy and Ore Beneficiation, Satbayev University, 2021. http://dx.doi.org/10.31643/2021.05.
Full textAbdykirova, Gulnar. "RESEARCH ON OBTAINING ELECTROLYTIC MANGANESE DIOXIDE FROM MANGANESE-CONTAINING SLUDGE LEACHING SOLUTIONS." In 16th International Multidisciplinary Scientific GeoConference SGEM2016. Stef92 Technology, 2016. http://dx.doi.org/10.5593/sgem2016/b12/s04.152.
Full textLai, Kun-rong, Wei-bo Zhou, and Meng-yao Li. "Notice of Retraction: Study on Manganese adsorption by modified Manganese sand in groundwater." In 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775408.
Full textXie, Hong-Yan, Hui Lu, and Ji-Kun Wang. "KINETICS OF MANGANESE LEACHING DURING PRESSURE ACID LEACHING OF LOW GRADE MANGANESE ORES." In 2015 International Conference on Energy and Mechanical Engineering. WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814749503_0044.
Full textKusumaningrum, Retno, Siti Astari Rahmani, Wahyu Bambang Widayatno, Agus Sukarto Wismogroho, Dwi Wahyu Nugroho, Syahrizal Maulana, Nurul Taufiqu Rochman, and M. Ikhlasul Amal. "Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products." In PROCEEDINGS OF THE INTERNATIONAL SEMINAR ON METALLURGY AND MATERIALS (ISMM2017): Metallurgy and Advanced Material Technology for Sustainable Development. Author(s), 2018. http://dx.doi.org/10.1063/1.5038324.
Full textТОЛСТОВ А, В., В. ЛАПИН А, and П. СЛЕПЦОВ А. "MANGANESE OF THE TOMTOR ORE FIELD." In ГЕОЛОГИЯ И МИНЕРАЛЬНО-СЫРЬЕВЫЕ РЕСУРСЫ СЕВЕРО-ВОСТОКА РОССИИ 2024, 230–36. Crossref, 2024. http://dx.doi.org/10.53954/9785604990100_230.
Full textReports on the topic "Manganese"
Summerfield, Daisy. Australian Resource Reviews: Manganese Ore 2020. Geoscience Australia, 2021. http://dx.doi.org/10.11636/9781922446541.
Full textAschner, Michael, and Vanesssa A. Fitsanakis. Manganese Research Health Project (MHRP). Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada497635.
Full textAschner, Michael. Manganese Research Health Project (MHRP). Fort Belvoir, VA: Defense Technical Information Center, January 2006. http://dx.doi.org/10.21236/ada446400.
Full textBeck, Erin. Aluminum Manganese Molten Salt Plating. Fort Belvoir, VA: Defense Technical Information Center, June 2006. http://dx.doi.org/10.21236/ada608404.
Full textAschner, Michael. Manganese Health Research Program (MHRP). Fort Belvoir, VA: Defense Technical Information Center, January 2008. http://dx.doi.org/10.21236/ada482927.
Full textHanson, A. E. H., and J. I. LaFave. Manganese concentrations in Montana's groundwater. Montana Bureau of Mines and Geology, August 2022. http://dx.doi.org/10.59691/aauy5468.
Full textDoner, H., and M. Zavarin. Nickel and manganese interaction with calcite. Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/12549.
Full textPerkins, A. The Products of Manganese (II) Oxidation. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/833106.
Full textGrush, M. M. X-ray spectroscopy of manganese clusters. Office of Scientific and Technical Information (OSTI), June 1996. http://dx.doi.org/10.2172/286265.
Full textLicht, Mark A., and Kent R. Berns. Glyphosate, Manganese, and Zinc Soybean Trial. Ames: Iowa State University, Digital Repository, 2012. http://dx.doi.org/10.31274/farmprogressreports-180814-1890.
Full text