Academic literature on the topic 'Mandelbrot sets'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Mandelbrot sets.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Mandelbrot sets"
LIU, XIANG-DONG, ZHI-JIE LI, XUE-YE ANG, and JIN-HAI ZHANG. "MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD." Fractals 18, no. 02 (June 2010): 255–63. http://dx.doi.org/10.1142/s0218348x10004841.
Full textMu, Beining. "Fuzzy Julia Sets and Fuzzy Superior Julia Sets." Highlights in Science, Engineering and Technology 72 (December 15, 2023): 375–80. http://dx.doi.org/10.54097/5c5hp748.
Full textJha, Ketan, and Mamta Rani. "Control of Dynamic Noise in Transcendental Julia and Mandelbrot Sets by Superior Iteration Method." International Journal of Natural Computing Research 7, no. 2 (April 2018): 48–59. http://dx.doi.org/10.4018/ijncr.2018040104.
Full textDanca, Marius-F. "Mandelbrot Set as a Particular Julia Set of Fractional Order, Equipotential Lines and External Rays of Mandelbrot and Julia Sets of Fractional Order." Fractal and Fractional 8, no. 1 (January 19, 2024): 69. http://dx.doi.org/10.3390/fractalfract8010069.
Full textTassaddiq, Asifa, Muhammad Tanveer, Muhammad Azhar, Waqas Nazeer, and Sania Qureshi. "A Four Step Feedback Iteration and Its Applications in Fractals." Fractal and Fractional 6, no. 11 (November 9, 2022): 662. http://dx.doi.org/10.3390/fractalfract6110662.
Full textYan, De Jun, Xiao Dan Wei, Hong Peng Zhang, Nan Jiang, and Xiang Dong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated from Complex Non-Analytic Iteration Fm(z)=z¯m+c." Applied Mechanics and Materials 347-350 (August 2013): 3019–23. http://dx.doi.org/10.4028/www.scientific.net/amm.347-350.3019.
Full textKOZMA, ROBERT T., and ROBERT L. DEVANEY. "Julia sets converging to filled quadratic Julia sets." Ergodic Theory and Dynamical Systems 34, no. 1 (August 21, 2012): 171–84. http://dx.doi.org/10.1017/etds.2012.115.
Full textAl-Salami, Hassanein Q. "Some Properties of the Mandelbrot Sets M(Q_α)." JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 31, no. 2 (June 29, 2023): 263–69. http://dx.doi.org/10.29196/jubpas.v31i2.4683.
Full textSekovanov, Valeriy S., Larisa B. Rybina, and Kseniya Yu Strunkina. "The study of the frames of Mandelbrot sets of polynomials of the second degree as a means of developing the originality of students' thinking." Vestnik Kostroma State University. Series: Pedagogy. Psychology. Sociokinetics, no. 4 (2019): 193–99. http://dx.doi.org/10.34216/2073-1426-2019-25-4-193-199.
Full textWang, Feng Ying, Li Ming Du, and Zi Yang Han. "The Construction for Generalized Mandelbrot Sets of the Frieze Group." Advanced Materials Research 756-759 (September 2013): 2562–66. http://dx.doi.org/10.4028/www.scientific.net/amr.756-759.2562.
Full textDissertations / Theses on the topic "Mandelbrot sets"
Tingen, Larry L. "The Julia and Mandelbrot sets for the Hurwitz zeta function." View electronic thesis (PDF), 2009. http://dl.uncw.edu/etd/2009-3/tingenl/larrytingen.pdf.
Full textJones, Rafe. "Galois martingales and the hyperbolic subset of the p-adic Mandelbrot set /." View online version; access limited to Brown University users, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3174623.
Full textTolmie, Julie. "Visualisation, navigation and mathematical perception : a visual notation for rational numbers mod 1." View thesis entry in Australian Digital Theses Program, 2000. http://thesis.anu.edu.au/public/adt-ANU20020313.101505/index.html.
Full textPoirier, Schmitz Alfredo. "Invariant measures on polynomial quadratic Julia sets with no interior." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96022.
Full textEn este artículo caracterizamos medidas invariantes sobre conjuntos de Julia sin interior asociados con polinomios cuadráticos. Probamos que más allá de la medida armónica —la única par e invariante—, el resto son generadas por su parte impar.
Kuo, Li-Feng, and 郭立峰. "Mandelbrot Sets, Julia Sets and Their Algorithms." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/6n28d7.
Full text國立中央大學
數學系
107
In this thesis, we survey the big theme of fractals - Mandelbrot sets. We start to study Julia sets before study Mandelbrot sets, and the goal is generating figures of fractals and applying to arts. Hence, we introduce the definition and properties of Julia sets firstly, and use this theory to arrange some useful algorithms for generating the figures of Julia sets. After we survey Julia sets, we can study Mandelbrot sets, since the definition of Mandelbrot sets is all of the points such that the Julia set is onnected. However, we obtain the obstacle when generating andelbrot sets, that is, how to check the Julia set is connected or not? The answer of this question is - the fundamental theorem of Mandelbrot sets, we can generate the figures of Mandelbrot sets by this theorem. Finally, we give some examples of Mandelbrot sets and Julia sets, and introduce 3-dimensional Mandelbrot sets and Julia sets.
Fitzgibbon, Elizabeth Laura. "Rational maps: the structure of Julia sets from accessible Mandelbrot sets." Thesis, 2014. https://hdl.handle.net/2144/15111.
Full textHannah, Walter. "Internal rays of the Mandelbrot set." Thesis, 2006. http://www.ithaca.edu/hs/depts/math/docs/theses/whannahthesis.pdf.
Full textLauber, Arnd. "On the Stability of Julia Sets of Functions having Baker Domains." Doctoral thesis, 2004. http://hdl.handle.net/11858/00-1735-0000-0006-B3DE-F.
Full textBooks on the topic "Mandelbrot sets"
Mandelbrot, Benoit B. Fractals and chaos: The Mandelbrot set and beyond. New York, NY: Springer, 2004.
Find full textTomboulian, Sherryl. Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures. Hampton, Va: ICASE, 1989.
Find full textBanaś, Marian. Analiza teoretyczna i badania właściwości zawiesin nieziarnistych w zastosowaniu do projektowsnia i eksploatacji wielostrumieniowych urządzeń sedymentacyjnych: Theoretical analysis and investigations of the properties of the non-grainy suspensions in terms to design and use of the lamella settling devices. Kraków: Wydawnictwa AGH, 2012.
Find full textDevaney, Robert, ed. Complex Dynamical Systems: The Mathematics Behind the Mandelbrot and Julia Sets. Providence, Rhode Island: American Mathematical Society, 1995. http://dx.doi.org/10.1090/psapm/049.
Full text1948-, Devaney Robert L., and Branner Bodil, eds. Complex dynamical systems: The mathematics behind the Mandelbrot and Julia sets. Providence, R.I: American Mathematical Society, 1994.
Find full text1945-, Stewart Ian, and Clarke Arthur Charles 1917-, eds. The colours of infinity: The beauty and power of fractals. [S.l.]: Clear Books, 2004.
Find full textLesmoir-Gordon, Nigel. The colours of infinity: The beauty and power of fractals. London: Springer Verlag, 2010.
Find full text1945-, Kauffman Louis H., and Sandin Daniel J, eds. Hypercomplex iterations: Distance estimation and higher dimensional fractals. River Edge, NJ: World Scientific, 2002.
Find full textMilnor, John W. Dynamical systems (1984-2012). Edited by Bonifant Araceli 1963-. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textUniversal Mandelbrot Set: Beginning of the Story. World Scientific Publishing Co Pte Ltd, 2006.
Find full textBook chapters on the topic "Mandelbrot sets"
Agarwal, Ravi P., Kanishka Perera, and Sandra Pinelas. "Julia and Mandelbrot Sets." In An Introduction to Complex Analysis, 316–20. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0195-7_49.
Full textKorsch, H. J., and H. J. Jodl. "Mandelbrot and Julia Sets." In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03866-6_11.
Full textKorsch, H. J., and H. J. Jodl. "Mandelbrot and Julia Sets." In Chaos, 227–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-02991-6_11.
Full textDouady, Adrien. "Julia Sets and the Mandelbrot Set." In The Beauty of Fractals, 161–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-61717-1_13.
Full textReeve, Dominic E. "Mandelbrot, Julia Sets and Nonlinear Mappings." In Fractals and Chaos, 35–42. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3034-2_3.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Fractals for the Classroom, 415–73. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-4406-6_8.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Chaos and Fractals, 841–901. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4757-4740-9_15.
Full textPeitgen, Heinz-Otto, Hartmut Jürgens, and Dietmar Saupe. "The Mandelbrot Set: Ordering the Julia Sets." In Chaos and Fractals, 783–837. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/0-387-21823-8_15.
Full textMcClure, Mark. "Complex Dynamics:Julia Sets and the Mandelbrot Set." In Mathematica in Action, 277–300. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-75477-2_12.
Full textOchkov, Valery, Alan Stevens, and Anton Tikhonov. "Iterations and Fractal Sets of Mandelbrot and Julia." In STEM Problems with Mathcad and Python, 263–91. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003228356-14.
Full textConference papers on the topic "Mandelbrot sets"
Kumar, Suthikshn. "Public Key Cryptographic System Using Mandelbrot Sets." In MILCOM 2006. IEEE, 2006. http://dx.doi.org/10.1109/milcom.2006.302396.
Full textDejun, Yan, Yang Rijing, Xin Huijie, and Zheng Jiangchao. "Generalized Mandelbrot Sets and Julia Sets for Non-analytic Complex Maps." In 2010 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA). IEEE, 2010. http://dx.doi.org/10.1109/iwcfta.2010.42.
Full textYan, Dejun, Junxing Zhang, Nan Jiang, and Lidong Wang. "General Mandelbrot Sets and Julia Sets Generated from Non-analytic Complex Iteration ⨍m(z)=z^n+c." In 2009 International Workshop on Chaos-Fractals Theories and Applications (IWCFTA 2009). IEEE, 2009. http://dx.doi.org/10.1109/iwcfta.2009.89.
Full textSeytov, Sh J., N. B. Narziyev, A. I. Eshniyozov, and S. N. Nishonov. "The algorithms for developing computer programs for the sets of Julia and Mandelbrot." In PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: (PTLICISIWS-2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0145456.
Full textYan, Dejun, Xiaodan Wei, Hongpeng Zhang, Nan Jiang, and Xiangdong Liu. "Fractal Structures of General Mandelbrot Sets and Julia Sets Generated From Complex Non-Analytic Iteration Fm(Z)=Zm+c." In 2nd International Symposium on Computer, Communication, Control and Automation. Paris, France: Atlantis Press, 2013. http://dx.doi.org/10.2991/isccca.2013.42.
Full textGanikhodzhayev, Rasul, and Shavkat Seytov. "An analytical description of mandelbrot and Julia sets for some multi-dimensional cubic mappings." In INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0058341.
Full textDawkins, Jeremy J., David M. Bevly, and Robert L. Jackson. "Multiscale Terrain Characterization Using Fourier and Wavelet Transforms for Unmanned Ground Vehicles." In ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2718.
Full textShahinpoor, Mohsen. "An Introduction to Smart Fractal Structures and Mechanisms." In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0160.
Full textMichopoulos, John G., and Athanasios Iliopoulos. "High Dimensional Full Inverse Characterization of Fractal Volumes." In ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71050.
Full textMichopoulos, John G., and Athanasios Iliopoulos. "Complete High Dimensional Inverse Characterization of Fractal Surfaces." In ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-47784.
Full text