Journal articles on the topic 'Malware family'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Malware family.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yan, Jinpei, Yong Qi, and Qifan Rao. "Detecting Malware with an Ensemble Method Based on Deep Neural Network." Security and Communication Networks 2018 (2018): 1–16. http://dx.doi.org/10.1155/2018/7247095.
Full textJiao, Jian, Qiyuan Liu, Xin Chen, and Hongsheng Cao. "Behavior Intention Derivation of Android Malware Using Ontology Inference." Journal of Electrical and Computer Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/9250297.
Full textPrima, B., and M. Bouhorma. "USING TRANSFER LEARNING FOR MALWARE CLASSIFICATION." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-4/W3-2020 (November 23, 2020): 343–49. http://dx.doi.org/10.5194/isprs-archives-xliv-4-w3-2020-343-2020.
Full textJang, Jae-wook, and Huy Kang Kim. "Function-Oriented Mobile Malware Analysis as First Aid." Mobile Information Systems 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/6707524.
Full textWang, Changguang, Ziqiu Zhao, Fangwei Wang, and Qingru Li. "A Novel Malware Detection and Family Classification Scheme for IoT Based on DEAM and DenseNet." Security and Communication Networks 2021 (January 5, 2021): 1–16. http://dx.doi.org/10.1155/2021/6658842.
Full textAbuthawabeh, Mohammad, and Khaled Mahmoud. "Enhanced Android Malware Detection and Family Classification, using Conversation-level Network Traffic Features." International Arab Journal of Information Technology 17, no. 4A (July 31, 2020): 607–14. http://dx.doi.org/10.34028/iajit/17/4a/4.
Full textCheng, Binlin, Jinjun Liu, Jiejie Chen, Shudong Shi, Xufu Peng, Xingwen Zhang, and Haiqing Hai. "MoG: Behavior-Obfuscation Resistance Malware Detection." Computer Journal 62, no. 12 (June 4, 2019): 1734–47. http://dx.doi.org/10.1093/comjnl/bxz033.
Full textShao, Ke, Qiang Xiong, and Zhiming Cai. "FB2Droid: A Novel Malware Family-Based Bagging Algorithm for Android Malware Detection." Security and Communication Networks 2021 (June 19, 2021): 1–13. http://dx.doi.org/10.1155/2021/6642252.
Full textAlswaina, Fahad, and Khaled Elleithy. "Android Malware Family Classification and Analysis: Current Status and Future Directions." Electronics 9, no. 6 (June 5, 2020): 942. http://dx.doi.org/10.3390/electronics9060942.
Full textCheng, Binlin, Qiang Tong, Jianhong Wang, and Wenhui Tian. "Malware Clustering Using Family Dependency Graph." IEEE Access 7 (2019): 72267–72. http://dx.doi.org/10.1109/access.2019.2914031.
Full textZhu, Xuejin, Jie Huang, Bin Wang, and Chunyang Qi. "Malware homology determination using visualized images and feature fusion." PeerJ Computer Science 7 (April 15, 2021): e494. http://dx.doi.org/10.7717/peerj-cs.494.
Full textAguilera, Luis Rojas, Eduardo Souto, and Gilbert Breves Martins. "Improving the detection of metamorphic malware through data dependency graphs indexing." Journal of Information Security and Cryptography (Enigma) 4, no. 1 (July 21, 2018): 03. http://dx.doi.org/10.17648/enigma.v4i1.65.
Full textDing, Chao, Nurbol Luktarhan, Bei Lu, and Wenhui Zhang. "A Hybrid Analysis-Based Approach to Android Malware Family Classification." Entropy 23, no. 8 (August 3, 2021): 1009. http://dx.doi.org/10.3390/e23081009.
Full textCho, In Kyeom, and Eul Gyu Im. "Malware Family Recommendation using Multiple Sequence Alignment." Journal of KIISE 43, no. 3 (March 15, 2016): 289–95. http://dx.doi.org/10.5626/jok.2016.43.3.289.
Full textDayal, Mohit, and Bharti Nagpal. "A compendious investigation of Android malware family." International Journal of Information Privacy, Security and Integrity 2, no. 4 (2016): 330. http://dx.doi.org/10.1504/ijipsi.2016.082127.
Full textNagpal, Bharti, and Mohit Dayal. "A compendious investigation of Android malware family." International Journal of Information Privacy, Security and Integrity 2, no. 4 (2016): 330. http://dx.doi.org/10.1504/ijipsi.2016.10003026.
Full textLee, Jehyun, Suyeon Lee, and Heejo Lee. "Screening smartphone applications using malware family signatures." Computers & Security 52 (July 2015): 234–49. http://dx.doi.org/10.1016/j.cose.2015.02.003.
Full textO’Shaughnessy, Stephen, and Frank Breitinger. "Malware family classification via efficient Huffman features." Forensic Science International: Digital Investigation 37 (July 2021): 301192. http://dx.doi.org/10.1016/j.fsidi.2021.301192.
Full textRashed, Mohammed, and Guillermo Suarez-Tangil. "An Analysis of Android Malware Classification Services." Sensors 21, no. 16 (August 23, 2021): 5671. http://dx.doi.org/10.3390/s21165671.
Full textWang, Chenyue, Linlin Zhang, Kai Zhao, Xuhui Ding, and Xusheng Wang. "AdvAndMal: Adversarial Training for Android Malware Detection and Family Classification." Symmetry 13, no. 6 (June 17, 2021): 1081. http://dx.doi.org/10.3390/sym13061081.
Full textChae, Dong-Kyu, Sung-Jun Park, Eujeanne Kim, Jiwon Hong, and Sang-Wook Kim. "Identifying the Author Group of Malwares through Graph Embedding and Human-in-the-Loop Classification." Applied Sciences 11, no. 14 (July 20, 2021): 6640. http://dx.doi.org/10.3390/app11146640.
Full textBai, Jinrong, Qibin Shi, and Shiguang Mu. "A Malware and Variant Detection Method Using Function Call Graph Isomorphism." Security and Communication Networks 2019 (September 22, 2019): 1–12. http://dx.doi.org/10.1155/2019/1043794.
Full textJang, Sejun, Shuyu Li, and Yunsick Sung. "FastText-Based Local Feature Visualization Algorithm for Merged Image-Based Malware Classification Framework for Cyber Security and Cyber Defense." Mathematics 8, no. 3 (March 24, 2020): 460. http://dx.doi.org/10.3390/math8030460.
Full textCatak, Ferhat Ozgur, Ahmet Faruk Yazı, Ogerta Elezaj, and Javed Ahmed. "Deep learning based Sequential model for malware analysis using Windows exe API Calls." PeerJ Computer Science 6 (July 27, 2020): e285. http://dx.doi.org/10.7717/peerj-cs.285.
Full textBlack, Paul, Iqbal Gondal, Peter Vamplew, and Arun Lakhotia. "Function Similarity Using Family Context." Electronics 9, no. 7 (July 17, 2020): 1163. http://dx.doi.org/10.3390/electronics9071163.
Full textDing, Yuxin, Xiaoling Xia, Sheng Chen, and Ye Li. "A malware detection method based on family behavior graph." Computers & Security 73 (March 2018): 73–86. http://dx.doi.org/10.1016/j.cose.2017.10.007.
Full textKim, Heejin, Kyuho Kim, Ming Jin, and Jiman Hong. "Android Malware Family Classification based on Weighted Majority Voting." KIISE Transactions on Computing Practices 27, no. 2 (February 28, 2021): 116–21. http://dx.doi.org/10.5626/ktcp.2021.27.2.116.
Full textGupta, Charu, Rakesh Kumar Singh, Simran Kaur Bhatia, and Amar Kumar Mohapatra. "DecaDroid Classification and Characterization of Malicious Behaviour in Android Applications." International Journal of Information Security and Privacy 14, no. 4 (October 2020): 57–73. http://dx.doi.org/10.4018/ijisp.2020100104.
Full textHan, KyoungSoo, BooJoong Kang, and Eul Gyu Im. "Malware Analysis Using Visualized Image Matrices." Scientific World Journal 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/132713.
Full textMassarelli, Luca, Leonardo Aniello, Claudio Ciccotelli, Leonardo Querzoni, Daniele Ucci, and Roberto Baldoni. "AndroDFA: Android Malware Classification Based on Resource Consumption." Information 11, no. 6 (June 16, 2020): 326. http://dx.doi.org/10.3390/info11060326.
Full textCatak, Ferhat Ozgur, Javed Ahmed, Kevser Sahinbas, and Zahid Hussain Khand. "Data augmentation based malware detection using convolutional neural networks." PeerJ Computer Science 7 (January 22, 2021): e346. http://dx.doi.org/10.7717/peerj-cs.346.
Full textBagui, Sikha, and Daniel Benson. "Android Adware Detection Using Machine Learning." International Journal of Cyber Research and Education 3, no. 2 (July 2021): 1–19. http://dx.doi.org/10.4018/ijcre.2021070101.
Full textParmuval, Poonam, Mosin Hasan, and Samip Patel. "Malware Family Detection Approach using Image Processing Techniques: Visualization Technique." International Journal of Computer Applications Technology and Research 07, no. 03 (March 25, 2018): 129–32. http://dx.doi.org/10.7753/ijcatr0703.1004.
Full textChoi, Changhee, Kyeongsik Lee, Hwaseong Lee, Ilhoon Jeong, and Hosang Yun. "Malware Family Classification Based on Novel Features from Frequency Analysis." International Journal of Computer Theory and Engineering 10, no. 4 (2018): 135–38. http://dx.doi.org/10.7763/ijcte.2018.v10.1214.
Full textDhalaria, Meghna, and Ekta Gandotra. "A Hybrid Approach for Android Malware Detection and Family Classification." International Journal of Interactive Multimedia and Artificial Intelligence In Press, In Press (2020): 1. http://dx.doi.org/10.9781/ijimai.2020.09.001.
Full textGarcia, Joshua, Mahmoud Hammad, and Sam Malek. "Lightweight, Obfuscation-Resilient Detection and Family Identification of Android Malware." ACM Transactions on Software Engineering and Methodology 26, no. 3 (January 12, 2018): 1–29. http://dx.doi.org/10.1145/3162625.
Full textBolton, Alexander D., and Nicholas A. Heard. "Malware Family Discovery Using Reversible Jump MCMC Sampling of Regimes." Journal of the American Statistical Association 113, no. 524 (July 11, 2018): 1490–502. http://dx.doi.org/10.1080/01621459.2018.1423984.
Full textKang, Munyeong, Seonghyun Park, Jihyeon Park, Seong-je Cho, and Minkyu Park. "Image-based Android Malware Family Classification Using Convolutional Neural Network." KIISE Transactions on Computing Practices 27, no. 4 (April 30, 2021): 189–97. http://dx.doi.org/10.5626/ktcp.2021.27.4.189.
Full textMoshood Abiola, Alogba, and Mohd Fadzli Marhusin. "Signature-Based Malware Detection Using Sequences of N-grams." International Journal of Engineering & Technology 7, no. 4.15 (October 7, 2018): 120. http://dx.doi.org/10.14419/ijet.v7i4.15.21432.
Full textZhao, Yanjie, Li Li, Haoyu Wang, Haipeng Cai, Tegawendé F. Bissyandé, Jacques Klein, and John Grundy. "On the Impact of Sample Duplication in Machine-Learning-Based Android Malware Detection." ACM Transactions on Software Engineering and Methodology 30, no. 3 (May 2021): 1–38. http://dx.doi.org/10.1145/3446905.
Full textCalleja, Alejandro, Alejandro Martín, Héctor D. Menéndez, Juan Tapiador, and David Clark. "Picking on the family: Disrupting android malware triage by forcing misclassification." Expert Systems with Applications 95 (April 2018): 113–26. http://dx.doi.org/10.1016/j.eswa.2017.11.032.
Full textAtzeni, Andrea, Fernando Diaz, Andrea Marcelli, Antonio Sanchez, Giovanni Squillero, and Alberto Tonda. "Countering Android Malware: A Scalable Semi-Supervised Approach for Family-Signature Generation." IEEE Access 6 (2018): 59540–56. http://dx.doi.org/10.1109/access.2018.2874502.
Full textZhang, Li, Vrizlynn L. L. Thing, and Yao Cheng. "A scalable and extensible framework for android malware detection and family attribution." Computers & Security 80 (January 2019): 120–33. http://dx.doi.org/10.1016/j.cose.2018.10.001.
Full textIadarola, Giacomo, Fabio Martinelli, Francesco Mercaldo, and Antonella Santone. "Towards an interpretable deep learning model for mobile malware detection and family identification." Computers & Security 105 (June 2021): 102198. http://dx.doi.org/10.1016/j.cose.2021.102198.
Full textDib, Mirabelle, Sadegh Torabi, Elias Bou-Harb, and Chadi Assi. "A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and Family Attribution." IEEE Transactions on Network and Service Management 18, no. 2 (June 2021): 1165–77. http://dx.doi.org/10.1109/tnsm.2021.3075315.
Full textWu, Qing, Miaomiao Li, Xueling Zhu, and Bo Liu. "MVIIDroid: A Multiple View Information Integration Approach for Android Malware Detection and Family Identification." IEEE MultiMedia 27, no. 4 (October 1, 2020): 48–57. http://dx.doi.org/10.1109/mmul.2020.3022702.
Full textKelarev, Andrei, John Yearwood, and Paul Watters. "INTERNET SECURITY APPLICATIONS OF GRÖBNER-SHIRSHOV BASES." Asian-European Journal of Mathematics 03, no. 03 (September 2010): 435–42. http://dx.doi.org/10.1142/s1793557110000283.
Full textWang, Peng, Zhijie Tang, and Junfeng Wang. "A novel few-shot malware classification approach for unknown family recognition with multi-prototype modeling." Computers & Security 106 (July 2021): 102273. http://dx.doi.org/10.1016/j.cose.2021.102273.
Full textO., Amusan, Thompson A. F., Aderinola T. B., and Alese B. K. "Modelling Malicious Attack in Social Networks." Network and Communication Technologies 5, no. 1 (February 6, 2020): 37. http://dx.doi.org/10.5539/nct.v5n1p37.
Full textČeponis, Dainius, and Nikolaj Goranin. "Evaluation of Deep Learning Methods Efficiency for Malicious and Benign System Calls Classification on the AWSCTD." Security and Communication Networks 2019 (November 11, 2019): 1–12. http://dx.doi.org/10.1155/2019/2317976.
Full text