Academic literature on the topic 'Male germline regulatory module'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Male germline regulatory module.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Male germline regulatory module"

1

Ragle, James Matthew, Abigail L. Aita, Kayleigh N. Morrison, Raquel Martinez-Mendez, Hannah N. Saeger, Guinevere A. Ashley, Londen C. Johnson, Katherine A. Schubert, Diane C. Shakes, and Jordan D. Ward. "The conserved molting/circadian rhythm regulator NHR-23/NR1F1 serves as an essential co-regulator of C. elegans spermatogenesis." Development 147, no. 22 (October 15, 2020): dev193862. http://dx.doi.org/10.1242/dev.193862.

Full text
Abstract:
ABSTRACTIn sexually reproducing metazoans, spermatogenesis is the process by which uncommitted germ cells give rise to haploid sperm. Work in model systems has revealed mechanisms controlling commitment to the sperm fate, but how this fate is subsequently executed remains less clear. While studying the well-established role of the conserved nuclear hormone receptor transcription factor, NHR-23/NR1F1, in regulating C. elegans molting, we discovered that NHR-23/NR1F1 is also constitutively expressed in developing primary spermatocytes and is a critical regulator of spermatogenesis. In this novel role, NHR-23/NR1F1 functions downstream of the canonical sex-determination pathway. Degron-mediated depletion of NHR-23/NR1F1 within hermaphrodite or male germlines causes sterility due to an absence of functional sperm, as depleted animals produce arrested primary spermatocytes rather than haploid sperm. These spermatocytes arrest in prometaphase I and fail to either progress to anaphase or attempt spermatid-residual body partitioning. They make sperm-specific membranous organelles but fail to assemble their major sperm protein into fibrous bodies. NHR-23/NR1F1 appears to function independently of the known SPE-44 gene regulatory network, revealing the existence of an NHR-23/NR1F1-mediated module that regulates the spermatogenesis program.
APA, Harvard, Vancouver, ISO, and other styles
2

Sharma, Swati, Joana M. D. Portela, Daniel Langenstroth-Röwer, Joachim Wistuba, Nina Neuhaus, and Stefan Schlatt. "Male germline stem cells in non-human primates." Primate Biology 4, no. 2 (September 22, 2017): 173–84. http://dx.doi.org/10.5194/pb-4-173-2017.

Full text
Abstract:
Abstract. Over the past few decades, several studies have attempted to decipher the biology of mammalian germline stem cells (GSCs). These studies provide evidence that regulatory mechanisms for germ cell specification and migration are evolutionarily conserved across species. The characteristics and functions of primate GSCs are highly distinct from rodent species; therefore the findings from rodent models cannot be extrapolated to primates. Due to limited availability of human embryonic and testicular samples for research purposes, two non-human primate models (marmoset and macaque monkeys) are extensively employed to understand human germline development and differentiation. This review provides a broader introduction to the in vivo and in vitro germline stem cell terminology from primordial to differentiating germ cells. Primordial germ cells (PGCs) are the most immature germ cells colonizing the gonad prior to sex differentiation into testes or ovaries. PGC specification and migratory patterns among different primate species are compared in the review. It also reports the distinctions and similarities in expression patterns of pluripotency markers (OCT4A, NANOG, SALL4 and LIN28) during embryonic developmental stages, among marmosets, macaques and humans. This review presents a comparative summary with immunohistochemical and molecular evidence of germ cell marker expression patterns during postnatal developmental stages, among humans and non-human primates. Furthermore, it reports findings from the recent literature investigating the plasticity behavior of germ cells and stem cells in other organs of humans and monkeys. The use of non-human primate models would enable bridging the knowledge gap in primate GSC research and understanding the mechanisms involved in germline development. Reported similarities in regulatory mechanisms and germ cell expression profile in primates demonstrate the preclinical significance of monkey models for development of human fertility preservation strategies.
APA, Harvard, Vancouver, ISO, and other styles
3

Wang, Xin Rui, Li Bin Ling, Hsiao Han Huang, Jau Jyun Lin, Sebastian D. Fugmann, and Shu Yuan Yang. "Evidence for parallel evolution of a gene involved in the regulation of spermatogenesis." Proceedings of the Royal Society B: Biological Sciences 284, no. 1855 (May 24, 2017): 20170324. http://dx.doi.org/10.1098/rspb.2017.0324.

Full text
Abstract:
PHD finger protein 7 ( Phf7 ) is a male germline specific gene in Drosophila melanogaster that can trigger the male germline sexual fate and regulate spermatogenesis, and its human homologue can rescue fecundity defects in male flies lacking this gene. These findings prompted us to investigate conservation of reproductive strategies through studying the evolutionary origin of this gene. We find that Phf7 is present only in select species including mammals and some insects, whereas the closely related G2/M-phase specific E3 ubiquitin protein ligase ( G2e3 ) is in the genome of most metazoans. Interestingly, phylogenetic analyses showed that vertebrate and insect Phf7 genes did not evolve from a common Phf7 ancestor but rather through independent duplication events from an ancestral G2e3 . This is an example of parallel evolution in which a male germline factor evolved at least twice from a pre-existing template to develop new regulatory mechanisms of spermatogenesis.
APA, Harvard, Vancouver, ISO, and other styles
4

Zelli, Veronica, Valentina Silvestri, Virginia Valentini, Agostino Bucalo, Piera Rizzolo, Ines Zanna, Simonetta Bianchi, et al. "Transcriptome of Male Breast Cancer Matched with Germline Profiling Reveals Novel Molecular Subtypes with Possible Clinical Relevance." Cancers 13, no. 18 (September 8, 2021): 4515. http://dx.doi.org/10.3390/cancers13184515.

Full text
Abstract:
Male breast cancer (MBC) is a rare and understudied disease compared with female BC. About 15% of MBCs are associated with germline mutation in BC susceptibility genes, mainly BRCA1/2 and PALB2. Hereditary MBCs are likely to represent a subgroup of tumors with a peculiar phenotype. Here, we performed a whole transcriptome analysis of MBCs characterized for germline mutations in the most relevant BC susceptibility genes in order to identify molecular subtypes with clinical relevance. A series of 63 MBCs, including 16 BRCA2, 6 BRCA1, 2 PALB2, 1 RAD50, and 1 RAD51D germline-mutated cases, was analyzed by RNA-sequencing. Differential expression and hierarchical clustering analyses were performed. Module signatures associated with central biological processes involved in breast cancer pathogenesis were also examined. Different transcriptome profiles for genes mainly involved in the cell cycle, DNA damage, and DNA repair pathways emerged between MBCs with and without germline mutations. Unsupervised clustering analysis revealed two distinct subgroups, one of which was characterized by a higher expression of immune response genes, high scores of gene-expression signatures suggestive of aggressive behavior, and worse overall survival. Our results suggest that transcriptome matched with germline profiling may be a valuable approach for the identification and characterization of MBC subtypes with possible relevance in the clinical setting.
APA, Harvard, Vancouver, ISO, and other styles
5

Peters, Benjamin, Jonathan Casey, Jack Aidley, Stuart Zohrab, Michael Borg, David Twell, and Lynette Brownfield. "A Conserved cis-Regulatory Module Determines Germline Fate through Activation of the Transcription Factor DUO1 Promoter." Plant Physiology 173, no. 1 (September 13, 2016): 280–93. http://dx.doi.org/10.1104/pp.16.01192.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hayashi, Yohei, Masaru Mori, Kaori Igarashi, Keiko Tanaka, Asuka Takehara, Yumi Ito-Matsuoka, Akio Kanai, Nobuo Yaegashi, Tomoyoshi Soga, and Yasuhisa Matsui. "Proteomic and metabolomic analyses uncover sex-specific regulatory pathways in mouse fetal germline differentiation†." Biology of Reproduction 103, no. 4 (July 6, 2020): 717–35. http://dx.doi.org/10.1093/biolre/ioaa115.

Full text
Abstract:
Abstract Regulatory mechanisms of germline differentiation have generally been explained via the function of signaling pathways, transcription factors, and epigenetic regulation; however, little is known regarding proteomic and metabolomic regulation and their contribution to germ cell development. Here, we conducted integrated proteomic and metabolomic analyses of fetal germ cells in mice on embryonic day (E)13.5 and E18.5 and demonstrate sex- and developmental stage-dependent changes in these processes. In male germ cells, RNA processing, translation, oxidative phosphorylation, and nucleotide synthesis are dominant in E13.5 and then decline until E18.5, which corresponds to the prolonged cell division and more enhanced hyper-transcription/translation in male primordial germ cells and their subsequent repression. Tricarboxylic acid cycle and one-carbon pathway are consistently upregulated in fetal male germ cells, suggesting their involvement in epigenetic changes preceding in males. Increased protein stability and oxidative phosphorylation during female germ cell differentiation suggests an upregulation of aerobic energy metabolism, which likely contributes to the proteostasis required for oocyte maturation in subsequent stages. The features elucidated in this study shed light on the unrevealed mechanisms of germ cell development.
APA, Harvard, Vancouver, ISO, and other styles
7

Gangisetty, Omkaram, Shaista Chaudhary, Ajay Palagani, and Dipak K. Sarkar. "Transgenerational inheritance of fetal alcohol effects on proopiomelanocortin gene expression and methylation, cortisol response to stress, and anxiety-like behaviors in offspring for three generations in rats: Evidence for male germline transmission." PLOS ONE 17, no. 2 (February 10, 2022): e0263340. http://dx.doi.org/10.1371/journal.pone.0263340.

Full text
Abstract:
Previously it has been shown that fetal alcohol exposure increases the stress response partly due to lowering stress regulatory proopiomelanocortin (Pomc) gene expression in the hypothalamus via epigenetic mechanisms for multiple generations in mixed-breed rats. In this study we assess the induction of heritable epigenetic changes of Pomc-related variants by fetal alcohol exposure in isogenic Fischer 344 rats. Using transgenerational breeding models and fetal alcohol exposure procedures, we determined changes in hypothalamic Pomc gene expression and its methylation levels, plasma corticosterone hormone response to restraint stress, and anxiety-like behaviors using elevated plus maze tests in fetal alcohol-exposed offspring for multiple generations in isogenic Fischer rats. Fetal alcohol-exposed male and female rat offspring showed significant deficits in POMC neuronal functions with increased Pomc gene methylation and reduced expression. These changes in POMC neuronal functions were associated with increased plasma corticosterone response to restraint stress and increased anxiety-like behavior. These effects of fetal alcohol exposure persisted in the F1, F2, and F3 progeny of the male germline but not of the female germline. These data suggest that fetal alcohol exposure induces heritable changes in Pomc-related variants involving stress hyperresponsiveness and anxiety-like behaviors which perpetuate into subsequent generations through the male germline via epigenetic modifications.
APA, Harvard, Vancouver, ISO, and other styles
8

Hafidh, Said, and David Honys. "Reproduction Multitasking: The Male Gametophyte." Annual Review of Plant Biology 72, no. 1 (June 17, 2021): 581–614. http://dx.doi.org/10.1146/annurev-arplant-080620-021907.

Full text
Abstract:
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis—a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell–cell communication within the reproductive tissues.
APA, Harvard, Vancouver, ISO, and other styles
9

Hager, J. H., and T. W. Cline. "Induction of female Sex-lethal RNA splicing in male germ cells: implications for Drosophila germline sex determination." Development 124, no. 24 (December 15, 1997): 5033–48. http://dx.doi.org/10.1242/dev.124.24.5033.

Full text
Abstract:
With a focus on Sex-lethal (Sxl), the master regulator of Drosophila somatic sex determination, we compare the sex determination mechanism that operates in the germline with that in the soma. In both cell types, Sxl is functional in females (2X2A) and nonfunctional in males (1X2A). Somatic cell sex is determined initially by a dose effect of X:A numerator genes on Sxl transcription. Once initiated, the active state of SXL is maintained by a positive autoregulatory feedback loop in which Sxl protein insures its continued synthesis by binding to Sxl pre-mRNA and thereby imposing the productive (female) splicing mode. The gene splicing-necessary factor (snf), which encodes a component of U1 and U2 snRNPs, participates in this RNA splicing control. Here we show that an increase in the dose of snf+ can trigger the female Sxl RNA splicing mode in male germ cells and can feminize triploid intersex (2X3A) germ cells. These snf+ dose effects are as dramatic as those of X:A numerator genes on Sxl in the soma and qualify snf as a numerator element of the X:A signal for Sxl in the germline. We also show that female-specific regulation of Sxl in the germline involves a positive autoregulatory feedback loop on RNA splicing, as it does in the soma. Neither a phenotypically female gonadal soma nor a female dose of X chromosomes in the germline is essential for the operation of this feedback loop, although a female X-chromosome dose in the germline may facilitate it. Engagement of the Sxl splicing feedback loop in somatic cells invariably imposes female development. In contrast, engagement of the Sxl feedback loop in male germ cells does not invariably disrupt spermatogenesis; nevertheless, it is premature to conclude that Sxl is not a switch gene in germ cells for at least some sex-specific aspects of their differentiation. Ironically, the testis may be an excellent organ in which to study the interactions among regulatory genes such as Sxl, snf, ovo and otu which control female-specific processes in the ovary.
APA, Harvard, Vancouver, ISO, and other styles
10

Uebel, Celja J., Dana Agbede, Dylan C. Wallis, and Carolyn M. Phillips. "Mutator Foci Are Regulated by Developmental Stage, RNA, and the Germline Cell Cycle in Caenorhabditis elegans." G3: Genes|Genomes|Genetics 10, no. 10 (August 6, 2020): 3719–28. http://dx.doi.org/10.1534/g3.120.401514.

Full text
Abstract:
RNA interference is a crucial gene regulatory mechanism in Caenorhabditis elegans. Phase-separated perinuclear germline compartments called Mutator foci are a key element of RNAi, ensuring robust gene silencing and transgenerational epigenetic inheritance. Despite their importance, Mutator foci regulation is not well understood, and observations of Mutator foci have been largely limited to adult hermaphrodite germlines. Here we reveal that punctate Mutator foci arise in the progenitor germ cells of early embryos and persist throughout all larval stages. They are additionally present throughout the male germline and in the cytoplasm of post-meiotic spermatids, suggestive of a role in paternal epigenetic inheritance. In the adult germline, transcriptional inhibition results in a pachytene-specific loss of Mutator foci, indicating that Mutator foci are partially reliant on RNA for their stability. Finally, we demonstrate that Mutator foci intensity is modulated by the stage of the germline cell cycle and specifically, that Mutator foci are brightest and most robust in the mitotic cells, transition zone, and late pachytene of adult germlines. Thus, our data defines several new factors that modulate Mutator foci morphology which may ultimately have implications for efficacy of RNAi in certain cell stages or environments.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Male germline regulatory module"

1

Borg, Michael. "Regulatory mechanisms controlling male germline development in Arabidopsis thaliana." Thesis, University of Leicester, 2011. http://hdl.handle.net/2381/10081.

Full text
Abstract:
In flowering plants, the male gametophyte plays a vital role in plant fertility through the generation and delivery of two sperm cells to the embryo sac. A strict male germline is only established after meiosis when haploid microspores divide asymmetrically to form a small germ cell and large vegetative cell. This germ cell goes on to differentiate and divide once again to produce the functional twin sperm cells required for double fertilisation. Despite its importance in plant fertility and crop production, the mechanism integrating germ cell proliferation and specification during male gametogenesis has remained elusive. DUO1 is an evolutionary conserved unique R2R3-type MYB transcription factor that is specifically expressed in the male germline. DUO1 is the major determinant of male germline fate, regulating the expression of key specification genes required for fertilisation whilst integrating this with germ cell cycle progression through the regulation of the G2/M regulator CYCB1;1. DUO1 constitutes the major focus of this thesis and as such it addresses several aspects of DUO1 regulatory network. The first chapter of the thesis explores upstream regulatory mechanisms controlling male germline restricted expression in Arabidopsis. The expression of several genes, including DUO1, does not depend on a previously proposed derepression mechanism whilst DUO1 expression involves only positive promoter elements. The second chapter involves functional characterisation of the DUO1 protein, which has helped to delimit the transactivation domain of DUO1. This analysis has also provided insights into the evolutionary conserved supernumerary lysine residue present in the DUO1 MYB domain, which is likely to play a role in attenuating the rate of target gene transcription. The third part describes the analysis and verification of novel target genes in the DUO1 regulatory network. A mechanism for direct transactivation of target genes is also described whereby DUO1 binds to MYB sequences in target gene promoters. The final chapter concerns the functional analysis of two redundant DUO1-activated zinc finger (DAZ) EAR repressor proteins. Their intermediate role in coordinating male germ cell cycle progression is demonstrated by their ability to complement the cell cycle defect in the duo1 mutant. Furthermore, DAZ1 and DAZ2 also influence sperm cell specification, indicating that the DAZ subregulon also integrates specification with cell cycle progression. Together this data has provided compelling insights into the scale and architecture of the DUO1 male germline regulatory network controlling the production of functional sperm cells in flowering plants.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Male germline regulatory module"

1

Peters, Benjamin, Jack Aidley, Murray Cadzow, David Twell, and Lynette Brownfield. "Identification of Cis-Regulatory Modules that Function in the Male Germline of Flowering Plants." In Methods in Molecular Biology, 275–93. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7286-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography