Journal articles on the topic 'Magnetotransport'

To see the other types of publications on this topic, follow the link: Magnetotransport.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetotransport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Löhneysen, H. v., H. Bartolf, C. Pfleiderer, F. Obermair, M. Vojta, and P. Wölfle. "Magnetotransport in." Physica B: Condensed Matter 378-380 (May 2006): 44–45. http://dx.doi.org/10.1016/j.physb.2006.01.338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Mingxing, Kouta Kondou, Taishi Chen, Satoru Nakatsuji, and Yoshichika Otani. "Temperature-induced anomalous magnetotransport in the Weyl semimetal Mn3Ge." AIP Advances 13, no. 4 (April 1, 2023): 045102. http://dx.doi.org/10.1063/5.0138208.

Full text
Abstract:
The magnetic Weyl semimetallic state can lead to intriguing magnetotransport, such as chiral anomaly and the layered quantum Hall effect. Mn3X (X = Sn, Ge) is a noncollinear antiferromagnetic semimetal where a Weyl semimetallic state is stabilized by time-reversal symmetry breaking. Compared to the well-studied Mn3Sn, the Weyl fermion-induced magnetotransport in Mn3Ge has been merely studied. Here, we report an in-depth study on the magnetotransport in a microfabricated Mn3Ge single crystal from room temperature to 10 K. We reveal an anomalous anisotropic magnetoresistance with fourfold symmetry and a positive high-field longitudinal magnetoresistance below the critical temperature (160–170 K). The possible origin is the temperature-induced tilting of the Weyl nodes. Our study helps to understand the magnetotransport properties in the Weyl fermion system.
APA, Harvard, Vancouver, ISO, and other styles
3

Pȩkała, M., V. Drozd, J. F. Fagnard, Ph Vanderbemden, and M. Ausloos. "Magnetotransport of La0.5Ba0.5MnO3." Journal of Applied Physics 105, no. 1 (January 2009): 013923. http://dx.doi.org/10.1063/1.3032326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stankiewicz, Jolanta, and Juan Bartolomé. "Magnetotransport properties ofNd2Fe14B." Physical Review B 59, no. 2 (January 1, 1999): 1152–56. http://dx.doi.org/10.1103/physrevb.59.1152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noce, Canio, and Mario Cuoco. "Magnetotransport in Sr2RuO4." Physica B: Condensed Matter 284-288 (July 2000): 1972–73. http://dx.doi.org/10.1016/s0921-4526(99)02930-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Movaghar, B., and S. Roth. "Magnetotransport in polyacetylene." Synthetic Metals 63, no. 3 (April 1994): 163–77. http://dx.doi.org/10.1016/0379-6779(94)90222-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jalil, M. B. A., S. G. Tan, and X. Z. Cheng. "Advanced Modeling Techniques for Micromagnetic Systems." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 46–64. http://dx.doi.org/10.1166/jnn.2007.18006.

Full text
Abstract:
We present a review of micromagnetic and magnetotransport modeling methods which go beyond the standard model. We first give a brief overview of the standard micromagnetic model, which for (i) the steady-state (equilibrium) solution is based on the minimization of the free energy functional, and for (ii) the dynamical solution, relies on the numerical solution of the Landau-Lifshitz-Gilbert (LLG) equation. We present three complements to the standard model, i.e., (i) magnetotransport calculations based on ohmic conduction in the presence of the anisotropic magnetoresistance (AMR) effect, (ii) magnetotransport calculations based on spin-dependent tunneling in the presence of single charge tunneling (Coulomb blockade) effect, and (iii) stochastic micromagnetics, which incorporates the effects of thermal fluctuations via a white-noise thermal field in the LLGequation. All three complements are of practical importance: (i) magnetotransport model either in the ohmic or tunneling transport regimes, enables the conversion of the micromagnetic results to the measurable quantity of magnetoresistance ratio, while (ii) stochastic modeling is essential as the dimensions of the micromagnetic system reduces to the deep submicron regime and approaches the superparamagnetic limit.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Kaida, Victor Kryutyanskiy, Irina Kolmychek, Tatiana V. Murzina, and R. Alejandra Lukaszew. "Experimental Correlation between Nonlinear Optical and Magnetotransport Properties Observed in Au-Co Thin Films." Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/4786545.

Full text
Abstract:
Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. It has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport properties in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Семенов, С. В., Д. М. Гохфельд, К. Ю. Терентьев, and Д. А. Балаев. "Механизмы, определяющие гистерезис магнитосопротивления гранулярного ВТСП в присутствии парамагнитного вклада, на примере HoBa-=SUB=-2-=/SUB=-Cu-=SUB=-3-=/SUB=-O-=SUB=-7-delta-=/SUB=-." Физика твердого тела 63, no. 10 (2021): 1462. http://dx.doi.org/10.21883/ftt.2021.10.51392.114.

Full text
Abstract:
The hysteretic magnetoresistance of granular high-temperature superconductor (HTSC) HoBa2Cu3O7-δ is investigated. Superconductors of the YBCO family with magnetic rare earth elements (Nd, Ho, Er, Sm, Yb, Dy) in place of yttrium are characterized by a significant paramagnetic contribution to the total magnetization. Impact of this paramagnetic contribution on the magnetotransport properties is analyzed using the concept of an effective field in an intergranular medium. Lines of magnetic induction from paramagnetic moments do not concentrate in intergranular boundaries, and, thus, have an insignificant effect on magnetotransport properties of granular HTSC. At the same time, there are strong concentration of magnetic flux in the intergranular boundaries due to Meissner currents and Abrikosov vortices. This magnetic flux compression determines the magnetotransport properties of granular HTSCs, including YBCO with magnetic rare earth elements.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Yun-Ki, Sung-Lae Cho, and Ketterson J.B. "Magnetotransport Properties of MnGeP2Films." Journal of the Korean Magnetics Society 19, no. 4 (August 31, 2009): 133–37. http://dx.doi.org/10.4283/jkms.2009.19.4.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Yanagihara, H., and M. B. Salamon. "Magnetotransport Properties of CrO2." Journal of the Magnetics Society of Japan 27, no. 4 (2003): 285–88. http://dx.doi.org/10.3379/jmsjmag.27.285.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Davies, R. A., D. J. Newson, T. G. Powell, and M. J. Kelly. "Magnetotransport in semiconductor superlattices." Semiconductor Science and Technology 2, no. 1 (January 1, 1987): 61–64. http://dx.doi.org/10.1088/0268-1242/2/1/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Mukherjee, A. K., and Reghu Menon. "Magnetotransport in doped polyaniline." Journal of Physics: Condensed Matter 17, no. 12 (March 12, 2005): 1947–60. http://dx.doi.org/10.1088/0953-8984/17/12/017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Stankiewicz, Jolanta, and Konstantin P. Skokov. "Magnetotransport in Tb2Fe17single crystals." Journal of Physics: Conference Series 303 (July 6, 2011): 012019. http://dx.doi.org/10.1088/1742-6596/303/1/012019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Suzuki, Katsuhiko, and P. M. Tedrow. "Resistivity and magnetotransport inCrO2films." Physical Review B 58, no. 17 (November 1, 1998): 11597–602. http://dx.doi.org/10.1103/physrevb.58.11597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Mucha, Jan, Marek P ka a, Jadwiga Szyd owska, Wojciech Gadomski, Jun Akimitsu, Jean-Fran ois Fagnard, Philippe Vanderbemden, Rudi Cloots, and Marcel Ausloos. "Magnetotransport study of MgB2superconductor." Superconductor Science and Technology 16, no. 10 (August 27, 2003): 1167–72. http://dx.doi.org/10.1088/0953-2048/16/10/308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Seshadri, R., A. Maignan, M. Hervieu, N. Nguyen, and B. Raveau. "Complex magnetotransport in LaSr2Mn2O7." Solid State Communications 101, no. 6 (February 1997): 453–57. http://dx.doi.org/10.1016/s0038-1098(96)00628-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Enze, Yanwen Liu, Weiyi Wang, Cheng Zhang, Peng Zhou, Zhi-Gang Chen, Jin Zou, and Faxian Xiu. "Magnetotransport Properties of Cd3As2Nanostructures." ACS Nano 9, no. 9 (August 27, 2015): 8843–50. http://dx.doi.org/10.1021/acsnano.5b02243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Stankiewicz, Jolanta, and Juan Bartolomé. "Magnetotransport properties of compounds." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 1172–76. http://dx.doi.org/10.1016/j.jmmm.2004.11.571.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Kepaptsoglou, D. M., K. Efthimiadis, P. Svec, and E. Hristoforou. "Magnetotransport studies in ribbons." Journal of Magnetism and Magnetic Materials 304, no. 2 (September 2006): e583-e585. http://dx.doi.org/10.1016/j.jmmm.2006.02.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Suryanarayanan, R., and V. Gasumyants. "Magnetotransport coefficients of Sm0.55Sr0.45MnO3." Journal of Physics and Chemistry of Solids 66, no. 1 (January 2005): 143–45. http://dx.doi.org/10.1016/j.jpcs.2004.08.040.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Köhler, R., H. Fischer, C. Schank, C. Geibel, F. Steglich, N. Sato, and T. Komatsubara. "Anisotropic magnetotransport in UPd2Al3." Physica B: Condensed Matter 206-207 (February 1995): 430–32. http://dx.doi.org/10.1016/0921-4526(94)00481-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Bruus, Henrik, Karsten Flensberg, and Henrik Smith. "Magnetotransport in quantum wires." Physica B: Condensed Matter 194-196 (February 1994): 1239–40. http://dx.doi.org/10.1016/0921-4526(94)90949-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ranz, E., D. Lavielle, L. A. Cury, J. C. Portal, M. Razeghi, and F. Omnes. "Magnetotransport measurements in heterostructures." Superlattices and Microstructures 8, no. 2 (January 1990): 245–48. http://dx.doi.org/10.1016/0749-6036(90)90101-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

D'Onofrio, L., A. Hamzić, and A. Fert. "Magnetotransport properties of YbNiSn." Physica B: Condensed Matter 171, no. 1-4 (May 1991): 266–68. http://dx.doi.org/10.1016/0921-4526(91)90528-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Weiss, D., K. Richter, E. Vasiliadou, and G. Lütjering. "Magnetotransport in antidot arrays." Surface Science 305, no. 1-3 (March 1994): 408–18. http://dx.doi.org/10.1016/0039-6028(94)90927-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Mahendiran, R., A. Maignan, M. Hervieu, C. Martin, and B. Raveau. "Anomalous magnetotransport in Pr0.5Ca0.5Mn0.99Cr0.01O3." Applied Physics Letters 77, no. 10 (September 4, 2000): 1517–19. http://dx.doi.org/10.1063/1.1290726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Klitzing, K. v. "Magnetotransport in semiconductor nanostructures." Physica A: Statistical Mechanics and its Applications 200, no. 1-4 (November 1993): 1–3. http://dx.doi.org/10.1016/0378-4371(93)90499-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Zholudev, Maksim S., Aleksandr M. Kadykov, Mikhail A. Fadeev, Michal Marcinkiewicz, Sandra Ruffenach, Christophe Consejo, Wojciech Knap, et al. "Experimental Observation of Temperature-Driven Topological Phase Transition in HgTe/CdHgTe Quantum Wells." Condensed Matter 4, no. 1 (March 1, 2019): 27. http://dx.doi.org/10.3390/condmat4010027.

Full text
Abstract:
We report on the comparison between temperature-dependent magneto-absorption and magnetotransport spectroscopy of HgTe/CdHgTe quantum wells in terms of the detection of the phase transition between the topological insulator and band insulator states. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases, yet the magnetotransport method is shown to have advantages for the clear manifestation of the phase transition with accurate quantitative values of the transition parameter (i.e., critical magnetic field Bc).
APA, Harvard, Vancouver, ISO, and other styles
30

KIM, K. H., J. B. BETTS, M. JAIME, A. H. LACERDA, G. S. BOEBINGER, C. U. JUNG, H. J. KIM, et al. "Mg AS A MAIN SOURCE FOR THE DIVERSE MAGNETOTRANSPORT PROPERTIES OF MgB2." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3185–88. http://dx.doi.org/10.1142/s0217979202013894.

Full text
Abstract:
Magnetotransport properties of pure Mg metal and MgB 2 samples with varying amounts of excess Mg were systematically studied in magnetic fields up to 18 T. It is found that the both the Mg and inhomogeneous MgB 2 samples show large low temperature conductivity, residual resistance ratio (RRR) and magnetoresistance (MR) under high fields. Calculations of the generalized effective medium theory show that the large RRR and MR of the inhomogeneous MgB 2 samples can be explained by unusual magnetotransport properties of pure Mg metal.
APA, Harvard, Vancouver, ISO, and other styles
31

Sagar, Rizwan Ur Rehman, Chen Lifang, Ayaz Ali, Muhammad Farooq Khan, Mudassar Abbas, Muhamad Imran Malik, Karim Khan, Jinming Zeng, Tauseef Anwar, and Tongxiang Liang. "Unusual magnetotransport properties in graphene fibers." Physical Chemistry Chemical Physics 22, no. 44 (2020): 25712–19. http://dx.doi.org/10.1039/d0cp05209d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

KVON, Z. D., E. B. OLSHANETSKY, D. A. KOZLOV, N. N. MIKHAILOV, and S. A. DVORETSKII. "A NEW TWO-DIMENSIONAL ELECTRON-HOLE SYSTEM." International Journal of Modern Physics B 23, no. 12n13 (May 20, 2009): 2888–92. http://dx.doi.org/10.1142/s0217979209062499.

Full text
Abstract:
A two-dimensional electron-hole system consisting of light high-mobility electrons with a density of Ns = (4 - 7) × 1010 cm -2 and heavier lower-mobility holes with a density Ps = (0.7 - 1.6) × 1011 cm -2 has been discovered in a quantum well based on mercury telluride with the (013) surface orientation. The system exhibits a number of specific magnetotransport properties in both the classical magnetotransport (positive magnetoresistance and sign-variable Hall effect) and the quantum Hall effect regime. These properties are associated with the coexistence of two-dimensional electrons and holes and actually manifest the first realization of a two-dimensional semimetal.
APA, Harvard, Vancouver, ISO, and other styles
33

Im, W. S., T. S. Yoon, F. C. Yu, C. X. Gao, D. J. Kim, Y. E. Ibm, H. J. Kim, C. S. Kim, and C. O. Kim. "Magnetotransport of Be-doped GaMnAs." Korean Journal of Materials Research 15, no. 1 (January 1, 2005): 73–77. http://dx.doi.org/10.3740/mrsk.2005.15.1.073.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rosch, A. "Magnetotransport in nearly antiferromagnetic metals." Physical Review B 62, no. 8 (August 15, 2000): 4945–62. http://dx.doi.org/10.1103/physrevb.62.4945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

McAlister, S. P., M. Olivier, and T. Siegrist. "Magnetotransport in (UxCe1−x)2Zn17alloys." Journal of Applied Physics 61, no. 8 (April 15, 1987): 4370–72. http://dx.doi.org/10.1063/1.338425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Bashkin, Eugene P. "Magnetotransport effects in paramagnetic gases." Physical Review B 44, no. 22 (December 1, 1991): 12440–52. http://dx.doi.org/10.1103/physrevb.44.12440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Tso, H. C., and P. Vasilopoulos. "Magnetotransport along a quantum wire." Physical Review B 44, no. 23 (December 15, 1991): 12952–58. http://dx.doi.org/10.1103/physrevb.44.12952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Westerburg, W., D. Reisinger, and G. Jakob. "Epitaxy and magnetotransport ofSr2FeMoO6thin films." Physical Review B 62, no. 2 (July 1, 2000): R767—R770. http://dx.doi.org/10.1103/physrevb.62.r767.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Maki, Kazumi. "Magnetotransport in spin-density waves." Physical Review B 47, no. 17 (May 1, 1993): 11506–9. http://dx.doi.org/10.1103/physrevb.47.11506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Cebulski, J., W. Gebicki, V. I. Ivanov-Omskii, J. Polit, and E. M. Sheregii. "Magnetotransport phenomena in multimode lattices." Journal of Physics: Condensed Matter 10, no. 38 (September 28, 1998): 8587–610. http://dx.doi.org/10.1088/0953-8984/10/38/018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Xu, Hongqi. "Magnetotransport through mesoscopic antidot arrays." Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 15, no. 4 (July 1997): 1335. http://dx.doi.org/10.1116/1.589461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Sun, J. Z., L. Krusin-Elbaum, A. Gupta, Gang Xiao, P. R. Duncombe, and S. S. P. Parkin. "Magnetotransport in doped manganate perovskites." IBM Journal of Research and Development 42, no. 1 (January 1998): 89–102. http://dx.doi.org/10.1147/rd.421.0089.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Flie\Ser, M., G. J. O. Schmidt, and H. Spohn. "Magnetotransport of the Sinai billiard." Physical Review E 53, no. 6 (June 1, 1996): 5690–97. http://dx.doi.org/10.1103/physreve.53.5690.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Zhao, Y. M., P. F. Zhou, X. J. Yang, G. M. Qiu, and L. Ping. "Magnetotransport properties of SrFeO2.95 perovskite." Solid State Communications 120, no. 7-8 (October 2001): 283–87. http://dx.doi.org/10.1016/s0038-1098(01)00389-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Samuilov, V. A., J. Galibert, V. K. Ksenevich, V. J. Goldman, M. Rafailovich, J. Sokolov, I. A. Bashmakov, and V. A. Dorosinets. "Magnetotransport in mesoscopic carbon networks." Physica B: Condensed Matter 294-295 (January 2001): 319–23. http://dx.doi.org/10.1016/s0921-4526(00)00668-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Rey-Cabezudo, C., M. Sánchez-Andújar, J. Mira, A. Fondado, J. Rivas, and M. A. Señarís-Rodríguez. "Magnetotransport in Gd1-xSrxCoO3(0." Chemistry of Materials 14, no. 2 (February 2002): 493–98. http://dx.doi.org/10.1021/cm010051a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Huang, Yi-Chi, P. C. Lee, C. H. Chien, F. Y. Chiu, Y. Y. Chen, and Sergey R. Harutyunyan. "Magnetotransport properties of Sb2Te3 nanoflake." Physica B: Condensed Matter 452 (November 2014): 108–12. http://dx.doi.org/10.1016/j.physb.2014.07.010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Abe, Yasushi, Yoichi Ando, J. Takeya, H. Tanabe, T. Watauchi, I. Tanaka, and H. Kojima. "Normal-state magnetotransport inLa1.905Ba0.095CuO4single crystals." Physical Review B 59, no. 22 (June 1, 1999): 14753–56. http://dx.doi.org/10.1103/physrevb.59.14753.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Nagao, Taro. "Magnetotransport through Random Antidot Lattices." Journal of the Physical Society of Japan 65, no. 8 (August 15, 1996): 2606–9. http://dx.doi.org/10.1143/jpsj.65.2606.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Qingyu, Lars Hartmann, Heidemarie Schmidt, Holger Hochmuth, Michael Lorenz, Annette Setzer, Pablo Esquinazi, Christoph Meinecke, and Marius Grundmann. "Magnetotransport properties of Zn90Mn7.5Cu2.5O100 films." Thin Solid Films 516, no. 6 (January 2008): 1160–63. http://dx.doi.org/10.1016/j.tsf.2007.06.145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography