Academic literature on the topic 'Magnetotransport'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetotransport.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetotransport"

1

Löhneysen, H. v., H. Bartolf, C. Pfleiderer, F. Obermair, M. Vojta, and P. Wölfle. "Magnetotransport in." Physica B: Condensed Matter 378-380 (May 2006): 44–45. http://dx.doi.org/10.1016/j.physb.2006.01.338.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Mingxing, Kouta Kondou, Taishi Chen, Satoru Nakatsuji, and Yoshichika Otani. "Temperature-induced anomalous magnetotransport in the Weyl semimetal Mn3Ge." AIP Advances 13, no. 4 (April 1, 2023): 045102. http://dx.doi.org/10.1063/5.0138208.

Full text
Abstract:
The magnetic Weyl semimetallic state can lead to intriguing magnetotransport, such as chiral anomaly and the layered quantum Hall effect. Mn3X (X = Sn, Ge) is a noncollinear antiferromagnetic semimetal where a Weyl semimetallic state is stabilized by time-reversal symmetry breaking. Compared to the well-studied Mn3Sn, the Weyl fermion-induced magnetotransport in Mn3Ge has been merely studied. Here, we report an in-depth study on the magnetotransport in a microfabricated Mn3Ge single crystal from room temperature to 10 K. We reveal an anomalous anisotropic magnetoresistance with fourfold symmetry and a positive high-field longitudinal magnetoresistance below the critical temperature (160–170 K). The possible origin is the temperature-induced tilting of the Weyl nodes. Our study helps to understand the magnetotransport properties in the Weyl fermion system.
APA, Harvard, Vancouver, ISO, and other styles
3

Pȩkała, M., V. Drozd, J. F. Fagnard, Ph Vanderbemden, and M. Ausloos. "Magnetotransport of La0.5Ba0.5MnO3." Journal of Applied Physics 105, no. 1 (January 2009): 013923. http://dx.doi.org/10.1063/1.3032326.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Stankiewicz, Jolanta, and Juan Bartolomé. "Magnetotransport properties ofNd2Fe14B." Physical Review B 59, no. 2 (January 1, 1999): 1152–56. http://dx.doi.org/10.1103/physrevb.59.1152.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Noce, Canio, and Mario Cuoco. "Magnetotransport in Sr2RuO4." Physica B: Condensed Matter 284-288 (July 2000): 1972–73. http://dx.doi.org/10.1016/s0921-4526(99)02930-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Movaghar, B., and S. Roth. "Magnetotransport in polyacetylene." Synthetic Metals 63, no. 3 (April 1994): 163–77. http://dx.doi.org/10.1016/0379-6779(94)90222-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jalil, M. B. A., S. G. Tan, and X. Z. Cheng. "Advanced Modeling Techniques for Micromagnetic Systems." Journal of Nanoscience and Nanotechnology 7, no. 1 (January 1, 2007): 46–64. http://dx.doi.org/10.1166/jnn.2007.18006.

Full text
Abstract:
We present a review of micromagnetic and magnetotransport modeling methods which go beyond the standard model. We first give a brief overview of the standard micromagnetic model, which for (i) the steady-state (equilibrium) solution is based on the minimization of the free energy functional, and for (ii) the dynamical solution, relies on the numerical solution of the Landau-Lifshitz-Gilbert (LLG) equation. We present three complements to the standard model, i.e., (i) magnetotransport calculations based on ohmic conduction in the presence of the anisotropic magnetoresistance (AMR) effect, (ii) magnetotransport calculations based on spin-dependent tunneling in the presence of single charge tunneling (Coulomb blockade) effect, and (iii) stochastic micromagnetics, which incorporates the effects of thermal fluctuations via a white-noise thermal field in the LLGequation. All three complements are of practical importance: (i) magnetotransport model either in the ohmic or tunneling transport regimes, enables the conversion of the micromagnetic results to the measurable quantity of magnetoresistance ratio, while (ii) stochastic modeling is essential as the dimensions of the micromagnetic system reduces to the deep submicron regime and approaches the superparamagnetic limit.
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Kaida, Victor Kryutyanskiy, Irina Kolmychek, Tatiana V. Murzina, and R. Alejandra Lukaszew. "Experimental Correlation between Nonlinear Optical and Magnetotransport Properties Observed in Au-Co Thin Films." Journal of Nanomaterials 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/4786545.

Full text
Abstract:
Magnetic materials where at least one dimension is in the nanometer scale typically exhibit different magnetic, magnetotransport, and magnetooptical properties compared to bulk materials. Composite magnetic thin films where the matrix composition, magnetic cluster size, and overall composite film thickness can be experimentally tailored via adequate processing or growth parameters offer a viable nanoscale platform to investigate possible correlations between nonlinear magnetooptical and magnetotransport properties, since both types of properties are sensitive to the local magnetization landscape. It has been shown that the local magnetization contrast affects the nonlinear magnetooptical properties as well as the magnetotransport properties in magnetic-metal/nonmagnetic metal multilayers; thus, nanocomposite films showcase another path to investigate possible correlations between these distinct properties which may prove useful for sensing applications.
APA, Harvard, Vancouver, ISO, and other styles
9

Семенов, С. В., Д. М. Гохфельд, К. Ю. Терентьев, and Д. А. Балаев. "Механизмы, определяющие гистерезис магнитосопротивления гранулярного ВТСП в присутствии парамагнитного вклада, на примере HoBa-=SUB=-2-=/SUB=-Cu-=SUB=-3-=/SUB=-O-=SUB=-7-delta-=/SUB=-." Физика твердого тела 63, no. 10 (2021): 1462. http://dx.doi.org/10.21883/ftt.2021.10.51392.114.

Full text
Abstract:
The hysteretic magnetoresistance of granular high-temperature superconductor (HTSC) HoBa2Cu3O7-δ is investigated. Superconductors of the YBCO family with magnetic rare earth elements (Nd, Ho, Er, Sm, Yb, Dy) in place of yttrium are characterized by a significant paramagnetic contribution to the total magnetization. Impact of this paramagnetic contribution on the magnetotransport properties is analyzed using the concept of an effective field in an intergranular medium. Lines of magnetic induction from paramagnetic moments do not concentrate in intergranular boundaries, and, thus, have an insignificant effect on magnetotransport properties of granular HTSC. At the same time, there are strong concentration of magnetic flux in the intergranular boundaries due to Meissner currents and Abrikosov vortices. This magnetic flux compression determines the magnetotransport properties of granular HTSCs, including YBCO with magnetic rare earth elements.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Yun-Ki, Sung-Lae Cho, and Ketterson J.B. "Magnetotransport Properties of MnGeP2Films." Journal of the Korean Magnetics Society 19, no. 4 (August 31, 2009): 133–37. http://dx.doi.org/10.4283/jkms.2009.19.4.133.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetotransport"

1

Mennicke, Ralph T. "Sensing magnetotransport." Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rich, Thalia L. "Magnetotransport in electron waveguides." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/36433.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nam, Moon-Sun. "Magnetotransport in BEDT-TTF salts." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Snell, B. R. "Magnetotransport in short semiconductor structures." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Moseley, Dominic. "Magnetotransport experiments in the ferropnictides." Thesis, Imperial College London, 2014. http://hdl.handle.net/10044/1/24798.

Full text
Abstract:
This thesis concerns the magnetotransport properties of the iron-based superconductors, and in particular, the ferropnictides. In the low doped ferropnictides, linked structural and magnetic transitions occur which significantly alter the electronic behaviour. Simultaneous to the establishment of the magnetic ordering is the creation of small Fermi surface pockets. It has been shown that some of these Fermi surface pockets have Dirac Cone characteristics. The primary work in this thesis focuses on the existence of non-saturating quasi-linear magnetoresistance in the underdoped ferropnictides. This feature has been seen as the hallmark of Dirac cone physics due to the commonly applied quantum linear magnetoresistance model. We have explored this hypothesis by performing a series of magnetotransport experiments using the van der Pauw method on undoped BaFe$_{2}$As$_{2}$, low cobalt doped BaFe$_{1.985}$Co$_{0.015}$As$_{2}$ and superconducting BaFe$_{1.96}$Co$_{0.04}$As$_{2}$. Scattering centres have been systematically introduced using 3-MeV proton irradiation. The quantum linear magnetoresistance model predicts the quasi-linear magnetoresistance should vary with carrier scattering. We describe these experiments, and draw the conclusion that the quantum linear magnetoresistance model is incorrectly applied. Other models to explain the quasi-linear magnetoresistance are reviewed. Speculation as to the cause of magnetic hysteresis in the magnetoresistance found in some of the parent crystals studied is presented. The Hall resistivity in the parent and underdoped ferropnictides shows a clear non-linear response suggesting that the single carrier model is invalid. We find that the Hall resistivity is insensitive to the introduction of disorder. Various models are reviewed including the anomalous Hall Effect and the antiferromagnetism related anisotropic quasiparticle lifetime model. Furthermore, magnetotransport scaling techniques are considered. Only the modified Kohler's rule is satisfied and this is shown to have an intriguing Co doping dependence.
APA, Harvard, Vancouver, ISO, and other styles
6

Paudel, Bhim L. "Magnetotransport in GaMnAs Based Microstructures." Miami University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=miami1331927548.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hapke-Wurst, Isabella. "Resonanter Magnetotransport durch selbstorganisierte InAs-Quantenpunkte." [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965263339.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Boye, Shawn Alexander. "Magnetotransport Measurements of Ni Thin Films." Doctoral thesis, Uppsala University, Department of Earth Sciences, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4653.

Full text
Abstract:

This thesis presents transverse magnetoresistance (MR) and Hall resistivity measurements of nickel thin films at temperatures between 280 and 455 K and pressures up to 6 GPa. An experimental system was developed for conducting precise magnetotransport measurements using the current reversal and van der Pauw techniques in combination with a 10 T superconducting magnet. Polycrystalline Ni0.985O0.015 thin film samples were manufactured with preexisting point contacts allowing highly reproducible magnetotransport measurements at pressure in the diamond anvil cell (DAC).

The magnetic resistivity above the technical saturation of the magnetization was found to decrease linearly to the highest applied fields, 10 T, while the field derivative, 0.010-0.018 µΩ cm T-1 between 280 and 316 K, increased with temperature and decreased with pressure. The decrease in the magnetoresistance is attributed to spin wave damping of electron-magnon scattering processes at high fields. The magnon mass, 535(14) meV Å2 at 0 K and 0 GPa, determined from longitudinal magnetic resistivity theory is a slightly increasing function of pressure. Correlation between the zero field resistivity and the extraordinary Hall coefficient (EHC) confirmed side jump scattering as the dominant diffusion mechanism at 0 GPa, however, skew scattering was found to become increasingly important with pressure.

The effect of oxygen and pressure on the density of states (DOS) at the Fermi level was investigated through total energy band structure calculations using a periodic supercell of 64 atoms to simulate the sample chemistry. The DOS of Ni0.985O0.015 at the Fermi level was found to increase by 27% at 10 GPa relative to 0 GPa. However, when compared to the results for pure Ni, decreases of 60% and 23% occurred for the corresponding calculations at 0 and 10 GPa. The relative differences in the magnetic resistivity are attributed to competing effects between the DOS, average magnetic moment and magnon mass.

The technique developed for conducting magnetotransport measurements at pressure is applicable to the study of electronic diffusion in ferromagnets as well as geophysical problems such as the geodynamo.

APA, Harvard, Vancouver, ISO, and other styles
9

Walter, Theresia. "Struktur und Magnetotransport laserdeponierter Lanthanmanganat Dünnschichtsysteme." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2004. http://nbn-resolving.de/urn:nbn:de:swb:14-1091095462390-98045.

Full text
Abstract:
Die vorliegende Dissertation "Struktur und Magnetotransport laserdeponierter Lanthanmanganat Dünnschichtsysteme" beschäftigt sich mit der Herstellung, den strukturellen Eigenschaften und dem Magnetotransport von ferromagnetisch-metallischen Lanthanmanganat-Schichten La0.7A0.3MnO3 (A=Sr, Ca) und Schichtsystemen. Die untersuchten Schichten und Schichtsysteme wurden mittels Laserablation in "off-axis" Geometrie auf einkristallinen oxidischen Substraten abgeschieden. An einer Serie von polykristallinen La0.7Sr0.3MnO3/Y:ZrO2(100) Schichten wurde der Korngrenzen-Magnetowiderstandseffekt ferromagnetisch-metallischer Manganate untersucht. Durch Variation der Substrattemperatur während der Abscheidung läßt sich die Textur graduell einstellen. Untersuchungen des quantitativen Verhaltens des Magnetowiderstandes zeigen eine klare Korrelation des Niederfeld-Magnetowiderstandes und des Hochfeld-Magnetowiderstandes. Durch Untersuchungen an einer nichttexturierten Schicht in hohen gepulsten Magnetfeldern konnte auf einen indirekten Tunnelprozeß der Elektronen durch die Korngrenze entsprechend einem Modell von Lee et al. geschlossen werden, wobei die magnetische Ordnung der Korngrenze antiferromagnetisch ist. An den epitaktischen Schichtserien La0.7Ca0.3MnO3/NdGaO3(110) und La0.7Sr0.3MnO3/SrTiO3(100) und an heteroepitaktischen Multilagen (La0.7Sr0.3MnO3/SrTiO3)n/SrTiO3(100) wurden die strukturellen, magnetischen und elektrische Eigenschaften in Abhängigkeit von der Schichtdicke und der Einfluß der Grenzflächeneigenschaften untersucht. Allgemein zeigte sich, daß die mechanische Verspannung und Mikrostruktur der Schichten einen großen Einfluß auf deren physikalischen Eigenschaften haben. Die beobachtete Reduzierung der Curie-Temperatur, der Metall-Isolator-Übergangstemperatur und der spontanen Magnetisierung kann auf den finite-size Effekt und auf die Ausbildung von Perkolationspfaden (metallische Cluster in nichtmetallischer Matrix) in den ultradünnen Schichen zurückgeführt werden.
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Gil-Ho. "Magnetotransport in low dimensional semiconductor structures." Thesis, University of Cambridge, 1998. https://www.repository.cam.ac.uk/handle/1810/244953.

Full text
Abstract:
This dissertation describes low-temperature electronic transport measurements on semiconductor structures of restricted dimensionality. The experiments fall into two sets. The first concerns anisotropic magnetotransport measurements and electron focusing in a varying external magnetic field. These are performed using MBE-grown high mobility two-dimensional electron gases formed on (311)B GaAs substrates. The second is a study of magnetic field induced insulator-quantum Hall liquid transitions performed on GaAs-AIGaAs heterostructures in which a number of InAs monolayers are inserted in the centre of a GaAs quantum well. The sample structures were characterised by STM, TEM, STEM, and AFM. Interest in electron transport on high-index GaAs surfaces is increasing, especially since the advent of patterned substrate regrowth. An anisotropic mobility in orthogonal directions seems to be universal for electron gases grown on (311)B-oriented GaAs substrates. The anisotropy depends on the two-dimensional electron gas carrier density, but mobilities are always higher in the [233] direction. The interface roughness scattering is a possible cause of the mobility anisotropy. The electron focusing results demonstrate that the effective mass and Fermi surface are isotropic even through the mobility is anisotropic. An explanation is proposed based on interface roughness scattering. In the second part, a magnetically induced direct transition from an insulating state at zero magnetic field to quantum Hall effect states with Hall resistance Pxy = h/2e2 and Pxy = h/e2 and back to an insulating state at higher field is observed. The phase boundaries are plotted as a function of disorder and magnetic field using two methods, firstly the temperature independent Pxx points and secondly the maxima in CJxx. This experimental phase diagram is related to the disorder induced collapse of spin splitting in the lowest Landau level obtained from activation energy studies.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetotransport"

1

Morfonios, Christian V., and Peter Schmelcher. Control of Magnetotransport in Quantum Billiards. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39833-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Telford, Evan James. Magnetotransport Studies of Correlated Electronic Phases in Van der Waals Materials. [New York, N.Y.?]: [publisher not identified], 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kozlovsky, Raphael. Magnetotransport in 3d Topological Insulator Nanowires. Universitatsverlag Regensburg, 2020.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Morfonios, Christian V., and Peter Schmelcher. Control of Magnetotransport in Quantum Billiards: Theory, Computation and Applications. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Morfonios, Christian V., and Peter Schmelcher. Control of Magnetotransport in Quantum Billiards: Theory, Computation and Applications. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pietambaram, Srinivas V. Fabrication and characterization of magnetotransport in colossal magnetoresistive manganite thin films and hybrid structures. 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetotransport"

1

Ziese, Michael. "Magnetotransport." In Handbook of Magnetism and Magnetic Materials, 1–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63101-7_9-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ziese, Michael. "Magnetotransport." In Handbook of Magnetism and Magnetic Materials, 435–75. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63210-6_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Hamaguchi, Chihiro. "Magnetotransport Phenomena." In Basic Semiconductor Physics, 287–332. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03303-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bass, Jack. "Magnetotransport (Experimental)." In Magnetic Interactions and Spin Transport, 219–312. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0219-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hamaguchi, Chihiro. "Magnetotransport Phenomena." In Basic Semiconductor Physics, 261–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04656-2_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hamaguchi, Chihiro. "Magnetotransport Phenomena." In Graduate Texts in Physics, 365–413. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66860-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hamaguchi, Chihiro. "Magnetotransport Phenomena." In Graduate Texts in Physics, 375–425. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-25511-3_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Guimarães, Alberto P. "Introduction to Magnetotransport." In Principles of Nanomagnetism, 127–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01482-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Guimarães, Alberto P. "Magnetotransport and Spin Effects." In Principles of Nanomagnetism, 151–99. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59409-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lea, M. J. "Magnetotransport and the Hall Effect." In Physics and Chemistry of Materials with Low-Dimensional Structures, 125–55. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-015-1286-2_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetotransport"

1

Müller, Markus, Lars Fritz, Subir Sachdev, Jörg Schmalian, Vladimir Lebedev, and Mikhail Feigel’man. "Relativistic magnetotransport in graphene." In ADVANCES IN THEORETICAL PHYSICS: Landau Memorial Conference. AIP, 2009. http://dx.doi.org/10.1063/1.3149488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Samatham, S. Shanmukharao, D. Venkateshwarlu, Mohan Gangrade, and V. Ganesan. "Magnetotransport studies on polycrystalline MnSi." In SOLID STATE PHYSICS: Proceedings of the 56th DAE Solid State Physics Symposium 2011. AIP, 2012. http://dx.doi.org/10.1063/1.4710334.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bayir, Mehtap. "Magnetotransport in HgSe:Fe quantum-dots." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994346.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yoo, T., S. Bac, H. Lee, S. Lee, S. Choi, S. Lee, X. Liu, and J. K. Furdyna. "Magnetotransport properties of Ni/Bi2Se3 bilayers." In 2017 IEEE International Magnetics Conference (INTERMAG). IEEE, 2017. http://dx.doi.org/10.1109/intmag.2017.8007577.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Keshvani, M. J., Malay Udeshi, Sadaf Jethva, J. S. Rathod, B. T. Savalia, D. Venkateshwarlu, V. Ganesan, P. S. Solanki, and D. G. Kuberkar. "Magnetotransport studies on GdBa2Cu3OZ superconducting film." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4873022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sung-Min Hong and Christoph Jungemann. "Simulation of magnetotransport in nanoscale devices." In 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (ICSICT). IEEE, 2008. http://dx.doi.org/10.1109/icsict.2008.4734558.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

KSENEVICH, V. K., J. GALIBERT, M. E. KOZLOV, and V. A. SAMUILOV. "MAGNETOTRANSPORT PROPERTIES OF CARBON NANOTUBE FIBERS." In Proceedings of the International Conference on Nanomeeting 2007. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770950_0058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dutta, P., S. Pramanick, D. Das, and S. Chatterjee. "Magnetic and magnetotransport properties of MnCo0.8V0.2Ge alloy." In DAE SOLID STATE PHYSICS SYMPOSIUM 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4980734.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kumar, M. Senthil. "Magnetic and magnetotransport properties of metallic multilayers." In INDIAN VACUUM SOCIETY SYMPOSIUM ON THIN FILMS: SCIENCE AND TECHNOLOGY. AIP, 2012. http://dx.doi.org/10.1063/1.4732365.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boone, T. D., L. Folks, J. Katine, E. Marinero, S. Nicoletti, B. A. Gurney, M. Field, G. J. Sullivan, A. Ikhlassi, and B. Brar. "Temperature Dependence of Magnetotransport in EMR Devices." In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376244.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetotransport"

1

Bandyopadhyay, Supriyo. Hot Electron Effect and Quantum Magnetotransport in Quantum Wires. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada328463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lacerda, A., T. Graf, M. F. Hundley, J. D. Thompson, D. Gajewski, P. C. Canfield, and Z. Fisk. High field magnetotransport and specific heat in YbAgCu{sub 4}. Office of Scientific and Technical Information (OSTI), July 1994. http://dx.doi.org/10.2172/10162949.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Mani, Ramesh G. Final Report: Magnetotransport studies of low dimensional electron systems based on GaAs/AlGaAs heterostructures and graphene. Office of Scientific and Technical Information (OSTI), February 2019. http://dx.doi.org/10.2172/1494586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Helm, T., P. J. W. Moll, Mun Keat Chan, Brad Ramshaw, and Fedor Fedorovich Balakirev. High-field magnetotransport in microstructures of the frustrated antiferromagnet Yb2Pt2Pb. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography