Academic literature on the topic 'Magnetoquasistatic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetoquasistatic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetoquasistatic":

1

Arumugam, Darmindra D. "Through-the-Wall Magnetoquasistatic Ranging." IEEE Antennas and Wireless Propagation Letters 16 (2017): 1439–42. http://dx.doi.org/10.1109/lawp.2016.2641421.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sheiretov, Y., and M. Zahn. "Design and modeling of shaped-field magnetoquasistatic sensors." IEEE Transactions on Magnetics 42, no. 3 (March 2006): 411–21. http://dx.doi.org/10.1109/tmag.2005.860960.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arumugam, Darmindra D., and David S. Ricketts. "Passive Magnetoquasistatic Position Measurement Using Coupled Magnetic Resonances." IEEE Antennas and Wireless Propagation Letters 12 (2013): 539–42. http://dx.doi.org/10.1109/lawp.2013.2257156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bartel, Andreas, Sascha Baumanns, and Sebastian Schöps. "Structural analysis of electrical circuits including magnetoquasistatic devices." Applied Numerical Mathematics 61, no. 12 (December 2011): 1257–70. http://dx.doi.org/10.1016/j.apnum.2011.08.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Clemens, M., M. Wilke, and T. Weiland. "Efficient extrapolation methods for electro- and magnetoquasistatic field simulations." Advances in Radio Science 1 (May 5, 2003): 81–86. http://dx.doi.org/10.5194/ars-1-81-2003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Abstract. In magneto- and electroquasi-static time domain simulations with implicit time stepping schemes the iterative solvers applied to the large sparse (non-)linear systems of equations are observed to converge faster if more accurate start solutions are available. Different extrapolation techniques for such new time step solutions are compared in combination with the preconditioned conjugate gradient algorithm. Simple extrapolation schemes based on Taylor series expansion are used as well as schemes derived especially for multi-stage implicit Runge-Kutta time stepping methods. With several initial guesses available, a new subspace projection extrapolation technique is proven to produce an optimal initial value vector. Numerical tests show the resulting improvements in terms of computational efficiency for several test problems. In quasistatischen elektromagnetischen Zeitbereichsimulationen mit impliziten Zeitschrittverfahren zeigt sich, dass die iterativen Lösungsverfahren für die großen dünnbesetzten (nicht-)linearen Gleichungssysteme schneller konvergieren, wenn genauere Startlösungen vorgegeben werden. Verschiedene Extrapolationstechniken werden für jeweils neue Zeitschrittlösungen in Verbindung mit dem präkonditionierten Konjugierte Gradientenverfahren vorgestellt. Einfache Extrapolationsverfahren basierend auf Taylorreihenentwicklungen werden ebenso benutzt wie speziell für mehrstufige implizite Runge-Kutta-Verfahren entwickelte Verfahren. Sind verschiedene Startlösungen verfügbar, so erlaubt ein neues Unterraum-Projektion- Extrapolationsverfahren die Konstruktion eines optimalen neuen Startvektors. Numerische Tests zeigen die aus diesen Verfahren resultierenden Verbesserungen der numerischen Effizienz.
6

Arumugam, D. D., J. D. Griffin, D. D. Stancil, and D. S. Ricketts. "Error Reduction in Magnetoquasistatic Positioning Using Orthogonal Emitter Measurements." IEEE Antennas and Wireless Propagation Letters 11 (2012): 1462–65. http://dx.doi.org/10.1109/lawp.2012.2229958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Schöps, Sebastian, Herbert De Gersem, and Thomas Weiland. "Winding functions in transient magnetoquasistatic field-circuit coupled simulations." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 32, no. 6 (November 11, 2013): 2063–83. http://dx.doi.org/10.1108/compel-01-2013-0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Arumugam, Darmindra D. "Decoupled Range and Orientation Sensing in Long-Range Magnetoquasistatic Positioning." IEEE Antennas and Wireless Propagation Letters 14 (2015): 654–57. http://dx.doi.org/10.1109/lawp.2014.2375873.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Niyonzima, I., C. Geuzaine, and S. Schöps. "Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems." Journal of Computational Physics 327 (December 2016): 416–33. http://dx.doi.org/10.1016/j.jcp.2016.09.011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arumugam, D. D., and D. S. Ricketts. "Passive orientation measurement using magnetoquasistatic fields and coupled magnetic resonances." Electronics Letters 49, no. 16 (August 2013): 999–1001. http://dx.doi.org/10.1049/el.2013.0766.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetoquasistatic":

1

Sheiretov, Yanko Konstantinov. "Deep penetration magnetoquasistatic sensors." Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/16772.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.
Includes bibliographical references (p. 193-198).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
This research effort extends the capabilities of existing model-based spatially periodic quasistatic-field sensors. The research developed three significant improvements in the field of nondestructive evaluation. The impact of each is detailed below: 1. The design of a distributed current drive magneto resistive magnetometer that matches the model response sufficiently to perform air calibration and absolute property measurement. Replacing the secondary winding with a magnetoresistive sensor allows the magnetometer to be operated at frequencies much lower than ordinarily possible, including static (DC) operation, which enables deep penetration defect imaging. Low frequencies are needed for deep probing of metals, where the depth of penetration is otherwise limited by the skin depth due to the shielding effect of induced eddy currents. The capability to perform such imaging without dependence on calibration standards has both substantial cost, ease of use, and technological benefits. The absolute property measurement capability is important because it provides a robust comparison for manufacturing quality control and monitoring of aging processes. Air calibration also alleviates the dependence on calibration standards that can be difficult to maintain. 2. The development and validation of cylindrical geometry models for inductive and capacitive sensors. The development of cylindrical geometry models enable the design of families of circularly symmetric magnetometers and dielectrometers with the "model-based" methodology, which requires close agreement between actual sensor response and simulated response. These kinds of sensors are needed in applications where the components being tested have circular symmetry, e.g. cracks near fasteners, or if it is important to measure the spatial average of an anisotropic property. 3. The development of accurate and efficient two-dimensional inverse interpolation and grid look-up techniques to determine electromagnetic and geometric properties. The ability to perform accurate and efficient grid interpolation is important for all sensors that follow the model-based principle, but it is particularly important for the complex shaped grids used with the magnetometers and dielectrometers in this thesis. A prototype sensor that incorporates all new features, i.e. a circularly symmetric magnetometer with a distributed current drive that uses a magnetoresistive secondary element, was designed, built, and tested. The primary winding is designed to have no net dipole moment, which improves repeatability by reducing the influence of distant objects. It can also support operation at two distinct effective spatial wavelengths. A circuit is designed that places the magnetoresistive sensor in a feedback configuration with a secondary winding to provide the necessary biasing and to ensure a linear transfer characteristic. Efficient FFT-based methods are developed to model magnetometers with a distributed current drive for both Cartesian and cylindrical geometry sensors. Results from measurements with a prototype circular dielectrometer that agree with the model-based analysis are also presented. In addition to the main contributions described so far, this work also includes other related enhancements to the time and space periodic-field sensor models, such as incorporating motion in the models to account for moving media effects. This development is important in low frequency scanning applications. Some improvements of the existing semi-analytical collocation point models for the standard Cartesian magnetometers and dielectrometers are also presented.
by Yanko Sheiretov.
Ph.D.
2

Schlicker, Darrell Eugene. "Imaging of absolute electrical properties using electroquasistatic and magnetoquasistatic sensor arrays." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/37197.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.
Includes bibliographical references (p. 385-390).
This research focuses on the enhancement of electroquasistatic and magnetoquasistatic nondestructive evaluation techniques. The terminals of the sensors involved are connected to conductors which are traditionally located on a single plane and have a spatially-periodic structure. The sensor operates as a two-port device with one conductor used to excite the sensor and a second conductor used to sense the response to test materials. Existing measurement capabilities are extended: 1. Multiple sensing elements are incorporated into electroquasistatic and magneto-quasistatic sensors such that the response can be accurately modeled. Single sensing element sensors which remain stationary on a test material's surface cannot provide information about variations in material properties along the surface. Scanning of a single element sensor requires many passes in order to provide high resolution property mapping of the surface. By introducing an array of sensing elements it is possible to provide stationary resolution and increase the rate at which a test material's surface can be mapped. Multiple sensing elements can also provide the ability to independently measure material properties that may otherwise be inseparable.
(cont.) The sensors developed allow semi-analytic models to accurately predict their response to layered-media. The sensor is then able to measure absolute material properties using only an air calibration. 2. Existing sensor modeling methods are extended to address new sensor structures. Traditional formulations for models of spatially-periodic sensors were limited to simple conductor patterns on a single plane. These models have been reformulated to address more complex conductor patterns and allow placement on multiple sensor planes. In addition, the models have been used to approximate the sensor response of sensors with aperiodic conductor patterns. 3. Instrumentation for characterizing the terminal response of a many-element sensor is developed. The two-port nature of a single element sensor allows for its characterization by commonly available impedance measurement instruments. The complete realization of the capabilities of a multiple element sensor requires that its terminal response can be rapidly and accurately characterized. An impedance instrument compatible with sensors having up to 39 elements was developed along with methods for accurate calibration.
(cont.) 4. A perturbation method is presented for rapidly predicting the response of a magnetoquasistatic sensor to a notch in a conducting material. Since magnetoquasistatic sensors are often used in the detection of cracks, the ability to model the sensor response to a simplified notch representation is desired. Due to the computational efficiency offered by the spatially-periodic layered-media models, a method of utilizing the computed material current density in the absence of the notch is sought. An approximate response is determined by introducing the notch in a way that perturbs the original current distribution. The extended capabilities are demonstrated through measurements on a variety of material configurations. In some cases the measurements can be represented as images of absolute material properties. In addition to the application of this research to quasistatic measurement methods, other disciplines can benefit from this work. Modeling techniques presented are valuable for microstrip and strip-line transmission lines, microcircuits, and can possibly be applied in fields such as geology and geological exploration. Methodologies applied to these sensor arrays may generically be applied to other array types such as: acoustic, optical, thermal, pressure, antenna, and chemical.
by Darrell Eugene Schlicker.
Ph.D.
3

Petersen, Todd H. "A transient solver for current density in thin conductors for magnetoquasistatic conditions." Diss., Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/1360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Römer, Ulrich [Verfasser], Thomas Akademischer Betreuer] Weiland, Stefan [Akademischer Betreuer] [Ulbrich, and Schöps [Akademischer Betreuer] Sebastian. "Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design / Ulrich Römer. Betreuer: Thomas Weiland ; Stefan Ulbrich ; Schöps Sebastian." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://nbn-resolving.de/urn:nbn:de:tuda-tuprints-49504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Römer, Ulrich Verfasser], Thomas [Akademischer Betreuer] Weiland, Stefan [Akademischer Betreuer] [Ulbrich, and Schöps [Akademischer Betreuer] Sebastian. "Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design / Ulrich Römer. Betreuer: Thomas Weiland ; Stefan Ulbrich ; Schöps Sebastian." Darmstadt : Universitäts- und Landesbibliothek Darmstadt, 2015. http://d-nb.info/1111911053/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Marteau, Antoine. "Modèles multi-échelles pour les problèmes électromagnétiques transitoires non linéaires avec courants induits confinés." Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Les matériaux et structures hétérogènes, tels que les bobines, tôles laminées et composites magnétiques doux (SMC), sont répandus en génie électrique. Ils ont la caractéristique d'être constitués de nombreux éléments plus petits que la taille de l'ensemble, rendant leur simulation numérique difficile.Cette thèse étudie les méthodes multi-échelles de calcul des champs électromagnétiques permettant la résolution numérique de problèmes 3D non-linéaires transitoires avec forts couplages électromagnétiques, sur des structures ou matériaux hétérogènes de géométrie périodiques. La méthode numérique utilisée est la méthode multi-échelle hétérogène (HMM). Elle est basée sur une hypothèse de séparation d'échelle permettant une homogénéisation du matériau. La loi constitutive équivalente est calculée sur de petits volumes représentatifs aux comportements indépendants, résolus en parallèle aux points macroscopiques où cela est nécessaire.L'apport principal de ce travail est d'introduire une nouvelle formule d'homogénéisation du champs H, avec plusieurs implémentations numériques. La méthode est robuste à la présence de fort courants localement confinés. Ces développements sont nécessaires à l'utilisation de la formulation B-conforme à haute fréquence. En effet, ces courants créent une aimantation additionnelle responsable d'hystérésis dynamique dans la loi de comportement magnétique macroscopique. Le modèle est validé sur des problèmes 3D linéaires et non-linéaires
Heterogeneous materials and structures, such as coils, laminations and soft magnetic composites (SMCs), are widespread in electrical engineering. They have the characteristic of being made up of many elements smaller than their own size, making their numerical simulation difficult.This thesis investigates multiscale modeling techniques of electromagnetic field used for the numerical resolution of transient 3D nonlinear problems with strong electromagnetic couplings, on heterogeneous structures or materials with periodic geometries. The numerical method used is the Heterogeneous Multiscale Method (HMM). It is based on a scale separation hypothesis, enabling the homogenization of the material. The equivalent constitutive law is calculated on representative volumes elements with independent behaviors, solved in parallel at the macroscopic points where it is necessary.The main contribution of this work is to introduce a new homogenization formula for the field H, with several numerical implementations. The method is robust to the presence of strong locally confined currents. These developments are necessary for the use of the B-conform formulation at high frequencies. Indeed, these currents create additional magnetization which is responsible for dynamic hysteresis in the macroscopic magnetic constitutive law. The model is validated on linear and non-linear 3D problems
7

Römer, Ulrich. "Numerical Approximation of the Magnetoquasistatic Model with Uncertainties and its Application to Magnet Design." Phd thesis, 2015. https://tuprints.ulb.tu-darmstadt.de/4950/1/diss_main_vf.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work addresses the magnetoquasistatic approximation of Maxwell’s equations with uncertainties in material data, shape and current sources, originating, e.g., from manufacturing imperfections. Well-established numerical schemes for the deterministic model are recalled. A parametric/stochastic model is established on the partial differential equation level and its differentiability is analyzed. Sensitivity analysis techniques are at the core of the uncertainty propagation methods discussed afterwards. Schemes for propagating both probabilistic and nonprobabilistic uncertain inputs as well as techniques for dimension reduction are addressed and compared. The findings are illustrated by simple numerical and real world examples with emphasis on accelerator magnet design using open source, in-house and commercial software.

Books on the topic "Magnetoquasistatic":

1

Römer, Ulrich. Numerical Approximation of the Magnetoquasistatic Model with Uncertainties. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41294-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Römer, Ulrich. Numerical Approximation of the Magnetoquasistatic Model with Uncertainties: Applications in Magnet Design. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Römer, Ulrich. Numerical Approximation of the Magnetoquasistatic Model with Uncertainties: Applications in Magnet Design. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Römer, Ulrich. Numerical Approximation of the Magnetoquasistatic Model with Uncertainties: Applications in Magnet Design. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetoquasistatic":

1

Römer, Ulrich. "Magnetoquasistatic Model and its Numerical Approximation." In Springer Theses, 17–38. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41294-8_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

De Gersem, Herbert, Stephan Koch, and Thomas Weiland. "Hybrid Formulations and Discretisations for Magnetoquasistatic Models." In Mathematics in Industry, 93–105. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-25100-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Römer, Ulrich. "Magnetoquasistatic Approximation of Maxwell’s Equations, Uncertainty Quantification Principles." In Springer Theses, 5–15. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41294-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Schöps, Sebastian, Andreas Bartel, Herbert De Gersem, and Michael Günther. "DAE-Index and Convergence Analysis of Lumped Electric Circuits Refined by 3-D Magnetoquasistatic Conductor Models." In Scientific Computing in Electrical Engineering SCEE 2008, 341–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12294-1_43.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetoquasistatic":

1

Yaghjian, Arthur D. "Electroquasistatic and Magnetoquasistatic Equations and Fields." In 2019 URSI International Symposium on Electromagnetic Theory (EMTS). IEEE, 2019. http://dx.doi.org/10.23919/ursi-emts.2019.8931479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Arumugam, D. D., J. D. Griffin, D. D. Stancil, and D. S. Ricketts. "Two-dimensional position measurement using magnetoquasistatic fields." In 2011 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications. IEEE, 2011. http://dx.doi.org/10.1109/apwc.2011.6046832.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Arumugam, Darmindra D. "Deep-Sub-Wavelength Magnetoquasistatic Indoor Navigation Sensor–2D Measurements." In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8608722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Arumugam, D., J. Griffin, D. Stancil, and D. Ricketts. "Higher order loop corrections for short range magnetoquasistatic position tracking." In 2011 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2011. http://dx.doi.org/10.1109/aps.2011.5996833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arumugam, Darmindra D. "Effect of measurement noise on magnetoquasistatic position and orientation sensing." In 2014 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2014. http://dx.doi.org/10.1109/aps.2014.6904892.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Arumugam, Darmindra D. "Magnetoquasistatic position measurement above earth using the exact integral solutions." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7304663.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Arumugam, Darmindra D., Joshua D. Griffin, Daniel D. Stancil, and David S. Ricketts. "Wireless orientation sensing using magnetoquasistatic fields and complex image theory." In 2012 IEEE Radio and Wireless Symposium (RWS). IEEE, 2012. http://dx.doi.org/10.1109/rws.2012.6175362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manthena, Raiu, and Darmindra Arumugam. "Backscatter model for low-frequency magnetoquasistatic fields in indoor environments." In 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2018. http://dx.doi.org/10.1109/apusncursinrsm.2018.8608935.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Romer, U., S. Schops, and H. De Gersem. "An adjoint approach for uncertainty quantification of magnetoquasistatic field problems." In 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2015. http://dx.doi.org/10.1109/iceaa.2015.7297241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Arumugam, Darmindra D., Daniel D. Stancil, and David S. Ricketts. "Proximity and Orientation Sensing Using Magnetoquasistatic Fields and Complex Image Theory." In 2011 IEEE Vehicular Technology Conference (VTC Fall). IEEE, 2011. http://dx.doi.org/10.1109/vetecf.2011.6093266.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography