Academic literature on the topic 'Magnetoelastic materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetoelastic materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetoelastic materials"

1

NIKITIN, L. V., and A. N. SAMUS. "MAGNETOELASTICS AND THEIR PROPERTIES." International Journal of Modern Physics B 19, no. 07n09 (April 10, 2005): 1360–66. http://dx.doi.org/10.1142/s021797920503030x.

Full text
Abstract:
The effect of a uniform magnetic field on the elastic and viscous properties of new magnetocontrolled materials (magnetoelastics) was studied. It was found that the application of a magnetic field leads to a considerable rise both in Young's modulus and in the viscosity of these materials. We investigated the samples prepared both in the absence of magnetic field and in the magnetic field applied during magnetoelastic curing.
APA, Harvard, Vancouver, ISO, and other styles
2

Sheng, Ping, Yali Xie, Yuhao Bai, Baomin Wang, Lei Zhang, Xingcheng Wen, Huali Yang, Xiaoyuan Chen, Xiaoguang Li, and Run-Wei Li. "Magnetoelastic anisotropy of antiferromagnetic materials." Applied Physics Letters 115, no. 24 (December 9, 2019): 242403. http://dx.doi.org/10.1063/1.5128141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kasinathan, Sakthivel T., and Sivakumar M. Srinivasan. "Magnetoelasticity of gels." Journal of Intelligent Material Systems and Structures 29, no. 9 (February 14, 2018): 1913–27. http://dx.doi.org/10.1177/1045389x18754349.

Full text
Abstract:
Magnetoelastic gel is an active material that is used widely these days. The behavior of these multifunctional gels is derived from a polymer matrix and magnetoresponsive inclusions. The polymer matrix provides structural integrity as well as load bearing capacity to the magnetoelastic gel. The magnetic behavior of the magnetoelastic gel is attributed to a large number of nano-to-micron-sized magnetic particles disbursed in the polymer matrix. The magnetoelastic gel is said to be diluted if the interparticle interactions are negligible/small or concentrated if there are strong interparticle interactions. We consider strong interparticle interactions in the magnetoelastic gel. When the magnetic field is applied to the magnetoelastic gel, the disbursed magnetic particles tend to translate and rotate to a new deformed configuration. Due to these translations and rotations of the many magnetoelastic particles, the polymer matrix around each particle deforms. These micro-deformations then coalesce and lead to the overall macroscopic deformation of the magnetoelastic gel. Both magnetization and mechanical strain characterize the magnetoelastic behavior of the magnetoelastic gel. In this article, an energy minimization approach is followed to find the equilibrium magnetization and strain. We formulate the total energy of the magnetoelastic gel on multiple-length scales and minimize it to obtain these equilibrium magnetization and mechanical strain. We also investigate the effect of particle size and polarization under the framework of energy minimization.
APA, Harvard, Vancouver, ISO, and other styles
4

Liang, Xianfeng, Cunzheng Dong, Huaihao Chen, Jiawei Wang, Yuyi Wei, Mohsen Zaeimbashi, Yifan He, Alexei Matyushov, Changxing Sun, and Nianxiang Sun. "A Review of Thin-Film Magnetoelastic Materials for Magnetoelectric Applications." Sensors 20, no. 5 (March 10, 2020): 1532. http://dx.doi.org/10.3390/s20051532.

Full text
Abstract:
Since the revival of multiferroic laminates with giant magnetoelectric (ME) coefficients, a variety of multifunctional ME devices, such as sensor, inductor, filter, antenna etc. have been developed. Magnetoelastic materials, which couple the magnetization and strain together, have recently attracted ever-increasing attention due to their key roles in ME applications. This review starts with a brief introduction to the early research efforts in the field of multiferroic materials and moves to the recent work on magnetoelectric coupling and their applications based on both bulk and thin-film materials. This is followed by sections summarizing historical works and solving the challenges specific to the fabrication and characterization of magnetoelastic materials with large magnetostriction constants. After presenting the magnetostrictive thin films and their static and dynamic properties, we review micro-electromechanical systems (MEMS) and bulk devices utilizing ME effect. Finally, some open questions and future application directions where the community could head for magnetoelastic materials will be discussed.
APA, Harvard, Vancouver, ISO, and other styles
5

García-Cervera, Carlos, Martin Kružík, Chun Liu, and Anja Schlömerkemper. "Mini-Workshop: Mathematics of Magnetoelastic Materials." Oberwolfach Reports 13, no. 4 (December 20, 2017): 2909–40. http://dx.doi.org/10.4171/owr/2016/51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fang, D. N., Y. P. Wan, and A. K. Soh. "Magnetoelastic fracture of soft ferromagnetic materials." Theoretical and Applied Fracture Mechanics 42, no. 3 (December 2004): 317–34. http://dx.doi.org/10.1016/j.tafmec.2004.09.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kwon, Tae Song, Jong Chul Park, Sang Wook Wu, Chul Koo Kim, and Kyun Nahm. "Magnetoelastic anomaly of cubic antiferromagnetic materials." Physical Review B 49, no. 17 (May 1, 1994): 12270–73. http://dx.doi.org/10.1103/physrevb.49.12270.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Acet, Mehmet. "Magnetoelastic sponges." Nature Materials 8, no. 11 (November 2009): 854–55. http://dx.doi.org/10.1038/nmat2551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Matsumoto, E., and S. Motogi. "Acoustoelasticity of magnetoelastic materials with orthotropic symmetry." NDT & E International 24, no. 1 (February 1991): 40. http://dx.doi.org/10.1016/0963-8695(91)90691-u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ignatchenko, V. A., and L. I. Deich. "Magnetoelastic resonance in disordered zero-magnetostrictive materials." Journal of Magnetism and Magnetic Materials 140-144 (February 1995): 253–54. http://dx.doi.org/10.1016/0304-8853(94)01344-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetoelastic materials"

1

Song, Ohsung. "Magnetoelastic coupling in thin films." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/28083.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hadimani, Ravi L. "Advanced magnetoelastic and magnetocaloric materials for device applications." Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54960/.

Full text
Abstract:
Magnetocaloric and magnetoelastic materials can be utilised in various device applications and have a potential to increase their efficiency by a considerable amount. In this thesis, Gd5(SixGei_x)4 is extensively researched on its magnetic properties such as magnetic phase transition temperature, magnetostriction, magnetoresistance and anisotropy. Field induced phase transition in Gd5(SixGei_x)4 was observed in several compositions and the rate of change of the first order phase transition temperature was determined to be approximately 5 K/Tesla. Various methods of transition temperature measurements were compared and the Arrott plot technique was determined to be accurate method for magnetocaloric materials. An advanced technique based on Arrott plots was developed to estimate the second order phase transition temperature when it is suppressed by the first order phase transition. This technique was also extended to estimate the transition temperature of mixed phase alloys. Field induced phase transition at high temperature using high magnetic field measurements up to 9 Tesla were carried out on two compositions of Gd5(SixGei-x)4 for x=0.5 and x=0.475 to validate the Arrott plot technique. Magnetostriction measurements were carried out on Gd5(SixGei_x)4 for various compositions. Fine structure was observed in the magnetostriction measurement in single crystal and polycrystalline Gd5Si1.95Ge2.05 samples but not on other compositions, which might be due to the presence of a secondary phase. It was demonstrated that a giant magnetostriction of the order of 1813 ppm could be obtained by varying the temperature using a Peltier cell and removing the requirement of bulky equipment such as Physical Properties Measurement System (PPMS). Magnetoresistance was measured for various compositions and an irreversible increase in resistivity was observed which depended linearly on the number of thermal cycles passing through the first order phase transition temperature. The irreversibly increased resistivity was recovered by holding the samples at high temperature for a long period of time of up to 3 days. A theoretical model was developed to explain the recovery in the resistance and was experimentally verified. First order magnetocrystalline anisotropy constant Kj, easy and hard axes of the single crystal Gd5Si2.7Gei j sample were determined using magnetic moment as a function of angle of rotation of the sample at room temperature. Dependence of the first order phase transition temperature on the angle of rotation of the single crystal Gd5Si2Ge2 sample was determined to be negligible. Additionally polycrystalline samples of Gd5Sii.8Ge2.2 and Gd5Sii.9Ge2.i were prepared by arc- melting and heat treatment was carried out on these samples in accordance with the literature to remove residual secondary phases in the sample at the Materials and Metallurgy Department of the Birmingham University. XRD measurements were carried out on these samples to confirm the crystal structure.
APA, Harvard, Vancouver, ISO, and other styles
3

Parsa, Nitin. "MILLIMETER-WAVE FARADAY ROTATION FROM FERROMAGNETIC NANOWIRES AND MAGNETOELASTIC MATERIALS." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1561468969375731.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ha, Kin 1966. "Magnetoelastic couplings in epitaxial Cu/Ni/Cu/Si(001)." Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/85312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Thomson, Richard Ian. "Magnetoelastic coupling and relaxation processes in magnetic materials monitored by resonant ultrasound spectroscopy." Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607833.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Nick, Zachary H. "Foundations for Smart Metamaterials by Liquid Metal Digital Logic and Magnetoelastic Properties Control." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1587669303938667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Ring, Andrew Phillip. "Investigation of magnetic and magnetoelastic properties of novel materials involving cobalt ferrite and terbium silicon germanium systems." [Ames, Iowa : Iowa State University], 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Forster, Johannes [Verfasser], Anja [Gutachter] Schlömerkemper, and Chun [Gutachter] Liu. "Variational Approach to the Modeling and Analysis of Magnetoelastic Materials / Johannes Forster ; Gutachter: Anja Schlömerkemper, Chun Liu." Würzburg : Universität Würzburg, 2017. http://d-nb.info/1131041267/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Betz, Jochen Nicolay. "Magnétostriction géante de couches minces et microactionneurs magnétoréstrictifs pour des technologies intégrées." Université Joseph Fourier (Grenoble), 1997. http://www.theses.fr/1997GRE10063.

Full text
Abstract:
Le but de ce travail etait d'obtenir des couches minces presentant une grande magnetostriction en champ faible et une temperature d'ordre elevee pour la realisation de microactionneurs en vue d'applications a l'automobile et en medecine. Les etudes anterieures sur couches minces ont porte essentiellement sur des alliages amorphes de type terfenol et terfenol-d (tbdyfe#2). Nous avons montre qu'a l'etat amorphe, il etait bien preferable de remplacer le fer par du cobalt, les alliages proches de la composition a-r#0#. #3#3co#0#. #6#6 (r = terre rare) presentant une temperature d'ordre et une magnetostriction plus elevee. De fait, nous avons pu preparer, caracteriser puis optimiser toute une serie d'echantillons a-(tb,dy)#1#-#x(fe,co)#x : le materiau tb#0#. #3#2(fe#0#. #4#5co#0#. #5#5)#0#. #6#8 presente une forte magnetoelasticite (b##,#2 = - 63. 5 mpa, ##,#2 = 10#-#3), et une forte magnetostrictivite a champ faible. Nous avons obtenu des performances encore superieures en deposant des multicouches de type spring magnet, ou le champ de saturation de la couche amorphe tb-co est reduit en augmentant l'aimantation moyenne. Ceci est accompli par le couplage magnetique avec des couches de fe-co. De plus, le magnetisme des couches amorphes magnetostrictives (tb-co) est renforce par le champ d'echange de leurs couches voisines (fe-co) cristallisees. Nous avons, a l'aide de ces nouveaux materiaux, realise des microactionneurs magnetostrictifs compenses vis a vis des derives thermiques. Ces actionneurs sont usines dans le silicium par des techniques utilisees en micromecanique avant depot des couches actives, puis caracterises par interferometrie et deflectometrie. Ces dispositifs ne sont pas encore optimises, mais ont neanmoins prouve la faisabilite de tels microactionneurs.
APA, Harvard, Vancouver, ISO, and other styles
10

Houng, Shing-Ann, and 洪信安. "Dynamic fundamental solutions of pre-stressed magnetoelastic materials." Thesis, 1994. http://ndltd.ncl.edu.tw/handle/23299992709349465326.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetoelastic materials"

1

Dorfmann, Luis, and Ray W. Ogden. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dorfmann, Luis, and Ray W. Ogden. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer London, Limited, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dorfmann, Luis, and Ray W. Ogden. Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lanotte, L. Magnetoelastic Effects and Applications: Proceedings of the First International Meeting on Magnetoelastic Effects and Applications Naples, Italy, 24 (Elsevier ... in Applied Electromagnetics in Material). Elsevier Publishing Company, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetoelastic materials"

1

Bagdoev, Alexander G., Vladimir I. Erofeyev, and Ashot V. Shekoyan. "Magnetoelastic Waves." In Advanced Structured Materials, 113–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-37267-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Venkateswaran, S. P., and M. De Graef. "Imaging Techniques in Magnetoelastic Materials." In Magnetism and Structure in Functional Materials, 141–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kachniarz, Maciej, Dorota Jackiewicz, Michał Nowicki, Adam Bieńkowski, Roman Szewczyk, and Wojciech Winiarski. "Magnetoelastic Characteristics of Constructional Steel Materials." In Advances in Intelligent Systems and Computing, 307–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-10990-9_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Santapuri, Sushma, and David J. Steigmann. "Toward a Nonlinear Asymptotic Model for Thin Magnetoelastic Plates." In Advanced Structured Materials, 705–16. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72440-9_38.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gorkunov, E. S. "Magnetoelastic Phenomena and Their Applications in Diagnostics and Technology." In Advanced Structured Materials, 35–46. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79325-8_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Langlois, Pierre, and Jean F. Bussière. "Magnetoelastic Contribution to Ultrasonic Attenuation in Structural Steels." In Nondestructive Characterization of Materials II, 291–98. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5338-6_28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Erofeev, Vladimir I., and Alexey O. Malkhanov. "Localized Magnetoelastic Waves in a One and Two Dimensional Medium." In Advanced Structured Materials, 125–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-73694-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Morellon, L., and M. R. Ibarra. "Huge Magnetoresistance in Association with Strong Magnetoelastic Effects." In Magnetism and Structure in Functional Materials, 49–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-31631-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bartolome, J. "Thermal, Magnetic, Magnetoelastic and Transport Characterization of Hard Magnetic Alloys." In Supermagnets, Hard Magnetic Materials, 391–413. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3324-1_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Szewczyk, Roman, Jacek Salach, and Adam Bieńkowski. "Modeling of Magnetoelastic Materials for Force and Torque Sensors." In Solid State Phenomena, 124–29. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908451-60-4.124.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetoelastic materials"

1

Kinderlehrer, David S., and Ling Ma. "Simulation of magnetoelastic systems." In 1996 Symposium on Smart Structures and Materials, edited by Vasundara V. Varadan and Jagdish Chandra. SPIE, 1996. http://dx.doi.org/10.1117/12.240792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Zakrzewski, J., J. Kwiczala, and H. Urzedniczok. "New magnetoelastic materials for force-measuring transducers." In Optoelectronic and Electronic Sensors II, edited by Zdzislaw Jankiewicz and Henryk Madura. SPIE, 1997. http://dx.doi.org/10.1117/12.266694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Domann, John P., Ryan Crum, Vijay Gupta, and Greg P. Carman. "Magnetoelastic shockwave response (Conference Presentation)." In Behavior and Mechanics of Multifunctional Materials and Composites XI, edited by Nakhiah C. Goulbourne. SPIE, 2017. http://dx.doi.org/10.1117/12.2263254.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Khodasevych, I. E., G. Kostovski, W. S. T. Rowe, and A. Mitchell. "Mesh substrate for gravitational magnetoelastic metamaterial." In 2012 Conference on Optoelectronic and Microelectronic Materials & Devices (COMMAD). IEEE, 2012. http://dx.doi.org/10.1109/commad.2012.6472384.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Arms, Steven W., and Christopher P. Townsend. "Microminiature temperature-compensated magnetoelastic strain gauge." In SPIE's 9th Annual International Symposium on Smart Structures and Materials, edited by Vijay K. Varadan. SPIE, 2002. http://dx.doi.org/10.1117/12.475044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sorrentino, Romualdo, Michele Inverno, Cesare Constantin, and Francesco Fusco. "Signal conditioning technique for magnetoelastic sensors." In SPIE's 7th Annual International Symposium on Smart Structures and Materials, edited by Richard O. Claus and William B. Spillman, Jr. SPIE, 2000. http://dx.doi.org/10.1117/12.388131.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fenn, Ralph C., Michael J. Gerver, Richard L. Hockney, Bruce G. Johnson, and John L. Wallace. "Microfabricated magnetometer using Young's modulus changes in magnetoelastic materials." In Aerospace Sensing, edited by Sharon S. Welch. SPIE, 1992. http://dx.doi.org/10.1117/12.138115.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

PISTELLA, F., and V. VALENTE. "A NUMERICAL APPROACH TO THE DYNAMICS OF MAGNETOELASTIC MATERIALS." In Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0044.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hobeck, Jared D., and Daniel J. Inman. "Magnetoelastic metastructures for passive broadband vibration suppression." In SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, edited by Wei-Hsin Liao. SPIE, 2015. http://dx.doi.org/10.1117/12.2083887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sorrentino, Romualdo. "OLC: a signal conditioning and calibration technique for magnetoelastic sensors." In Smart Structures and Materials, edited by Eric Udd and Daniele Inaudi. SPIE, 2004. http://dx.doi.org/10.1117/12.539547.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography