Books on the topic 'Magneto plasmonic'

To see the other types of publications on this topic, follow the link: Magneto plasmonic.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 books for your research on the topic 'Magneto plasmonic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse books on a wide variety of disciplines and organise your bibliography correctly.

1

Denkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28793-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 (M-Fe/Co/Mn) Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67609-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

service), SpringerLink (Online, ed. Electromagnetic Radiation of Electrons in Periodic Structures. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Magnetism and synchrotron radiation: New trends. Heidelberg: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wohlbier, Thomas. Nanohybrids. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901076.

Full text
Abstract:
The book covers preparation, designing and utilization of nanohybrid materials for biomedical applications. These materials can improve the effectiveness of drugs, promote high cell growth in new scaffolds, and lead to biodegradable surgical sutures. The use of hybrid magneto-plasmonic nanoparticles may lead to non-invasive therapies. The most promising materials are based on silica nanostructures, polymers, bioresorbable metals, liposomes, biopolymeric electrospun nanofibers, graphene, and gelatin. Much research focuses on the development of biomaterials for cell regeneration and wound healing applications.
APA, Harvard, Vancouver, ISO, and other styles
6

Horing, Norman J. Morgenstern. Random Phase Approximation Plasma Phenomenology, Semiclassical and Hydrodynamic Models; Electrodynamics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0010.

Full text
Abstract:
Chapter 10 reviews both homogeneous and inhomogeneous quantum plasma dielectric response phenomenology starting with the RPA polarizability ring diagram in terms of thermal Green’s functions, also energy eigenfunctions. The homogeneous dynamic, non-local inverse dielectric screening functions (K) are exhibited for 3D, 2D, and 1D, encompassing the non-local plasmon spectra and static shielding (e.g. Friedel oscillations and Debye-Thomas-Fermi shielding). The role of a quantizing magnetic field in K is reviewed. Analytically simpler models are described: the semiclassical and classical limits and the hydrodynamic model, including surface plasmons. Exchange and correlation energies are discussed. The van der Waals interaction of two neutral polarizable systems (e.g. physisorption) is described by their individual two-particle Green’s functions: It devolves upon the role of the dynamic, non-local plasma image potential due to screening. The inverse dielectric screening function K also plays a central role in energy loss spectroscopy. Chapter 10 introduces electromagnetic dyadic Green’s functions and the inverse dielectric tensor; also the RPA dynamic, non-local conductivity tensor with application to a planar quantum well. Kramers–Krönig relations are discussed. Determination of electromagnetic response of a compound nanostructure system having several nanostructured parts is discussed, with applications to a quantum well in bulk plasma and also to a superlattice, resulting in coupled plasmon spectra and polaritons.
APA, Harvard, Vancouver, ISO, and other styles
7

Denkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Denkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Denkova, Denitza. Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light. Springer London, Limited, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Singh, M. R. Electronic, Photonic, Plasmonic, Phononic and Magnetic Properties of Nanomaterials: London, Canada, 12-16 August 2013. Unknown Publisher, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
11

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
12

Manisekaran, Ravichandran. Design and Evaluation of Plasmonic/Magnetic Au-MFe2O4 Core-Shell Nanoparticles Functionalized with Doxorubicin for Cancer Therapeutics. Springer, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
13

Horing, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.

Full text
Abstract:
Chapter 5 introduces single-particle retarded Green’s functions, which provide the probability amplitude that a particle created at (x, t) is later annihilated at (x′,t′). Partial Green’s functions, which represent the time development of one (or a few) state(s) that may be understood as localized but are in interaction with a continuum of states, are discussed and applied to chemisorption. Introductions are also made to the Dyson integral equation, T-matrix and the Dirac delta-function potential, with the latter applied to random impurity scattering. The retarded Green’s function in the presence of random impurity scattering is exhibited in the Born and self-consistent Born approximations, with application to Ando’s semi-elliptic density of states for the 2D Landau-quantized electron-impurity system. Important retarded Green’s functions and their methods of derivation are discussed. These include Green’s functions for electrons in magnetic fields in both three dimensions and two dimensions, also a Hamilton equation-of-motion method for the determination of Green’s functions with application to a 2D saddle potential in a time-dependent electric field. Moreover, separable Hamiltonians and their product Green’s functions are discussed with application to a one-dimensional superlattice in axial electric and magnetic fields. Green’s function matching/joining techniques are introduced and applied to spatially varying mass (heterostructures) and non-local electrostatics (surface plasmons).
APA, Harvard, Vancouver, ISO, and other styles
14

Horing, Norman J. Morgenstern. Quantum Statistical Field Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.001.0001.

Full text
Abstract:
The methods of coupled quantum field theory, which had great initial success in relativistic elementary particle physics and have subsequently played a major role in the extensive development of non-relativistic quantum many-particle theory and condensed matter physics, are at the core of this book. As an introduction to the subject, this presentation is intended to facilitate delivery of the material in an easily digestible form to students at a relatively early stage of their scientific development, specifically advanced undergraduates (rather than second or third year graduate students), who are mathematically strong physics majors. The mechanism to accomplish this is the early introduction of variational calculus with particle sources and the Schwinger Action Principle, accompanied by Green’s functions, and, in addition, a brief derivation of quantum mechanical ensemble theory introducing statistical thermodynamics. Important achievements of the theory in condensed matter and quantum statistical physics are reviewed in detail to help develop research capability. These include the derivation of coupled field Green’s function equations of motion for a model electron-hole-phonon system, extensive discussions of retarded, thermodynamic and non-equilibrium Green’s functions, and their associated spectral representations and approximation procedures. Phenomenology emerging in these discussions includes quantum plasma dynamic, nonlocal screening, plasmons, polaritons, linear electromagnetic response, excitons, polarons, phonons, magnetic Landau quantization, van der Waals interactions, chemisorption, etc. Considerable attention is also given to low-dimensional and nanostructured systems, including quantum wells, wires, dots and superlattices, as well as materials having exceptional conduction properties such as superconductors, superfluids and graphene.
APA, Harvard, Vancouver, ISO, and other styles
15

Horing, Norman J. Morgenstern. Superfluidity and Superconductivity. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0013.

Full text
Abstract:
Chapter 13 addresses Bose condensation in superfluids (and superconductors), which involves the field operator ψ‎ having a c-number component (<ψ(x,t)>≠0), challenging number conservation. The nonlinear Gross-Pitaevskii equation is derived for this condensate wave function<ψ>=ψ−ψ˜, facilitating identification of the coherence length and the core region of vortex motion. The noncondensate Green’s function G˜1(1,1′)=−i<(ψ˜(1)ψ˜+(1′))+> and the nonvanishing anomalous correlation function F˜∗(2,1′)=−i<(ψ˜+(2)ψ˜+(1′))+> describe the dynamics and elementary excitations of the non-condensate states and are discussed in conjunction with Landau’s criterion for viscosity. Associated concepts of off-diagonal long-range order and the interpretation of <ψ> as a superfluid order parameter are also introduced. Anderson’s Bose-condensed state, as a phase-coherent wave packet superposition of number states, resolves issues of number conservation. Superconductivity involves bound Cooper pairs of electrons capable of Bose condensation and superfluid behavior. Correspondingly, the two-particle Green’s function has a term involving a product of anomalous bound-Cooper-pair condensate wave functions of the type F(1,2)=−i<(ψ(1)ψ(2))+>≠0, such that G2(1,2;1′,2′)=F(1,2)F+(1′,2′)+G˜2(1,2;1′,2′). Here, G˜2 describes the dynamics/excitations of the non-superfluid-condensate states, while nonvanishing F,F+ represent a phase-coherent wave packet superposition of Cooper-pair number states and off-diagonal long range order. Employing this form of G2 in the G1-equation couples the condensed state with the non-condensate excitations. Taken jointly with the dynamical equation for F(1,2), this leads to the Gorkov equations, encompassing the Bardeen–Cooper–Schrieffer (BCS) energy gap, critical temperature, and Bogoliubov-de Gennes eigenfunction Bogoliubons. Superconductor thermodynamics and critical magnetic field are discussed. For a weak magnetic field, the Gorkov-equations lead to Ginzburg–Landau theory and a nonlinear Schrödinger-like equation for the pair wave function and the associated supercurrent, along with identification of the Cooper pair density. Furthermore, Chapter 13 addresses the apparent lack of gauge invariance of London theory with an elegant variational analysis involving re-gauging the potentials, yielding a manifestly gauge invariant generalization of the London equation. Consistency with the equation of continuity implies the existence of Anderson’s acoustic normal mode, which is supplanted by the plasmon for Coulomb interaction. Type II superconductors and the penetration (and interaction) of quantized magnetic flux lines are also discussed. Finally, Chapter 13 addresses Josephson tunneling between superconductors.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography