Academic literature on the topic 'Magneto-optical traps'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magneto-optical traps.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magneto-optical traps"
Mariotti, E., L. Moi, G. Batignani, A. Khanbekyan, C. Marinelli, L. Marmugi, L. Corradi, et al. "MAGNETO-OPTICAL TRAPS FOR FUNDAMENTAL MEASUREMENTS." Journal of the Siena Academy of Sciences 3, no. 1 (August 20, 2012): 51. http://dx.doi.org/10.4081/jsas.2011.51.
Full textGabbanini, C., A. Evangelista, S. Gozzini, A. Lucchesini, A. Fioretti, J. H. Müller, M. Colla, and E. Arimondo. "Scaling laws in magneto-optical traps." Europhysics Letters (EPL) 37, no. 4 (February 1, 1997): 251–56. http://dx.doi.org/10.1209/epl/i1997-00139-0.
Full textGattobigio, G. L., T. Pohl, G. Labeyrie, and R. Kaiser. "Scaling laws for large magneto-optical traps." Physica Scripta 81, no. 2 (February 2010): 025301. http://dx.doi.org/10.1088/0031-8949/81/02/025301.
Full textFort, C., A. Bambini, L. Cacciapuoti, F. S. Cataliotti, M. Prevedelli, G. M. Tino, and M. Inguscio. "Cooling mechanisms in potassium magneto-optical traps." European Physical Journal D - Atomic, Molecular and Optical Physics 3, no. 2 (August 1, 1998): 113–18. http://dx.doi.org/10.1007/s100530050154.
Full textFelinto, D., and S. S. Vianna. "Orbital modes in low-density magneto-optical traps." Journal of the Optical Society of America B 17, no. 5 (May 1, 2000): 681. http://dx.doi.org/10.1364/josab.17.000681.
Full textBand, Y. B., I. Tuvi, K. A. Suominen, K. Burnett, and P. S. Julienne. "Loss from magneto-optical traps in strong laser fields." Physical Review A 50, no. 4 (October 1, 1994): R2826—R2829. http://dx.doi.org/10.1103/physreva.50.r2826.
Full textPollock, S., J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds. "Characteristics of integrated magneto-optical traps for atom chips." New Journal of Physics 13, no. 4 (April 19, 2011): 043029. http://dx.doi.org/10.1088/1367-2630/13/4/043029.
Full textArnold, A. S., and P. J. Manson. "Atomic density and temperature distributions in magneto-optical traps." Journal of the Optical Society of America B 17, no. 4 (April 1, 2000): 497. http://dx.doi.org/10.1364/josab.17.000497.
Full textEriksson, S., F. Ramirez-Martinez, E. A. Curtis, B. E. Sauer, P. W. Nutter, E. W. Hill, and E. A. Hinds. "Micron-sized atom traps made from magneto-optical thin films." Applied Physics B 79, no. 7 (September 29, 2004): 811–16. http://dx.doi.org/10.1007/s00340-004-1655-7.
Full textShu-Yu, Zhou, Xu Zhen, Zhou Shan-Yu, and Wang Yu-Zhu. "Abnormal Phenomenon of ac Stark splitting in Magneto-Optical Traps." Chinese Physics Letters 22, no. 7 (June 16, 2005): 1672–75. http://dx.doi.org/10.1088/0256-307x/22/7/031.
Full textDissertations / Theses on the topic "Magneto-optical traps"
Pollock, Samuel. "Integrated magneto-optical traps for atom chips." Thesis, Imperial College London, 2010. http://hdl.handle.net/10044/1/11271.
Full textCooper, Catherine J. "Laser cooling and trapping of atoms." Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.308685.
Full textTelles, Gustavo Deczka. "Colisões Inelásticas Frias em Amostras Heteronucleares obtidas em Armadilhas Magneto-Ópticas." Universidade de São Paulo, 1998. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-17042009-114759/.
Full textWe report the results of the trap-Ioss collisional rates observed in a mixed species magneto-optical trapo These are the first systematic studies about the collisionalloss channels due to heteronuclear interactions between two cold atomic sampIes in aMOr. We have used two different combinations: Na-Rb and K -Rb. lt was observed that the rates are strongly affected by the radiative escape Ioss channel, especially in the Na-Rb system. We also observed that some other Ioss channels may ruIe the rates behavior depending on the combination or the experimento To understand the results a semiclassical approach was used: the Gallagher-Prichard theory. We beIieve that these studies will soon be helpful to control the interatomic collisional rates for the achievement of heteronuclear sampIes of Bose-Einstein condensates.
Telles, Gustavo Deczka. "Estudo de colisões atômicas ultrafrias: mecanismos de perda e espectroscopia de fotoassociação." Universidade de São Paulo, 2002. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-06042009-114241/.
Full textWe report the results concerning to two main subjects of laser cooling and trapping community. We begin by presenting the results of modeling two-body trap loss rates as a function of the trap laser intensity. We show that one can merge two simple theories to obtain a semiclassical and semi-analytical model which is able to provide the fundamental properties observed in the experimental results found in the literature. Hence, we concluded that the essential features of the two-body trap loss rates taking place in MOTs are now well understood. On the other hand, we run a set of experiments trying to produce and detect heteronuclear diatomic ultracold molecules. Although this has not been accomplished yet, we have acquired a wide and rich amount of data that will certainly be very helpful for continuing and concluding the work here started. In the near future the photoassociation spectroscopy of ultracold heteronuclear diatomic molecules will provide valuable information to help in its manipulation.
Clements, Ethan Robert. "CHARACTERIZATION OF OPTICAL LATTICES USING PUMP-PROBESPECTROSCOPY AND FLUORESCENCE IMAGING." Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1470323164.
Full textKrüger, Anne Luise. "Efeitos de um feixe não Gaussiano em uma armadilha magneto-óptica." Universidade do Estado de Santa Catarina, 2013. http://tede.udesc.br/handle/handle/1973.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
The magneto-optical traps cool and trap atoms in a given region, forming clouds of cold atoms. As the setting of the trap, clouds can be obtained in different geometries such as spherical or ring-shaped. Traps have a wide range of applications, such as building atomic clocks, to obtain the Bose-Einstein condensate and the study of collisions, wherein the ring geometry is interesting to study in low dimensions. The learning of the trap parameters implies in its characterization and thus the appropriate parameters allow to optimize the trap and improve the performance of it s. The objective of our work is to study the behavior of the motion of atoms and the forces that act upon them by varying some parameters of the trap, such as the magnetic field gradient, the detuning between the laser frequency and the atomic transition, the intensity of the laser beams and also the intensity beams profile of the beams. By using the integration method of Runge-Kutta, we present simulations of the trajectory of a trapped atom and the radius of the orbit varying the same parameters of the trap mentioned above. One can find in literature a description of the force exertd on the trapped atoms with Gaussian profile laser beams in the traditional configuration and also with a small misalignment. From the deduction of the force on the trapped atoms with laser beams of Gaussian profile, we present some considerations to find the force acting on the atoms with Gaussian beam profile and simulations in this new configuration. Thus, the possibility of trapping atoms with other intensity beam profiles can be tested.
As armadilhas magneto-ópticas resfriam e aprisionam átomos em uma determinada região, formando nuvens de átomos frios. Conforme a configuração da armadilha, pode-se obter nuvens em diferentes geometrias, como esféricas ou em forma de anel. As armadilhas tem uma grande gama de aplicações, como a construção de relógios atômicos, a obtenção do condensado de Bose-Einstein e o estudo de colisões, no qual a geometria em anel se torna interessante para o estudo em baixas dimensões. Para conhecer os parâmetros da armadilha é necessário fazer sua caracterização. Parâmetros adequados permitem otimizar a armadilha e melhorar a performance da mesma. O objetivo de nosso trabalho é estudar o comportamento do movimento dos átomos e das forças que atuam sobre eles ao variar alguns parâmetros da armadilha, como por exemplo o gradiente de campo magnético, a dessintonia entre a frequência do laser e da transição atômica, a intensidade dos feixes laser e o perfil de intensidade dos feixes. Utilizando o método de integração de Runge- Kutta, apresentaremos simulações da trajetória de um átomo aprisionado e o raio da órbita variando os mesmos parâmetros da armadilha anteriormente citados. Na literatura encontra-se a descrição da força exercida sobre os átomos aprisionados com feixes laser de perfil gaussiano na configuração tradicional e também com um pequeno desalinhamento. A partir da dedução da força sobre os átomos aprisionados com feixes laser de perfil gaussiano, apresentaremos algumas considerações feitas para encontrar a força que atua sobre os átomos com feixes de perfil não gaussiano e simulações realizadas nesta nova consideração. Desta forma, poderá se verificar se existe a possibilidade de aprisionar átomos com feixes de outros perfis de intensidade.
Jarvis, Kyle. "The blue-detuned magneto-optical trap." Thesis, Imperial College London, 2018. http://hdl.handle.net/10044/1/63833.
Full textBounds, Alistair David. "A Rydberg-dressed magneto optical trap." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12541/.
Full textNguyen, Hai Truong. "Magneto optical trap recoil ion momentum spectroscopy /." Search for this dissertation online, 2003. http://wwwlib.umi.com/cr/ksu/main.
Full textIvanov, Vladyslav Victorovych. "Cold atoms modified radiative properties and evaporative cooling from optical traps /." [S.l. : Amsterdam : s.n.] ; Universiteit van Amsterdam [Host], 2007. http://dare.uva.nl/document/47332.
Full textBook chapters on the topic "Magneto-optical traps"
Atutov, S. N., V. Biancalana, A. Burchianti, R. Calabrese, L. Corradi, A. Dainelli, V. Guidi, et al. "The Legnaro Francium Magneto-Optical Trap." In Atomic Physics at Accelerators: Stored Particles and Fundamental Physics, 83–89. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-007-0946-1_14.
Full textSimsarian, J. E., A. Ghosh, G. Gwinner, L. A. Orozco, G. D. Sprouse, P. A. Voytas, and F. Xu. "Advances on Capturing Francium in a Magneto-Optical Trap." In Coherence and Quantum Optics VII, 391–92. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_69.
Full textNemova, Galina. "Magneto-optical Trap (MOT)." In Field Guide to Laser Cooling Methods. SPIE, 2019. http://dx.doi.org/10.1117/3.2538938.ch45.
Full textMyatt, C. J., N. R. Newbury, R. W. Ghrist, S. Loutzenhiser, and C. E. Wieman. "Multiply loaded magneto-optical trap." In Collected Papers of Carl Wieman, 410–12. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812813787_0054.
Full textNoh, Heung-Ryoul, and Wonho Jhe. "An Asymmetric Magneto-Optical Trap." In Recent Optical and Photonic Technologies. InTech, 2010. http://dx.doi.org/10.5772/6922.
Full textDePaola, B. D., R. Morgenstern, and N. Andersen. "MOTRIMS: Magneto–Optical Trap Recoil Ion Momentum Spectroscopy." In Advances In Atomic, Molecular, and Optical Physics, 139–89. Elsevier, 2008. http://dx.doi.org/10.1016/s1049-250x(07)55003-2.
Full textLu, Z. T., K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman. "Low-Velocity Intense Source of Atoms from a Magneto-optical Trap." In Collected Papers of Carl Wieman, 420–23. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812813787_0057.
Full textLu, Z. T., K. L. Corwin, K. R. Vogel, C. E. Wieman, T. P. Dinneen, J. Maddi, and Harvey Could. "Efficient Collection of 221Fr into a Vapor Cell Magneto-optical Trap." In Collected Papers of Carl Wieman, 424–27. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812813787_0058.
Full textConference papers on the topic "Magneto-optical traps"
Labeyrie, G., G. L. Gattobigio, T. Pohl, R. Kaiser, Alessandro Campa, Andrea Giansanti, Giovanna Morigi, and Francesco Sylos Labini. "Long Range Interactions in Magneto-Optical Traps." In DYNAMICS AND THERMODYNAMICS OF SYSTEMS WITH LONG RANGE INTERACTIONS: Theory and Experiments. AIP, 2008. http://dx.doi.org/10.1063/1.2839128.
Full textMartínez Valado, María, Alicia V. Carpentier, Humberto Michinel, José Antonio Nóvoa López, David Nóvoa Fernández, and José Ramón Salgueiro. "Atomic transfer between two magneto-optical traps." In International Conference on Applications of Optics and Photonics, edited by Manuel F. Costa. SPIE, 2011. http://dx.doi.org/10.1117/12.892169.
Full textNoh, Heung-Ryoul, Myung-Sun Heo, and Wonho Jhe. "Sub-Doppler Traps in an Asymmetric Magneto-Optical Trap with Unequal Laser Detunings." In 2007 Conference on Lasers and Electro-Optics - Pacific Rim. IEEE, 2007. http://dx.doi.org/10.1109/cleopr.2007.4391775.
Full textaus-der-Wiesche, S., B. Ueberholz, F. Strauch, D. Haubrich, and D. Meschede. "Investigations on Individual Atoms in Magneto-Optical and Magnetic Traps." In EQEC'96. 1996 European Quantum Electronic Conference. IEEE, 1996. http://dx.doi.org/10.1109/eqec.1996.561816.
Full textNshii, C. C., M. Vangeleyn, J. P. Cotter, P. F. Griffin, C. N. Ironside, P. See, A. G. Sinclair, E. A. Hinds, E. Riis, and A. S. Arnold. "Magneto-optical traps on a chip using micro-fabricated gratings." In 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801627.
Full textGrabowski, A., and T. Pfau. "A lattice of magneto-optical and magnetic traps for cold atoms." In 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1314131.
Full textCochrane, Jared, Mary Lanzerotti, Corey Gerving, Seth Barbrow, and Anthony Dinallo. "Experiment design with Galilean beam expanders for magneto-optical traps and the advanced undergraduate laboratory." In 2020 IEEE Integrated STEM Education Conference (ISEC). IEEE, 2020. http://dx.doi.org/10.1109/isec49744.2020.9280634.
Full textChang, M. S., K. A. Brickman, M. Acton, A. Chew, D. Matsukevich, P. C. Haljan, V. S. Bagnato, and C. Monroe. "Magneto-Optical Trap of Cadmium." In International Conference on Quantum Information. Washington, D.C.: OSA, 2007. http://dx.doi.org/10.1364/icqi.2007.jwc28.
Full textMorinaga, M. "A ring magneto-optical trap." In International Quantum Electronics Conference, 2005. IEEE, 2005. http://dx.doi.org/10.1109/iqec.2005.1560955.
Full textMariotti, E., K. Khanbekyan, C. Marinelli, L. Marmugi, L. Moi, L. Corradi, A. Dainelli, et al. "A magneto-optical trap for radioactive atoms." In Seventeenth International School on Quantum Electronics: Laser Physics and Applications, edited by Tanja N. Dreischuh and Albena T. Daskalova. SPIE, 2013. http://dx.doi.org/10.1117/12.2014795.
Full text