Academic literature on the topic 'Magneto-acoustic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magneto-acoustic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magneto-acoustic"
AMMARI, HABIB, YVES CAPDEBOSCQ, HYEONBAE KANG, and ANASTASIA KOZHEMYAK. "Mathematical models and reconstruction methods in magneto-acoustic imaging." European Journal of Applied Mathematics 20, no. 3 (June 2009): 303–17. http://dx.doi.org/10.1017/s0956792509007888.
Full textRoth, Bradley J. "Magneto-Acoustic Imaging in Biology." Applied Sciences 13, no. 6 (March 18, 2023): 3877. http://dx.doi.org/10.3390/app13063877.
Full textQu, Min, Srivalleesha Mallidi, Mohammad Mehrmohammadi, Ryan Truby, Kimberly Homan, Pratixa Joshi, Yun-Sheng Chen, Konstantin Sokolov, and Stanislav Emelianov. "Magneto-photo-acoustic imaging." Biomedical Optics Express 2, no. 2 (January 21, 2011): 385. http://dx.doi.org/10.1364/boe.2.000385.
Full textLi, Jinxing, Tianlong Li, Tailin Xu, Melek Kiristi, Wenjuan Liu, Zhiguang Wu, and Joseph Wang. "Magneto–Acoustic Hybrid Nanomotor." Nano Letters 15, no. 7 (June 19, 2015): 4814–21. http://dx.doi.org/10.1021/acs.nanolett.5b01945.
Full textGuyot, M., and V. Cagan. "The magneto‐acoustic emission (invited)." Journal of Applied Physics 73, no. 10 (May 15, 1993): 5348–53. http://dx.doi.org/10.1063/1.353728.
Full textDrummond James, E. "5402786 Magneto-acoustic resonance imaging." Magnetic Resonance Imaging 13, no. 6 (January 1995): XXIV—XXV. http://dx.doi.org/10.1016/0730-725x(95)96707-i.
Full textKhantadze, A. G., G. V. Jandieri, A. Ishimaru, T. D. Kaladze, and Zh M. Diasamidze. "Electromagnetic oscillations of the Earth's upper atmosphere (review)." Annales Geophysicae 28, no. 7 (July 1, 2010): 1387–99. http://dx.doi.org/10.5194/angeo-28-1387-2010.
Full textZharkov, S., S. Shelyag, V. Fedun, R. Erdélyi, and M. J. Thompson. "Photospheric high-frequency acoustic power excess in sunspot umbra: signature of magneto-acoustic modes." Annales Geophysicae 31, no. 8 (August 6, 2013): 1357–64. http://dx.doi.org/10.5194/angeo-31-1357-2013.
Full textAdamashvili, G. T., and A. A. Maradudin. "Nonlinear magneto-acoustic waves in ferromagnets." Journal of Applied Physics 79, no. 8 (1996): 5727. http://dx.doi.org/10.1063/1.362232.
Full textSytcheva, A., U. Löw, S. Yasin, J. Wosnitza, S. Zherlitsyn, T. Goto, P. Wyder, and B. Lüthi. "Magneto-Acoustic Faraday Effect in Tb3Ga5O12." Journal of Low Temperature Physics 159, no. 1-2 (January 6, 2010): 126–29. http://dx.doi.org/10.1007/s10909-009-0082-x.
Full textDissertations / Theses on the topic "Magneto-acoustic"
Kuszewski, Piotr. "Optical detection of magneto-acoustic dynamics." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS353.
Full textIn the developing field of spin wave-based information technology, this work investigates the possibility to use surface acoustic waves (SAW) to excite spin-waves in ferromagnetic thin layers relying on the magnetoelastic coupling. This would provide a non-inductive, efficient, and remote addressing of spin waves. In the first project we develop an experimental setup to generate electrically excited SAWs phase-locked to probe laser pulses. The magnetization dynamics is detected by an optical bridge using magneto-optical effects (Kerr and Voigt). We investigate the resonant magneto-elastic coupling in a thin film of the ferromagnetic semiconductor (Ga,Mn)As. To reach resonant coupling, the spin-wave frequency is scanned across the SAW frequency using a magnetic field. We disentangle the photoelastic contribution from the magneto-optical one, from which we obtain the amplitude of magnetization precession. We show that it is driven solely by the acoustic wave. Its field dependence is shown to agree well with theoretical calculations. Its amplitude resonates at the same field as the resonant attenuation of the acoustic wave, clearly evidencing the magnetoacoustic resonance with high sensitivity. The influence of temperature, SAW frequency and power on the coupling efficiency are studied. In the second project we use SAWs thermoelastically excited by a tightly focused laser beam on ferromagnetic metals (Ni, FeGa, Co) on a transparent substrate (glass, sapphire). Spatio-temporal maps of the surface displacement and magneto-optical signal are obtained. A high-frequency shift of the frequency spectrum of the latter gives a hint for spin-wave excitation by SAWs
Kennedy, Ian. "Magneto-acoustic response of a 2D carrier system." Thesis, University of Nottingham, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285634.
Full textButtle, D. J. "Barkhausen and magneto-acoustic emission from ferromagnetic materials." Thesis, University of Oxford, 1986. http://ora.ox.ac.uk/objects/uuid:73130e7a-43ab-47fb-a531-65b605bf1904.
Full textMcEnaney, Kevin Bernard. "Magneto-absorption of surface acoustic waves by a 2-dimensional electron gas." Thesis, University of Nottingham, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.293651.
Full textCuellar, Sandra Milena Conde. "3D model magneto-acoustic waves in coronal loops observed during transient events." Instituto Nacional de Pesquisas Espaciais (INPE), 2017. http://urlib.net/sid.inpe.br/mtc-m21b/2017/05.05.02.33.
Full textApresentamos uma análise tridimensional de ondas magnetoacústicas ao longo de sete loops coronais, observados na região ativa NOAA 11272 durante os flares de classe B e C. Encontramos ondas de 19, 9, 5, 2, 1 e 0.6 minutos usando o método Pixelised Wavelet Filtering sobre imagens obtidas com o instrumento Atmospheric Imaging Assembly. Modelamos as velocidades dessas ondas ao longo das linhas de campo magnético extrapoladas que reproduzem os loops observados em ultravioleta extremo. A extrapolação foi feita sobre os magnetogramas obtidos com o instrumento Helioseismic and Magnetic Imager, usando a aproximação Linear Force-Free. A partir do nosso modelo, encontramos temperaturas de 10$^{3}$ (maior equivalente) T (menor equivalente) 1.8 x 10$^{7}$ K e densidades de 10$^{7}$ (maior equivalente) n (menor equivalente) 10$^{17}$ cm$^{−3}$, cobrindo desde a fotosfera até a coroa, como esperado na atmosfera solar. Desta forma, obtivemos valores para as velocidades acústica e Alfvénica de c$_{s}$ $\approx$ 10$^{2}$ km s$^{−1}$ e $\upsilon$$_{A}$ $\approx$ 10$^{4}$ km s$^{−1}$ respectivamente, as quais estão acorde com a literatura. Adicionalmente, a assimetria no brilho observada ao longo dos loops coronais é explicada pelas distribuições do campo magnético e da velocidade Alfvén ao longo das linhas extrapoladas. Nós encontramos ondas magnetoacústicas rápidas no inicio dos flares B3.8 e C1.9 e modos lentos ao longo dos loops durante todos os flares. O nosso modelo representa um método inédito para estudar ondas em loops coronais. Todos os resultados são coerentes com os valores esperados nas condições da atmosfera solar.
Matsouli, Ioanna. "Study of magneto-acoustic effects in FeBOâ†3 by synchrotron radiation diffraction imaging." Thesis, University of Warwick, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.310013.
Full textMather, James. "Magneto-acoustic waves in the stratified solar atmosphere : single to multi-fluid approach." Thesis, University of Sheffield, 2017. http://etheses.whiterose.ac.uk/19463/.
Full textParpiiev, Tymur. "Ultrafast magneto-acoustics in magnetostrictive materials." Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1044/document.
Full textWith the advent of femtosecond lasers it became possible to measure how femtosecond optical demagnetization can probe the exchange interaction in ferromagnetic metals. Laser-induced demagnetization of materials with strong magneto-elastic coupling should lead to the release of its build-in strains, thus to the generation of both longitudinal (L) and shear (S) acoustic waves. In this thesis, generation of shear picosecond acoustic pulses in strongly magnetostrictive materials such as Terfenol is processed analytically and shown experimentally. In case of Terfenol with strong magneto-crystalline anisotropy, laser induced demagnetostriction is responsible for S excitation. First, the phenomenological model of direct magnetostriction in a Terfenol monocrystalline film is developed. The shear strain generation efficiency strongly depends on the orientation of the film magnetization. Time-resolved linear MOKE pump-probe experiments show that transient laser-induced release of the magnetoelastic strains lead to the excitation of GHz L and S acoustic waves. These results are the first experimental observation of picosecond shear acoustic wave excitation by laser-induced demagnetostriction mechanism. Second, the interaction of an optically generated L acoustic pulse with the magnetization of a Terfenol thin film is reported. Arrival of the picosecond strain wave alters a change of its magnetization and leads to acoustic mode conversion, which is another pathway of shear acoustic wave generation. The frequency bandwidth of the generated acoustic pulses matches the demagnetization timescale and lies in the range of several hundreds of GHz, close to 1 THz
Zhou, Huan. "Etude théorique et expérimentale de systèmes à ondes de surface dans des structures multicouches piézomagnétiques pour des applications en contrôle santé intégré de MEMS par imagerie acoustique non linéaire." Phd thesis, Ecole Centrale de Lille, 2014. http://tel.archives-ouvertes.fr/tel-00991915.
Full textNguyen, Christine. "Magneto-Hydrodynamic Activity and Energetic Particles - Application to Beta Alfvén Eigenmodes." Phd thesis, Ecole Polytechnique X, 2009. http://pastel.archives-ouvertes.fr/pastel-00005642.
Full textBooks on the topic "Magneto-acoustic"
Newnham, Robert E. Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.001.0001.
Full textBook chapters on the topic "Magneto-acoustic"
Sanchez, Simon W., and Jinxing Li. "Magneto-Acoustic Hybrid Micro-/Nanorobot." In Field-Driven Micro and Nanorobots for Biology and Medicine, 165–77. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80197-7_7.
Full textShen, Yongna, Gongtian Shen, and Wenjun Zhang. "The Optimization of Magneto Acoustic Emission Testing Device." In Springer Proceedings in Physics, 49–55. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12111-2_5.
Full textUtrata, David, and Min Namkung. "Magneto-Acoustic Stress Responses of Various Rail Metallurgies." In Review of Progress in Quantitative Nondestructive Evaluation, 1903–10. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5772-8_244.
Full textZhou, Xiaoqing, Huiqin Wang, Ren Ma, Tao Yin, Zhuo Yang, and Zhipeng Liu. "Experimental Study on Transcranial Magneto-Acoustic Coupling Stimulation." In Advances in Cognitive Neurodynamics (VII), 283–84. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0317-4_45.
Full textMA, R., S. ZHANG, T. YIN, and Z. LIUi. "Experimental Study on Amplitude Frequency of Acoustic Signal Excited by Coupling Magneto-Acoustic Field." In IFMBE Proceedings, 158–61. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_38.
Full textRuf, T., V. F. Sapega, J. Spitzer, V. I. Belitsky, M. Cardona, and K. Ploog. "Resonant Magneto-Raman Scattering by Acoustic Phonons in Quantum Wells and Superlattices." In Phonons in Semiconductor Nanostructures, 83–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1683-1_8.
Full textWu, Sha, Gongtian Shen, Zenghua Liu, Yongna Shen, and Zhinong Li. "Research on Extraction Method of Fatigue State Magneto Acoustic Emission Characteristic Parameters Based on CEEMD." In Springer Proceedings in Physics, 171–81. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9837-1_16.
Full textLópez, Rafael J. "Magneto-acoustic and Barkhausen Emission in Wide Ribbons of One Magnetic Glass." In Recent Advances in Multidisciplinary Applied Physics, 325–29. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044648-6.50052-5.
Full textLOPEZ, R. "Magneto-acoustic and barkhausen emission in wide ribbons of one magnetic glass." In Recent Advances in Multidisciplinary Applied Physics, 325–29. Elsevier, 2005. http://dx.doi.org/10.1016/b978-008044648-6/50052-5.
Full textGlukhikh, Igor, Viktor Ivanchenko, and Sergey Ivanchenko. "Connection of magneto acoustic emission parameters with conditions of magnetite deposits formation." In Methods and Applications in Petroleum and Mineral Exploration and Engineering Geology, 257–74. Elsevier, 2021. http://dx.doi.org/10.1016/b978-0-323-85617-1.00013-8.
Full textConference papers on the topic "Magneto-acoustic"
Gosavi, Tanay A., and Sunti A. Bhave. "Magneto-acoustic oscillator." In 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, 2017. http://dx.doi.org/10.1109/transducers.2017.7994083.
Full textMehrmohammadi, M., Junghwan Oh, S. R. Aglyamov, A. B. Karpiouk, and S. Y. Emelianov. "Pulsed magneto-acoustic imaging." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334214.
Full textMin Qu, S. Mallidi, M. Mehrmohammadi, L. L. Ma, K. P. Johnston, K. Sokolov, and S. Emelianov. "Combined photoacoustic and magneto-acoustic imaging." In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5334217.
Full textTiwari, Sidhant. "Magneto-Acoustic Waves in Multiferroic Heterostructures ." In Proposed for presentation at the TANMS ARSM (Advanced Research Strategy Meeting) 2022 held February 8-24, 2022 in ,. US DOE, 2022. http://dx.doi.org/10.2172/2001707.
Full textAlmansouri, Abdullah S., Liam Swanepoel, Khaled N. Salama, and Jurgen Kosel. "A Self-Powered Magneto-Acoustic Tracking Transducer." In 2019 IEEE SENSORS. IEEE, 2019. http://dx.doi.org/10.1109/sensors43011.2019.8956781.
Full textDhagat, Pallavi, Vikrant Gokhale, Albrecht Jander, Brian Downey, Carson Rivard, Shawn Mack, D. Scott Katzer, Jason Roussos, and David Meyer. "RF Signal Processing with Magneto-acoustic Devices." In 2023 IEEE International Magnetic Conference - Short Papers (INTERMAG Short Papers). IEEE, 2023. http://dx.doi.org/10.1109/intermagshortpapers58606.2023.10228303.
Full textQu, Min, Mohammad Mehrmohammadi, Ryan Truby, Kimberly Homan, and Stanislav Emelianov. "Magneto-photo-acoustic imaging using dual-contrast agent." In 2010 IEEE Ultrasonics Symposium (IUS). IEEE, 2010. http://dx.doi.org/10.1109/ultsym.2010.5935934.
Full textWilkie-Chancellier, N., S. Serfaty, P. Griesmar, Y. Le Diraison, and J. Y. Le Huerou. "Inductive magneto-acoustic technique for viscous fluids monitoring." In 2011 IEEE International Ultrasonics Symposium (IUS). IEEE, 2011. http://dx.doi.org/10.1109/ultsym.2011.0272.
Full textBocchialini, Karine, and Serge Koutchmy. "High frequency magneto-acoustic waves in the chromosphere." In Scientific basis for robotic exploration close to the sun. AIP, 1997. http://dx.doi.org/10.1063/1.51752.
Full textZIDAT, Farid, Gregory BAUW, Bertrand CASSORET, and Thomas GUFFROY. "Magneto-vibro-acoustic Design of PWM-fed Induction Machines." In 2019 19th International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering (ISEF). IEEE, 2019. http://dx.doi.org/10.1109/isef45929.2019.9096884.
Full text