Academic literature on the topic 'Magnetite Synthesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetite Synthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetite Synthesis"

1

Roh, Yul, Hee-Dong Jang, and Yongjae Suh. "Microbial Synthesis of Magnetite and Mn-Substituted Magnetite Nanoparticles: Influence of Bacteria and Incubation Temperature." Journal of Nanoscience and Nanotechnology 7, no. 11 (November 1, 2007): 3938–43. http://dx.doi.org/10.1166/jnn.2007.076.

Full text
Abstract:
Microbial synthesis of magnetite and metal (Co, Cr, Ni)-substituted magnetites has only recently been reported. The objective of this study was to examine the influence of Mn ion on the microbial synthesis of magnetite nanoparticles. The reductive biotransformation of an akaganeite (β-FeOOH) or a Mn-substituted (2–20 mol%) akaganeite (Fe1–xMnxOOH) by Shewanella loiha (PV-4, 25 °C) and Thermoanaerobacter ethanolicus (TOR-39, 60 °C) was investigated under anaerobic conditions at circumneutral pH (pH = 7–8). Both bacteria formed magnetite nanoparticles using akaganeite as a magnetite precursor. By comparison of iron minerals formed by PV-4 and TOR-39 using Mn-mixed akaganeite as the precursor, it was shown that PV-4 formed siderite (FeCO3, green rust [Fe2+Fe3+(OH)16CO3·4H2O], and magnetite at 25 °C, whereas TOR-39 formed mainly nm-sized magnetite at 60 °C. The presence of Mn in the magnetite formed by TOR-39 was revealed by energy dispersive X-ray analysis (EDX) is indicative of Mn substitution into magnetite crystals. EDX analysis of iron minerals formed by PV-4 showed that Mn was preferentially concentrated in the siderite and green rust. These results demonstrate that coprecipitated/sorbed Mn induced microbial formation of siderite and green rust by PV-4 at 25 °C, but the synthesis of Mn-substituted magnetite nanoparticles proceeded by TOR-39 at 60 °C. These results indicate that the bacteria have the ability to synthesize magnetite and Mn-substituted magnetite nano-crystals. Microbially facilitated synthesis of magnetite and metal-substituted magnetites at near ambient temperatures may expand the possible use of specialized ferromagnetic nano-particles.
APA, Harvard, Vancouver, ISO, and other styles
2

Roh, Y., H. Vali, T. J. Phelps, and J. W. Moon. "Extracellular Synthesis of Magnetite and Metal-Substituted Magnetite Nanoparticles." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3517–20. http://dx.doi.org/10.1166/jnn.2006.17973.

Full text
Abstract:
We have developed a novel microbial process that exploits the ability of Fe(III)-reducing microorganisms to produce copious amounts of extracellular magentites and metal-substituted magnetite nanoparticles. The Fe(III)-reducing bacteria (Theroanaerobacter ethanolicus and Shewanella sp.) have the ability to reduce Fe(III) and various metals in aqueous media and form various sized magnetite and metal-substituted magnetite nano-crystals. The Fe(III)-reducing bacteria formed metal-substituted magnetites using iron oxide plus metals (e.g., Co, Cr, Mn, Ni) under conditions of relatively low temperature (<70 °C), ambient pressure, and pH values near neutral to slightly basic (pH = 6.5 to 9). Precise biological control over activation and regulation of the biosolid-state processes can produce magnetite particles of well-defined size (typically tens of nanometers) and crystallographic morphology, containing selected dopant metals into the magnetite (Fe3−yXyO4) structure (where X = Co, Cr, Mn, Ni). Magnetite yields of up to 20 g/L per day have been observed in 20-L vessels. Water-based ferrofluids were formed with the nanometer sized, magnetite, and metal-substituted biomagnetite particles.
APA, Harvard, Vancouver, ISO, and other styles
3

Kahani, Seyed Abolghasem, and Zahra Yagini. "A Comparison between Chemical Synthesis Magnetite Nanoparticles and Biosynthesis Magnetite." Bioinorganic Chemistry and Applications 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/384984.

Full text
Abstract:
The preparation of Fe3O4from ferrous salt by air in alkaline aqueous solution at various temperatures was proposed. The synthetic magnetites have different particle size distributions. We studied the properties of the magnetite prepared by chemical methods compared with magnetotactic bacterial nanoparticles. The results show that crystallite size, morphology, and particle size distribution of chemically prepared magnetite at 293 K are similar to biosynthesis of magnetite. The new preparation of Fe3O4helps to explain the mechanism of formation of magnetosomes in magnetotactic bacteria. The products are characterized by X-ray powder diffraction (XRD), infrared (IR) spectra, vibrating sample magnetometry (VSM), and scanning electron microscopy (SEM).
APA, Harvard, Vancouver, ISO, and other styles
4

Rahmayanti, Maya, Sri Juari Santosa, and Sutarno. "Sonochemical Co-Precipitation Synthesis of Gallic Acid-Modified Magnetite." Advanced Materials Research 1101 (April 2015): 286–89. http://dx.doi.org/10.4028/www.scientific.net/amr.1101.286.

Full text
Abstract:
Gallic acid-modified magnetites were synthesized by one and two-step reactions via the newly developed sonochemical co-precipitation method. The two-step reaction included the formation of magnetite powder and mixing the magnetite powder with gallic acid solution, while the one-step reaction did not go through the formation magnetite powder. The obtained gallic acid-modified magnetites were characterized by the Fourier Transform Infrared (FTIR) spectroscopy, the X-Ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM). More over, the magnetic properties were studied by using a Vibrating Sample Magnetometer (VSM). The characterization results showed that there were differences in crystalinity, surface morphology and magnetic properties of products that were formed by one and two-step reactions.
APA, Harvard, Vancouver, ISO, and other styles
5

Agnestisia, Retno. "Synthesis & Characterization of Magnetit (Fe3O4) and Its Applications As Adsorbent Methylene Blue." Jurnal Sains dan Terapan Kimia 11, no. 2 (October 3, 2017): 61. http://dx.doi.org/10.20527/jstk.v11i2.4039.

Full text
Abstract:
Synthesis, characterization and adsorption study of magnetite have beenconducted. Magnetite was synthesized by coprecipitation method. The characterizations of magnetite were carried out with spectroscopy FTIR (Fourier Transform Infrared) and XRD (X-ray diffraction). The adsorption study was conducted using a batch system with the studied adsorption study including optimum pH, optimum contact time and adsorption equilibrium. The results showed that coprecipitation method has succeeded to form magnetite that has magnetism properties. Magnetite can adsorbed methylene blue from aqueous phase, with the maximum adsorption at pH 5 and contact time of 90 minutes.Adsorption of methylene blue by magnetite follows the adsorption pattern of the Langmuir isotherm with the adsorption energy of 25.59 kJ/mol and adsorption capacity of 43.86 mg/g. The results of magnetite synthesis can accelerate the process of separating the adsorbent particles in a methylene blue solution using an external magnetic field.Keywords : magnetite, coprecipitation, adsorption, and methylene blue.
APA, Harvard, Vancouver, ISO, and other styles
6

Mohd Yusoff, Ahmad Huzaifah, Midhat Nabil Ahmad Salimi, and Mohd Faizal Jamlos. "A New XRD Method to Quantitatively Distinguish Non-Stoichiometric Magnetite: Influence of Particle Size and Processing Conditions." Advanced Engineering Forum 26 (February 2018): 41–52. http://dx.doi.org/10.4028/www.scientific.net/aef.26.41.

Full text
Abstract:
Magnetite’s abilities rely on the quantitative phases present in the sample. Magnetite quality can strongly influence several physical properties, such as magnetism, catalytic performance, and Verwey transition. However, differentiation of magnetite and maghemite through the conventional X-ray diffractogram comparison are not relevant for the intermediate phases. In this study, the deviation from the ideal stoichiometric magnetite and the relative quantification of both phases were mathematically achievable through a new XRD technique. Various synthesis conditions were applied to obtain different crystallite sizes, in the range of 9 to 30 nm. Generally, the stoichiometric deviation and maghemite content would be significantly influenced by the final size, whereas system conditions (temperature of solution, agitation rate, and pH of solution) would only have minor significance. In this study, iron oxide nanoparticles prepared using the co-precipitation method was calculated to contain 100% magnetite for particles of 30.26 nm in size, while 100% maghemite was calculated for particles at 9.64 nm.
APA, Harvard, Vancouver, ISO, and other styles
7

Norfolk, Laura, Andrea Rawlings, Jonathan Bramble, Katy Ward, Noel Francis, Rachel Waller, Ashley Bailey, and Sarah Staniland. "Macrofluidic Coaxial Flow Platforms to Produce Tunable Magnetite Nanoparticles: A Study of the Effect of Reaction Conditions and Biomineralisation Protein Mms6." Nanomaterials 9, no. 12 (December 4, 2019): 1729. http://dx.doi.org/10.3390/nano9121729.

Full text
Abstract:
Magnetite nanoparticles’ applicability is growing extensively. However, simple, environmentally-friendly, tunable synthesis of monodispersed iron-oxide nanoparticles is challenging. Continuous flow microfluidic synthesis is promising; however, the microscale results in small yields and clogging. Here we present two simple macrofluidics devices (cast and machined) for precision magnetite nanoparticle synthesis utilizing formation at the interface by diffusion between two laminar flows, removing aforementioned issues. Ferric to total iron was varied between 0.2 (20:80 Fe3+:Fe2+) and 0.7 (70:30 Fe3+:Fe2+). X-ray diffraction shows magnetite in fractions from 0.2–0.6, with iron-oxide impurities in 0.7, 0.2 and 0.3 samples and magnetic susceptibility increases with increasing ferric content to 0.6, in agreement with each other and batch synthesis. Remarkably, size is tuned (between 20.5 nm to 6.5 nm) simply by increasing ferric ions ratio. Previous research shows biomineralisation protein Mms6 directs magnetite synthesis and controls size, but until now has not been attempted in flow. Here we report Mms6 increases magnetism, but no difference in particle size is seen, showing flow reduced the influence of Mms6. The study demonstrates a versatile yet simple platform for the synthesis of a vast range of tunable nanoparticles and ideal to study reaction intermediates and additive effects throughout synthesis.
APA, Harvard, Vancouver, ISO, and other styles
8

Aulia, Maudi. "Synthesis Of Mg/Al Hydrotalsite-Magnetite As CN- Ion Adsorbent On Wastewater Tapioca Industry." Stannum : Jurnal Sains dan Terapan Kimia 3, no. 2 (December 27, 2021): 69–75. http://dx.doi.org/10.33019/jstk.v3i2.2506.

Full text
Abstract:
Cyanide compounds contained in tapioca industrial wastewater are relatively high, so it is necessary to reduce cyanide levels. This study utilizes the hydrotalcite-magnetite ability to adsorption of CN- ions. The composite formation process is carried out by mixing the magnetite phase at the stage of hydrotalcite-magnetite synthesis. The characterization of X-Ray Diffraction (XRD) shows reflection of the magnetite peak of 2θ 21.42°; 30,28°; 33.40°;35.65° and 37°. While the peak of hydrotalocites at an angle of 11.66° ; 23,33° ; 34,80° ; 60,92° ; and 62.21°. This result is supported by ir spectra on hydrotalocytes shown by O-H group at wave number 3441 cm-1, O=C-O at wave numbers 1359 cm-1, M-O and M-OH at wave numbers 964 cm-1, 797 cm-1 and 673 cm-1. Fe-O and Fe-OH absorption from magnetites at wave numbers 892 cm-1, 798 cm-1 and 629 cm-1. 0.4 grams of hydrotalcite-magnetite at 30 minutes of stirring absorbed 0.0490 mg/L of cyanide from tapioca liquid waste solution. The value of adsorption capacity is 0.022 mg/g and the adsorption efficiency is 87.96%. The hydrotalcite-magnetite adsorption method is superior to aerob and anaerobic methods using bacteria in the tapioca industry.
APA, Harvard, Vancouver, ISO, and other styles
9

Hameed, Aneela, Hafiza Mehvish Mushtaq, and Majid Hussain. "Magnetite (Fe3O4) - Synthesis, Functionalization and its Application." International Journal of Food and Allied Sciences 3, no. 2 (May 25, 2018): 64. http://dx.doi.org/10.21620/ijfaas.2017264-75.

Full text
Abstract:
<p>Nanoparticles are smaller than 100nm. Size of particle depends upon the method that is used for synthesis of nanoparticles. Magnetic nanoparticles consist of iron, cobalt and nickel and their chemical compounds. Their safety or toxicity is major concern for use in food. Magnetite, hematite and meghemite are types of magnetic nanoparticles. Magnetite (Fe3O4) common among the magnetic iron oxide nanoparticle that is used in food industry. Magnetite is getting popular due to its super paramagnetic properties and lack of toxicity to humans. Different methods are used to synthesize magnetic nanoparticles. Upon contact with air these particles loses magnetism and mono-dispersibility. To overcome this problem these nanoparticles are coated with natural or synthetic polymers, metals, organic and inorganic substances to create stable and hydrophilic nanostructures. Due to easy separation with magnet these magnetic nanoparticles are used as an affinity probe to remove bacteria from different food samples and have food related applications e.g, protein purification, enzyme immobilization and food analysis. These magnetic nanoparticles also used for removal of heavy metals and used in medical field.</p>
APA, Harvard, Vancouver, ISO, and other styles
10

RED’KO, YANA, OLGA GARANINA, NATALIIA HUDZENKO, and NATALIIA DUDCHENKO. "PHYSICO-CHEMICAL PROPERTIES OF MAGNETITES IN NANOCOMPOSITES ON THE TEXTILE BASES." Fibres and Textiles 29, no. 3 (November 2022): 3–7. http://dx.doi.org/10.15240/tul/008/2022-3-001.

Full text
Abstract:
The article is devoted to investigation of the physico-chemical properties of magnetites in nanocomposites on the textile bases. It studies of the structure and phase composition of nanocomposite materials on the polyamide and viscose textile bases. It is shown that magnetite particles synthesized in textile material with average sizes of 9.4 nm in viscose textile material and 9.7 nm in polyamide textile material. The influence of synthesis conditions on the size of magnetite nanocrystallites in textile material is established.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetite Synthesis"

1

Ragheb, Ragy. "Synthesis and Characterization of Polylactide-siloxane Block Copolymers as Magnetite Nanoparticle Dispersion Stabilizers." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/31687.

Full text
Abstract:
Polylactide-siloxane triblock copolymers with pendent carboxylic acid functional groups have been designed and synthesized for study as magnetite nanoparticle dispersion stabilizers. Magnetic nanoparticles are of interest in a variety of biomedical applications, including magnetic field-directed drug delivery and magnetic cell separations. Small magnetite nanoparticles are desirable due to their established biocompatibility and superparamagnetic (lack of magnetic hysteresis) behavior. For in-vivo applications it is important that the magnetic material be coated with biocompatible organic materials to afford dispersion characteristics or to further modify the surfaces of the complexes with biospecific moieties.

The synthesis of the triblock copolymers is comprised of three reactions. Difunctional, controlled molecular weight polymethylvinylsiloxane oligomers with either aminopropyl or hydroxybutyl endgroups were prepared in ring-opening redistribution reactions. These oligomers were utilized as macroinitiators for ring-opening L-lactide to provide triblock materials with polymethylvinylsiloxane central blocks and poly(L-lactide) endblocks. The molecular weights of the poly(L-lactide) endblocks were controlled by the mass of L-lactide relative to the moles of macroinitiator. The vinyl groups on the polysiloxane center block were further functionalized with carboxylic acid groups by adding mercaptoacetic acid across the pendent double bonds in an ene-thiol free radical reaction. The carboxylic acid functional siloxane central block was designed to bind to the surfaces of magnetite nanoparticles, while the poly(L-lactide)s served as tailblocks to provide dispersion stabilization in solvents for the poly(L-lactide). The copolymers were complexed with magnetite nanoparticles by electrostatic adsorption of the carboxylates onto the iron oxide surfaces and these complexes were dispersible in dichloromethane. The poly(L-lactide) tailblocks extended into the dichloromethane and provided steric repulsion between the magnetite-polymer complexes.
Master of Science

APA, Harvard, Vancouver, ISO, and other styles
2

Pradhan, Anindya. "Synthesis and Characterization of Novel Nanoparticles for Use as Photocatalytic Probes and Radiotracers." ScholarWorks@UNO, 2008. http://scholarworks.uno.edu/td/689.

Full text
Abstract:
Two novel synthetic routes to formation of gold-magnetite nanoparticles have been designed. Treatment of preformed magnetite nanoparticles with ultrasound in aqueous media with dissolved tetrachloroauric acid resulted in the formation of gold-magnetite nanocomposite materials. The other route involved irradiation of preformed magnetite nanoparticles by UV light in aqueous media with dissolved tetrachloroauric acid. This method resulted in the formation of gold-magnetite nanocomposite materials. These materials maintained the morphology of the original magnetite particles. The morphology of the gold particles could be controlled by adjusting experimental parameters, like addition of small amounts of solvent modifiers such as methanol, diethylene glycol, and oleic acid as well as variation of the concentration of the tetrachloroauric acid solution and time of the reaction. The nanocomposite materials were magnetic and exhibited optical properties similar to gold nanoparticles. Since we were not able to directly synthesize core shell gold magnetite nanoparticles, TiO2 was used as a bridging material. TiO2 nanoparticles with embedded magnetite were suspended in aqueous HAuCl4 and irradiated with ultraviolet light to photodeposit gold. The degree of gold coating and the wavelength of absorbance could be controlled by adjusting concentration of HAuCl4. Absorbance maxima were between 540-590 nm. Particles exhibited superparamagnetic properties (blocking temperature ~170 K) whether or not coated with gold. These particles have potential applications as drug delivery agents, magnetic imaging contrast agents, and magnetically separatable photocatalysts with unique surface properties. Another goal was to synthesize and characterize indium doped magnetite nanoparticles for application as radiotracers for in vivo fate studies. The labeled particles will be useful for determination of pharmacological behavior in biological systems. Indium doped magnetite particles with varying size and surface chemistry were synthesized with wet chemical techniques. The synthesized nanoparticles were characterized in terms of the size and shape with the help of TEM, the elemental composition by ICP and EDS, the crystal structure by XRD and magnetic properties by SQUID measurements. It was found that the indium loading could be controlled even though the magnetic properties were similar to undoped magnetite.
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Qian. "Synthesis and Characterization of Novel Magnetite Nanoparticle Block Copolymer Complexes." Diss., Virginia Tech, 2007. http://hdl.handle.net/10919/27327.

Full text
Abstract:
Superparamagnetic Magnetite (Fe3O4) nanoparticles were synthesized and complexed with carboxylate-functionalized block copolymers, and aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants possessed either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all contained a polyurethane center block with pendant carboxylate functional groups. The complexes were formed through interactions of the carboxylates with the surfaces of the magnetite nanoparticles. Initial efforts utilized an aqueous coprecipitation method for the synthesis of magnetite nanoparticles, which yielded polydisperse magnetite nanoparticles. The nanoparticle complexes were characterized with a range of solution- and solid-state techniques including TGA, XPS, TEM, VSM, DLS and zeta potential measurements. DLVO calculation methods, which sum the contributions from van der Waals, steric, electrostatic and magnetic forces were utilized to examine the interparticle potentials in the presence and absence of external magnetic fields. Compositions were identified wherein a shallow, attractive interparticle potential minimum appears once the magnetic term is applied. This suggested the possibility of tuning the structures of superparamagnetic nanoparticle shells to allow discrete dispersions without a field, yet permit weak flocculation upon exposure to a field. This property has important implications for biomedical applications where movement of particles with an external magnetic field is desirable. In a second study, well-defined, narrow size dispersity magnetite nanoparticles were synthesized via the thermolysis of an iron (III) acetylacetonate (Fe(acac)3) precursor in the presence of benzyl alcohol. The magnetite nanoparticles were coated with triblock and pentablock copolymers possessing poly(ethylene oxide) and poly(propylene oxide-b-ethylene oxide) tailblocks and the carboxylate-functional anchor block. DLVO calculations were applied to the new magnetite particles and diagrams of potential energy versus interparticle distance indicated the predominant effect of steric and magnetic interactions on the particle stability. Exposure of the pentablock copolymer-magnetite complexes in phosphate buffered saline to a 1500 Oe magnetic field with concomitant DLS measurements indicated flocculation of the magnetic nanoparticles. DLS measurements showed increased hydrodynamic radii and scattering intensities with time.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
4

Goff, Jonathan. "Synthesis and Characterization of Novel Polyethers and Polydimethylsiloxanes for Use in Biomaterials." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/26290.

Full text
Abstract:
This dissertation focuses on the use of novel polyethers and polydimethylsiloxanes in the stabilization of magnetite nanoparticles as well as biomedical applications. The colloidal stabilities of magnetite nanoparticles coated with polyethers containing various functional endgroups were studied. Different variables (e.g. polymer loading, polyether molecular weight and type of functional anchor group) were investigated to determine their effect on the long-term physiological stability of the polyether magnetite complexes. One-part PDMS-magnetite nanoparticle fluids were synthesized using a high shear process and magnetic separation techniques. These one-part fluids are unique in the fact that they do not require the addition of a non-functional PDMS oligomer solvent to generate a magnetic hydrophobic fluid. A series of PDMS-magnetite nanoparticle fluids containing different molecular weight stabilizers were synthesized. A magnetic separation study was performed to determine if PDMS molecular weight influences the magnetic separation profiles of the fluids. Well-defined PDMS-b-PtBA and PDMS-b-poly(acrylic acid) copolymers were synthesized using living free radical techniques from novel PDMS precursors as well as PDMS-based ionenes with different hard segment groups.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
5

Muro, Cruces Javier. "Improved synthesis routes and coating approaches of anisotropic magnetite nanoparticles for theranostics." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669374.

Full text
Abstract:
Esta tesis aborda la síntesis, caracterización y funcionalización de nanoestructuras magnéticas biocompatibles y anisótropas de óxido de hierro (Fe3O4) para su aplicación en diagnóstico biomédico mediante imagen de resonancia magnética (MRI) y uso terapéutico en dos modalidades de hipertermia: magnética y fototérmica. Para ello, se escogieron dos tipos de estructuras: nanocubos y nanorods. Para sintetizar los nanocubos, se probaron varios métodos ya publicados. Sin embargo, ninguno de ellos proporcionó resultados completamente satisfactorios en cuanto a monodispersión de tamaños, reproducibilidad, pureza de fase, alta cristalinidad y definición de forma. Por ello, desarrollamos una estrategia nueva basada en la introducción de oleato de sodio y una mezcla de disolventes que permitían el control de la temperatura de reflujo y la polaridad del medio, lo que además mejoró la estabilidad química del entorno en el que tenía lugar el crecimiento, dando lugar a una síntesis más reproducible. Estos resultados mostraron el éxito a la hora de producir partículas cúbicas en un rango de tamaños muy amplio, con unas excelentes propiedades y reproducibilidad. En cuanto a los nanorods, la síntesis fue especialmente complicada, ya que la estructura cúbica del Fe3O4 dificulta la formación de morfologías tan alargadas. De entre todos los procedimientos probados, solo la síntesis solvotermal dio buenos resultados. Para tener un mejor control sobre el tamaño y la relación de aspecto, se desarrollaron nuevas estrategias basadas en el ajuste de la presión y del ratio entre surfactantes. La superficie de las partículas sintetizadas es hidrófoba y por tanto fue necesario modificarla para que éstas pudieran dispersarse en medios biológicos. Además, el recubrimiento de las partículas debería proporcionar grupos funcionales para conjugar biomoléculas y así dirigirlas contra células malignas. Se probaron varias estrategias y los resultados mostraron que, a pesar de que la repulsión electrostática puede ser suficiente para estabilizar nanopartículas pequeñas o no magnéticas, en nuestro caso era necesario combinarla con impedimento estérico para evitar la agregación irreversible. Con este fin, se desarrolló un nuevo procedimiento de encapsulación basado en la formación de bicapas lipídicas que, a pesar de dar resultados prometedores, fue descartado finalmente al tener en cuenta el tiempo que se necesitaría para optimizar completamente todo el protocolo. En su lugar, se usó un procedimiento basado en la encapsulación con copolímeros anfipáticos, que también dio unos resultados excelentes, garantizando la estabilidad coloidal en entornos biológicos. El potencial biomédico de las partículas se evaluó primero como herramienta diagnóstica midiendo el contraste T2 para resonancia magnética de partículas de diferentes tamaños y formas, resaltando el mayor contraste de las nanopartículas anisótropas respecto a las isótropas (esferas). En cuanto al uso terapéutico, se evaluó también el potencial de las partículas en hipertermia magnética. Los resultados mostraron una buena capacidad de calentamiento a pesar de las suaves condiciones que usamos en nuestro estudio. Además, gracias a un amplio estudio espectroscópico teórico y experimental, se vio que las nanopartículas de Fe3O4 son adecuadas para fototermia, sobre todo en la segunda ventana biológica del infrarrojo cercano (1000-1350 nm). Esta región espectral es especialmente interesante porque permite la aplicación de mayores potencias de irradiación y tiene una mayor penetración en los tejidos humanos. A 1064 nm se consiguieron eficiencias de calentamiento óptico similares a los mejores agentes fototérmicos. Además, se aprovecharon las anisotropías magnética y óptica para medir la temperatura local en tiempo real mediante un método relativamente nuevo. Los experimentos in vitro usando células tumorales HeLa demostraron que las nanopartículas son internalizadas fácilmente y que no son tóxicas para concentraciones inferiores a 4 mM de hierro y que la fototermia usando nanocubos de Fe3O4 es una terapia excelente para destruir células tumorales.
This thesis tackles the synthesis, characterisation and functionalisation of biocompatible anisotropic iron oxide (Fe3O4) magnetic nanostructures for their application in biomedical diagnosis by means of magnetic resonance imaging (MRI) and therapy by two different modalities of hyperthermal therapy: magnetic fluid hyperthermia and photothermia. Two different types of structures were chosen for these purposes: nanocubes and nanorods. Several approaches published in literature were tested to synthesize the nanocubes. However, none of them rendered fully satisfactory results in size monodispersity, reproducibility, phase purity, high crystallinity and well-defined shape. Thus, we developed a new strategy based on the introduction of sodium oleate and a solvent mixture enabling the control of the reflux temperature and the polarity of the medium, which also resulted in an improvement of the chemical stability of the growth environment, leading to a more reproducible synthesis. The results demonstrate the successful synthesis of highly cubic particles in a very broad size range, with excellent properties and reproducibility. Concerning the nanorods, their synthesis was particularly challenging since the cubic crystal structure of Fe3O4 complicates the formation of such elongated morphologies. Among all the tested procedures, only the solvothermal synthesis provided good results. To have a better control on the size and aspect ratio new approaches based on adjusting the pressure and surfactants have been developed. The surface of the freshly synthesized particles is hydrophobic and therefore it was necessary to modify the surface to make them dispersible in biological media. In addition, the coating should provide functional groups to attach biomolecules for targeting malignant cells. Several approaches were tested and the results showed that, despite electrostatic repulsion can be enough to stabilize smaller or non-magnetic nanoparticles, in our case it was necessary to combine it also with steric hindrance to avoid irreversible aggregation. For this purpose, a novel procedure based on the formation of a lipid bilayer coating was developed which, despite providing promising results, was eventually discarded considering the time that would be required to fully optimise the protocol. Instead, a procedure based on the coating with amphiphilic copolymers was used, which also provided excellent results, ensuring colloidal stability in biological environments. The biomedical potential of the particles was evaluated first as a diagnostic tool by measuring the MRI T2 contrast of particles of different sizes and shapes, evidencing the enhanced contrast of anisotropic nanoparticles with respect to isotropic ones (spheres). In terms of therapy, the potential of the particles in terms of magnetic hyperthermia was also evaluated. The results showed the good heating capacity of the particles despite the mild conditions used in our study. In addition, thanks to a comprehensive theoretical and experimental spectroscopic study, it was established that Fe3O4 nanoparticles are suitable for photothermia, particularly in the near infrared second biological window (1000-1350 nm). This spectral range is especially appealing because it allows the application of higher powers and has a deeper penetration in human tissues. At 1064 nm were measured some heating efficiencies similar to the best photothermal agents. In addition, the magnetic and optic anisotropies were exploited for a relatively new approach for in situ local temperature sensing. The in vitro experiments using HeLa cancerous cells demonstrated that the nanoparticles are easily internalized and are not toxic for concentrations below 4 mM Fe and that photothermia using Fe3O4 nanocubes at 1064 nm is an excellent therapy for destroying cancerous cells.
APA, Harvard, Vancouver, ISO, and other styles
6

Pérez, Galera Juana María. "Impregnated Cobalt, Nickel, Copper and Palladium Oxides on Magnetite: Nanocatalysts for Organic Synthesis." Doctoral thesis, Universidad de Alicante, 2016. http://hdl.handle.net/10045/57586.

Full text
Abstract:
In this manuscript, the application of different nanocatalysts derived from metal oxides impregnated on the surface of the magnetite in different reaction of general interest in Organic Chemistry is described. In the First Chapter, a cobalt derived catalyst was used to study the hydroacylation reaction of azodicarboxylates with aldehydes. In the Second Chapter, a catalyst derived from copper was used to perform different reactions, including homocoupling of terminal alkynes and the subsequent hydration reaction to obtain the corresponding 2,5-disubstituted benzofurans, the reaction of alcohols and amines (or nitroarenes) to obtain the corresponding aromatic imines, the cross-dehydrogenative coupling reaction of N-substituted tetrahydroisoquinolines using deep eutectic solvents and air as final oxidant. Finally, the formation of benzofurans from aldehydes and alkynes through a tandem coupling-allenylation-cyclization process has been performed. In the Third Chapter, a bimetallic catalyst derived from nickel and copper was used to study the multicomponent reaction between benzyl bromides, sodium azide and alkynes to obtain the corresponding triazoles. In the Fourth Chapter, a catalyst derived from palladium was used in the direct arylation of heterocycles using iodonium salts. Also the synthesis of 4-aryl coumarins through the Heck arylation reaction and subsequent cyclization using the same catalyst is described. In the last Chapter, the use of different eutectic mixtures were studied as alternative media to perform in a single vessel the cyclation reaction of N-hydroxy imidoyl chlorides and alkynes, without any type of catalyst under oxidizing conditions.
APA, Harvard, Vancouver, ISO, and other styles
7

Mejia-Ariza, Raquel. "Design, Synthesis, and Characterization of Magnetite Clusters using a Multi Inlet Vortex Mixer." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/45432.

Full text
Abstract:
Superparamagnetic nanoparticles have potential applications in targeted drug delivery and as magnetic resonance imaging contrast agents. Magnetite clusters are of particular interest for these applications because they provide higher magnetic flux (under a magnetic field) than individual magnetite nanoparticles, are biocompatible, and their size and compositions can be controlled. This thesis involves the controlled synthesis and characterization of clusters composed of magnetite nanoparticles stabilized with an amphiphilic block copolymer. It outlines a method to design and form well-defined and colloidally stable magnetite clusters. A Multi Inlet Vortex mixer (MIVM) was used because it is a continuous process that yields particles with relatively narrow and controlled size distributions. In the MIVM, four liquid streams collide under turbulent conditions in the mixing chamber where clusters form within milliseconds. The formation of magnetite clusters was studied in the presence of amphiphilic block copolymers containing poly (ethylene oxide) to provide steric stabilization and control of size distributions using flash nanoprecipitation. First, the mixer was tested using β-carotene as a model compound to form nanoparticles stabilized with an amphiphilic triblock copolymer poly(propylene oxide)-b-poly(ethylene oxide) (F127) at different Reynolds numbers and supersaturation values. Size analysis was done using dynamic light scattering and nanoparticle tracking analysis techniques. The cluster structure was studied using electron microscopy and magnetite compositions were measured using thermogravimetric analysis. Finally, the stability of magnetite clusters was studied over time and the effect of an applied magnetite field on the colloidal stability was investigated.
Master of Science
APA, Harvard, Vancouver, ISO, and other styles
8

Miller, Barry William. "Synthesis and characterization of functionalized magnetite nanocomposite particles for targeting and retrieval applications." [Gainesville, Fla.] : University of Florida, 2004. http://purl.fcla.edu/fcla/etd/UFE0004820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Ragheb, Ragy Tadros. "Synthesis and Characterization of Surface-Functionalized Magnetic Polylactide Nanospheres." Diss., Virginia Tech, 2008. http://hdl.handle.net/10919/26719.

Full text
Abstract:
Polylactide homopolymers with pendent carboxylic acid functional groups have been designed and synthesized to be studied as magnetite nanoparticle dispersion stabilizers. Magnetic nanoparticles are of interest for a variety of biomedical applications including magnetic field-directed drug delivery and magnetic cell separations. Small magnetite nanoparticles are desirable due to their established biocompatibility and superparamagnetic (lack of magnetic hysteresis) behavior. For in-vivo applications, it is important that the magnetic material be coated with biocompatible organic materials to afford dispersion characteristics or to further modify the surfaces of the complexes with biospecific moieties. The acid-functionalized silane endgroup was utilized as the dispersant anchor to adsorb onto magnetite nanoparticle surfaces and allowed the polylactide to extend into various solvents to impart dispersion stability. The homopolymers were complexed with magnetite nanoparticles by electrostatic adsorption of the carboxylates onto the iron oxide surfaces, and these complexes were dispersible in dichloromethane. The polylactide tailblocks extended into the dichloromethane and provided steric repulsion between the magnetite-polymer complexes. The resultant magnetite-polymer complexes were further incorporated into controlled-size nanospheres. The complexes were blended with poly(ethylene oxide-b-D,L-lactide) diblock copolymers to introduce hydrophilicity on the surface of the nanospheres with tailored functionality. Self-assembly of the PEO block to the surface of the nanosphere was established by utilizing an amine terminus on the PEO to react with FITC and noting fluorescence.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
10

O'Brien, Kristen Wilson. "Synthesis of Functionalized Poly(dimethylsiloxane)s and the Preparation of Magnetite Nanoparticle Complexes and Dispersions." Diss., Virginia Tech, 2003. http://hdl.handle.net/10919/28869.

Full text
Abstract:
Poly(dimethylsiloxane) (PDMS) fluids containing magnetite nanoparticles stabilized with carboxylic acid-functionalized PDMS were prepared. PDMS-magnetite complexes were characterized using transmission electron microscopy, elemental analysis, and vibrating sample magnetometry. PDMS-magnetite complexes containing up to 67 wt% magnetite with magnetizations of ~52 emu gram-1 were prepared. The magnetite particles were 7.4 ± 1.7 nm in diameter. Calculations suggested that the complexes prepared using mercaptosuccinic acid-functionalized PDMS (PDMS-6COOH) complexes contained unbound acid groups whereas the mercaptoacetic acid-functionalized PDMS (PDMS-3COOH) complexes did not. Calculations showed that the PDMS-3COOH and PDMS-6COOH covered the same surface area on magnetite. Calculations were supported by molecular models and FTIR analyses. The complexes were dispersed into PDMS carrier fluids by ultrasonication, resulting in magnetic PDMS fluids with potential biomedical applications. Magnetite particles (100 nm to 1 mm in diameter) were prepared by crystallization from goethite/glycol/water solutions under pressure. Two methods for particle growth were investigated in which the crystallization medium was varied by adjusting the amount of water or by adding itaconic acid. Particle surfaces were analyzed by x-ray photoelectron spectroscopy (XPS). Particles with clean surfaces were coated with carboxylic acid-functionalized poly(e-caprolactone) stabilizers. Adding itaconic acid to the reactions afforded particles ~100 nm in diameter. The magnetite particles displayed magnetic hysteresis. The particles were dispersed into vinyl ester resins by ultrasonication and it was demonstrated that the ~100 nm particles remained dispersed for three days without agitation. These dispersions have applications in magnetic induction heating for composite repair. Living polymerizations of hexamethylcyclotrisiloxane were terminated with dimethylchlorosilane, phenylmethylchlorosilane, or diisopropylchlorosilane (DIPCS). Platinum-catalyzed hydrosilation of the hydrosilane-terminated PDMS with allyloxyethanol afforded a systematic series of hydroxyalkyl-terminated PDMS. The reactions were successful except for the hydrosilation of the sterically-hindered DIPCS-functionalized PDMS where no reaction was observed. Hydroxyalkyl-terminated PDMS oligomers were successful in initiating the stannous octoate-catalyzed copolymerization of e-caprolactone, which afforded PDMS-b-PCL diblock copolymers of controlled composition.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetite Synthesis"

1

Iwasaki, Tomohiro, and Tomohiro Iwasaki. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Iwasaki, Tomohiro. Organic solvent-free synthesis of magnetic nanocrystals with controlled particle sizes. Hauppauge, N.Y: Nova Science Publishers, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Acklin, Beate. Magnetic nanoparticles: Properties, synthesis, and applications. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hou, Yanglong, and David J. Sellmyer, eds. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2017. http://dx.doi.org/10.1002/9783527803255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Acklin, Beate. Magnetic nanoparticles: Properties, synthesis, and applications. Edited by Lautens Edon. Hauppauge, N.Y: Nova Science Publisher's, Inc., 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ruuskanen, Pekka. Solid state synthesis of Fe-B-Si alloys. Espoo, Finland: Technical Research Centre of Finland, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

1947-, Komoroski Richard A., ed. High resolution NMR spectroscopy of synthetic polymers in bulk. Deerfield Beach, Fla: VCH Publishers, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Superparamagnetic iron oxide nanoparticles: Synthesis, surface engineering, cytotoxicity, and biomedical applications. New York: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Multiobjective shape design in electricity and magnetism. Doredrecht: Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yuryeva, Elmira I. Natural and synthetic nanotechnological materials: Quantum chemistry and nuclear resonance spectroscopy data. Hauppauge, N.Y: Nova Science Publishers, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetite Synthesis"

1

Fukumori, Yoshihiro. "Enzymes for Magnetite Synthesis in Magnetospirillum magnetotacticum." In Biomineralization, 75–90. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527604138.ch5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Morales, A. L., A. A. Velásquez, J. P. Urquijo, and E. Baggio. "Synthesis and characterization of Cu2+ substituted magnetite." In LACAME 2010, 233–42. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-4301-4_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ismail, M. G. M. U., M. Yoshimura, and S. Sōmiya. "Synthesis of magnetite using ilmenite under hydrothermal conditions." In Hydrothermal Reactions for Materials Science and Engineering, 313–14. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0743-0_51.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hoffmann, M., R. von Hagen, H. Shen, and S. Mathur. "Single Step Synthesis and Self-Assembly of Magnetite Nanoparticles." In Nanostructured Materials and Nanotechnology IV, 21–27. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470944042.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ferreira, R. V., I. L. S. Pereira, L. C. D. Cavalcante, L. F. Gamarra, S. M. Carneiro, E. Amaro, J. D. Fabris, R. Z. Domingues, and A. L. Andrade. "Synthesis and characterization of silica-coated nanoparticles of magnetite." In LACAME 2008, 265–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10764-1_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

León-Félix, L., J. Chaker, M. Parise, J. A. H. Coaquira, L. De Los Santos Valladares, A. Bustamante, V. K. Garg, A. C. Oliveira, and P. C. Morais. "Synthesis and characterization of uncoated and gold-coated magnetite nanoparticles." In LACAME 2012, 173–82. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-6482-8_21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heiran, Alireza, Shadi Hassanajili, and Mehdi Escrochi. "Synthesis and Characterization of Fe3O4 Magnetite Nanoparticles Coated by Polyvinylpyrrolidone." In Eco-friendly and Smart Polymer Systems, 477–80. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45085-4_116.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kobayashi, Yoshio, Mayumi Yoshida, Daisuke Nagao, Yasuo Ando, Terunobu Miyazaki, and Mikio Konno. "Synthesis of SiO2 -Coated Magnetite Nanoparticles and Immobilization of Proteins on Them." In Ceramic Transactions Series, 135–41. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144145.ch22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gorbyk, P. P., I. V. Dubrovin, and Yu A. Demchenko. "Synthesis and Characterisation of Hollow Spherical Nano- and Microparticles with Silica and Magnetite." In Nanomaterials and Supramolecular Structures, 207–16. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2309-4_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Socoliuc, Vlad-Mircea, and Ladislau Vékás. "Hydrophobic and Hydrophilic Magnetite Nanoparticles: Synthesis by Chemical Coprecipitation and Physico-Chemical Characterization." In Upscaling of Bio-Nano-Processes, 39–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43899-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetite Synthesis"

1

Zhang, X., Z. Hua, and S. Yang. "Low temperature Sol-gel autocombustion synthesis and magnetic properties of magnetite." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7156745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lin, Jing-Fung, and Meng-Zhe Lee. "Synthesis of magnetite magnetic nanoparticles and measurement of magneto-optical effects." In International Conference on Experimental Mechanics 2013 and the Twelfth Asian Conference on Experimental Mechanics, edited by Somnuk Sirisoonthorn. SPIE, 2014. http://dx.doi.org/10.1117/12.2053633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Nguyen, Dung The, and Kyo-Seon Kim. "One-Pot Synthesis of Multifunctional Magnetite Hollow Nanospheres." In 2012 International Conference on Biomedical Engineering and Biotechnology (iCBEB). IEEE, 2012. http://dx.doi.org/10.1109/icbeb.2012.288.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Guzman, Manuel Alejandro Perez, Jaime Santoyo Salazar, Rebeca Ortega Amaya, Yasuhiro Matsumoto, and Mauricio Ortega Lopez. "Synthesis and characterization of magnetite-graphene oxide nanocomposite." In 2016 13th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, 2016. http://dx.doi.org/10.1109/iceee.2016.7751256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Frolova, Liliya, and Alona Derimova. "Influence of Various Factors on the Magnetite Synthesis." In 2019 IEEE 39th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2019. http://dx.doi.org/10.1109/elnano.2019.8783213.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

He, Quanguo, Shengwen Guo, Wei Wu, Rong Hu, and Jingke Huang. "Monodisperse Magnetite Nanoparticles Synthesis and Their Thermal-Stability." In 2007 1st International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2007. http://dx.doi.org/10.1109/icbbe.2007.289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sahu, Payel, and Debajyoti Das. "Synthesis and characterization of silica encapsulated magnetite nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0016888.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jin, Li, Fangtong Liu, and Jianpo Zhang. "THE SYNTHESIS AND CHARACTERIZATION OF SUCROSE MODIFIED MAGNETITE." In International Conference on New Materials and Intelligent Manufacturing (ICNMIM). Volkson Press, 2018. http://dx.doi.org/10.26480/icnmim.01.2018.164.166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Maity, Dipak, Prashant Chandrasekharan, Si-Shen Feng, and Ding Jun. "Synthesis and studies of APTES functionalized magnetite nanoparticles." In 2010 International Conference on Nanoscience and Nanotechnology (ICONN). IEEE, 2010. http://dx.doi.org/10.1109/iconn.2010.6045190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marimon-Bolivar, Wilfredo, and Nathalie Toussaint-Jimenez. "A review on green synthesis of magnetic nanoparticles (magnetite) for environmental applications." In 2019 Congreso Internacional de Innovación y Tendencias en Ingenieria (CONIITI ). IEEE, 2019. http://dx.doi.org/10.1109/coniiti48476.2019.8960849.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetite Synthesis"

1

David, Anand. Bioinspired synthesis of magnetic nanoparticles. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/967072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

O'Connor, Charles J. Nanophase Synthesis of Magnetic Materials: Thick Film Ferrite Magnetic Materials. Fort Belvoir, VA: Defense Technical Information Center, February 1998. http://dx.doi.org/10.21236/ada349674.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miller, Joel S. SYNTHESIS of MOLECULE/POLYMER-BASED MAGNETIC MATERIALS. Office of Scientific and Technical Information (OSTI), February 2016. http://dx.doi.org/10.2172/1236463.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Monica Sorescu. SYNTHESIS AND CHARACTERIZATION OF ADVANCED MAGNETIC MATERIALS. Office of Scientific and Technical Information (OSTI), September 2004. http://dx.doi.org/10.2172/837003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Whitesides, George M., Donald E. Ingber, Mara Prentiss, and Younan Xia. Synthesis and Manipulation of Biofunctional Magnetic Particles. Fort Belvoir, VA: Defense Technical Information Center, June 2007. http://dx.doi.org/10.21236/ada469435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chern, Ming Y., and Francis J. DiSalvo. Synthesis, Structure, Electric and Magnetic Properties of CaNiN. Fort Belvoir, VA: Defense Technical Information Center, April 1990. http://dx.doi.org/10.21236/ada222273.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Henry, Laurence L. Synthesis and Magnetic, Thermal, and Electrical Measurements on Complex non-Cuprate Superconductors. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/899322.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fulmer, P., J. Kim, A. Manthiram, and J. M. Sanchez. Chemical synthesis of magnetic Fe-B and Fe-Co-B particles and chains. Office of Scientific and Technical Information (OSTI), April 1999. http://dx.doi.org/10.2172/334201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Das, Supriyo. Synthesis and structural, magnetic, thermal, and transport properties of several transition metal oxides and aresnides. Office of Scientific and Technical Information (OSTI), January 2010. http://dx.doi.org/10.2172/985308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Halasyamani, Shiv, and Craig Fennie. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials. Office of Scientific and Technical Information (OSTI), November 2016. http://dx.doi.org/10.2172/1331973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography