To see the other types of publications on this topic, follow the link: Magnetic traps.

Journal articles on the topic 'Magnetic traps'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetic traps.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

LYUKSYUTOV, I. F. "NANOSCALE MAGNETIC TRAPS." Modern Physics Letters B 16, no. 15n16 (July 10, 2002): 569–76. http://dx.doi.org/10.1142/s0217984902004081.

Full text
Abstract:
We show that nanofabricated magnetic textures allow the trapping and manipulation of nanosize diamagnetic systems, such as carbon nanotubes, proteins and membranes as well as cold atoms. The latter can have temperatures as high as 1 K. Magnetic textures which can be used as traps, include films, dots and nanowires, both single and in arrays. Manipulation with trapped nanoparticles/atoms is possible by using external magnetic fields. We also briefly discuss prospects for magnetic traps at the micron scale.
APA, Harvard, Vancouver, ISO, and other styles
2

Skovoroda, Alexander A. "Principles of Magnetic Traps Symmetrization." Fusion Technology 35, no. 1T (January 1999): 238–42. http://dx.doi.org/10.13182/fst99-a11963859.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Metcalf, H. "Magnetic traps for neutral atoms." Annales de Physique 10, no. 6 (1985): 733–36. http://dx.doi.org/10.1051/anphys:01985001006073300.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pickel, Jason G., and Daniel G. Cole. "Manipulation of Magnetic Particles Using Adaptive Magnetic Traps." IEEE Transactions on Control Systems Technology 21, no. 1 (January 2013): 212–19. http://dx.doi.org/10.1109/tcst.2011.2174364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Meacher, David. "Magnetic traps hit a new low." Physics World 8, no. 7 (July 1995): 21–22. http://dx.doi.org/10.1088/2058-7058/8/7/22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Koelman, J. M. V. A., H. T. C. Stoof, B. J. Verhaar, and J. T. M. Walraven. "Spin-polarized deuterium in magnetic traps." Physical Review Letters 59, no. 6 (August 10, 1987): 676–79. http://dx.doi.org/10.1103/physrevlett.59.676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Brushlinskii, K. V., A. S. Gol’dich, and A. S. Desyatova. "Plasmostatic models of magnetic galateya-traps." Mathematical Models and Computer Simulations 5, no. 2 (March 24, 2013): 156–66. http://dx.doi.org/10.1134/s207004821302004x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Reichel, J., W. Hänsel, and T. W. Hänsch. "Atomic Micromanipulation with Magnetic Surface Traps." Physical Review Letters 83, no. 17 (October 25, 1999): 3398–401. http://dx.doi.org/10.1103/physrevlett.83.3398.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Allwood, D. A., T. Schrefl, G. Hrkac, I. G. Hughes, and C. S. Adams. "Mobile atom traps using magnetic nanowires." Applied Physics Letters 89, no. 1 (July 3, 2006): 014102. http://dx.doi.org/10.1063/1.2219397.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lionnet, T., J. F. Allemand, A. Revyakin, T. R. Strick, O. A. Saleh, D. Bensimon, and V. Croquette. "Single-Molecule Studies Using Magnetic Traps." Cold Spring Harbor Protocols 2012, no. 1 (December 22, 2011): pdb.top067488. http://dx.doi.org/10.1101/pdb.top067488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Weinstein, J. D., and K. G. Libbrecht. "Microscopic magnetic traps for neutral atoms." Physical Review A 52, no. 5 (November 1, 1995): 4004–9. http://dx.doi.org/10.1103/physreva.52.4004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Lesanovsky, I., J. Schmiedmayer, and P. Schmelcher. "Rydberg atoms in magnetic quadrupole traps." Europhysics Letters (EPL) 65, no. 4 (February 2004): 478–84. http://dx.doi.org/10.1209/epl/i2003-10109-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Tsypin, V. S., A. G. Elfimov, C. A. de Azevedo, and A. S. de Assis. "Alfvén current drive in magnetic traps." Physical Review E 51, no. 3 (March 1, 1995): 2662–64. http://dx.doi.org/10.1103/physreve.51.2662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Giuliani, Paolo, Thomas Neukirch, and Paul Wood. "Particle Motion in Collapsing Magnetic Traps in Solar Flares. I. Kinematic Theory of Collapsing Magnetic Traps." Astrophysical Journal 635, no. 1 (December 10, 2005): 636–46. http://dx.doi.org/10.1086/497366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zakeri, Rashid, Joseph R. Basore, and Lane A. Baker. "Modulated fluorescence detection with microelectromagnetic traps." Analytical Methods 7, no. 6 (2015): 2273–77. http://dx.doi.org/10.1039/c4ay02828g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Vandas, M., S. Fischer, A. Geranios, M. Dryer, Z. Smith, and T. Detman. "Magnetic traps in the interplanetary medium associated with magnetic clouds." Journal of Geophysical Research: Space Physics 101, A10 (October 1, 1996): 21589–96. http://dx.doi.org/10.1029/96ja01640.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Koelman, J. M. V. A., H. T. C. Stoof, B. J. Verhaar, and J. T. M. Walraven. "Spin-Polarized Deuterium: Stabilization in Magnetic Traps." Japanese Journal of Applied Physics 26, S3-1 (January 1, 1987): 249. http://dx.doi.org/10.7567/jjaps.26s3.249.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Parker, Matthew. "Magnetic traps help robots navigate soft tissue." Nature Electronics 4, no. 11 (November 2021): 770. http://dx.doi.org/10.1038/s41928-021-00679-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Somov, B. V., and S. A. Bogachev. "The betatron effect in collapsing magnetic traps." Astronomy Letters 29, no. 9 (September 2003): 621–28. http://dx.doi.org/10.1134/1.1607500.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Long, Romain, Tilo Steinmetz, Peter Hommelhoff, Wolfgang Hänsel, Theodor W. Hänsch, and Jakob Reichel. "Magnetic microchip traps and single–atom detection." Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361, no. 1808 (July 15, 2003): 1375–89. http://dx.doi.org/10.1098/rsta.2003.1207.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Meglio, Adrien, Elise Praly, Fangyuan Ding, Jean-Francois Allemand, David Bensimon, and Vincent Croquette. "Single DNA/protein studies with magnetic traps." Current Opinion in Structural Biology 19, no. 5 (October 2009): 615–22. http://dx.doi.org/10.1016/j.sbi.2009.08.005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dimitrov, S. K., S. V. Makhin, and A. S. Morozov. "Direct energy converter for open magnetic traps." Soviet Atomic Energy 60, no. 2 (February 1986): 129–31. http://dx.doi.org/10.1007/bf01371177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Szaforz, Ż., and M. Tomczak. "Testing the Model of Oscillating Magnetic Traps." Solar Physics 290, no. 1 (August 6, 2014): 115–27. http://dx.doi.org/10.1007/s11207-014-0574-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Xie, Rui-Hua, and Paul Brumer. "Quantum Reflection of Ultracold Atoms in Magnetic Traps." Zeitschrift für Naturforschung A 54, no. 3-4 (April 1, 1999): 167–70. http://dx.doi.org/10.1515/zna-1999-3-401.

Full text
Abstract:
Ultracold neutral atoms can be trapped in spatially inhomogeneous magnetic fields. In this paper, we present a theoretical model and demonstrate by using Landau-Zener tool that if the magnetic resonant transition region is very narrow, "potential barriers" appear and quantum reflection of such ultracold atoms can be observed in this region.
APA, Harvard, Vancouver, ISO, and other styles
25

Timonen, J. V. I., C. Raimondo, D. Pilans, P. P. Pillai, and B. A. Grzybowski. "Trapping, manipulation, and crystallization of live cells using magnetofluidic tweezers." Nanoscale Horizons 2, no. 1 (2017): 50–54. http://dx.doi.org/10.1039/c6nh00104a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Jitariu, Andrei, Crina Ghemes, Nicoleta Lupu, and Horia Chiriac. "Magnetic particles detection by using spin valve sensors and magnetic traps." AIP Advances 7, no. 5 (May 2017): 056616. http://dx.doi.org/10.1063/1.4973745.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Zhang, Yong‐xia. "Aeromagnetic anomalies and perspective oil traps in China." GEOPHYSICS 59, no. 10 (October 1994): 1492–99. http://dx.doi.org/10.1190/1.1443539.

Full text
Abstract:
Based on analyses of aeromagnetic data from known oil and gas fields in China, aeromagnetic anomalies have been classified according to their genesis into three types: (1) structure‐associated anomalies related to volcanic rock, (2) anomalies related to magnetic basement fault blocks, and (3) structure‐associated anomalies related to weakly magnetic sedimentary strata. The most successful applications of aeromagnetic data for locating favorable oil and gas structures are in the following kinds of areas: (1) areas where basement fault blocks of inhomogeneous lithology and magnetization are developed; (2) areas of weakly magnetic layered strata with a considerable thickness, either effusive or clastic deposits; and (3) areas where magnetic layers have undergone tectonic deformation with faulting and dip angles larger than 30 degrees. For reliable detection of such structures in sedimentary rocks and associated oil and gas traps, an integrated interpretation of geological and geophysical data is necessary.
APA, Harvard, Vancouver, ISO, and other styles
28

Lyuksyutov, I. F., A. Lyuksyutova, D. G. Naugle, and K. D. D. Rathnayaka. "Trapping Microparticles with Strongly Inhomogeneous Magnetic Fields." Modern Physics Letters B 17, no. 17 (July 20, 2003): 935–40. http://dx.doi.org/10.1142/s0217984903005974.

Full text
Abstract:
By using micron size permanent magnets we have trapped directly single diamagnetic micron size polystyrene microspheres inside a buffer solution with a magnetic field and demonstrated self-assembly of several hundred microns long chains of microspheres in magnetic traps.
APA, Harvard, Vancouver, ISO, and other styles
29

Lovelace, R. V. E., T. J. Tommila, and D. M. Lee. "Theory of Bose-Einstein Condensation in Magnetic Traps." Japanese Journal of Applied Physics 26, S3-1 (January 1, 1987): 239. http://dx.doi.org/10.7567/jjaps.26s3.239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Contreras-Cáceres, Rafael, Sara Abalde-Cela, Pablo Guardia-Girós, Antonio Fernández-Barbero, Jorge Pérez-Juste, Ramon A. Alvarez-Puebla, and Luis M. Liz-Marzán. "Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection." Langmuir 27, no. 8 (April 19, 2011): 4520–25. http://dx.doi.org/10.1021/la200266e.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Burdakov, A. V., A. A. Ivanov, and E. P. Kruglyakov. "Axially Symmetric Magnetic Mirror Traps: Status and Prospects." Fusion Science and Technology 51, no. 2T (February 2007): 17–22. http://dx.doi.org/10.13182/fst07-a1306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Arnold, A. S., and E. Riis. "Bose-Einstein condensates in 'giant' toroidal magnetic traps." Journal of Modern Optics 49, no. 5-6 (April 2002): 959–64. http://dx.doi.org/10.1080/09500340110109395.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Shapiro, V. E. "Rotating magnetic quadrupole field traps for neutral atoms." Physical Review A 54, no. 2 (August 1, 1996): R1018—R1021. http://dx.doi.org/10.1103/physreva.54.r1018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Morozov, A. I., and V. V. Savel'ev. "On Galateas — magnetic traps with plasma-embedded conductors." Uspekhi Fizicheskih Nauk 168, no. 11 (1998): 1153. http://dx.doi.org/10.3367/ufnr.0168.199811a.1153.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morozov, A. I., and V. V. Savel'ev. "On Galateas — magnetic traps with plasma-embedded conductors." Physics-Uspekhi 41, no. 11 (November 30, 1998): 1049–89. http://dx.doi.org/10.1070/pu1998v041n11abeh000501.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Baranowski, K. L., and C. A. Sackett. "A stable ac current source for magnetic traps." Journal of Physics B: Atomic, Molecular and Optical Physics 39, no. 14 (June 30, 2006): 2949–57. http://dx.doi.org/10.1088/0953-4075/39/14/003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hu, Jianjun, and Jianping Yin. "Controllable double-well magnetic traps for neutral atoms." Journal of the Optical Society of America B 19, no. 12 (December 2, 2002): 2844. http://dx.doi.org/10.1364/josab.19.002844.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nawarathna, Dharmakeerthi, Nazila Norouzi, Jolie McLane, Himanshu Sharma, Nicholas Sharac, Ted Grant, Aaron Chen, Scott Strayer, Regina Ragan, and Michelle Khine. "Shrink-induced sorting using integrated nanoscale magnetic traps." Applied Physics Letters 102, no. 6 (February 11, 2013): 063504. http://dx.doi.org/10.1063/1.4790191.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Koschwanez, John H., Robert H. Carlson, and Deirdre R. Meldrum. "Easily fabricated magnetic traps for single-cell applications." Review of Scientific Instruments 78, no. 4 (2007): 044301. http://dx.doi.org/10.1063/1.2722400.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Hodeib, Samar, Saurabh Raj, Maria Manosas, Weiting Zhang, Debjani Bagchi, Bertrand Ducos, Francesca Fiorini, et al. "A mechanistic study of helicases with magnetic traps." Protein Science 26, no. 7 (June 13, 2017): 1314–36. http://dx.doi.org/10.1002/pro.3187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Marti, Lea, Nergiz Şahin Solmaz, Michal Kern, Anh Chu, Reza Farsi, Philipp Hengel, Jialiang Gao, et al. "Towards optical MAS magnetic resonance using optical traps." Journal of Magnetic Resonance Open 18 (March 2024): 100145. http://dx.doi.org/10.1016/j.jmro.2023.100145.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Toscano, D., S. A. Leonel, P. Z. Coura, and F. Sato. "Building traps for skyrmions by the incorporation of magnetic defects into nanomagnets: Pinning and scattering traps by magnetic properties engineering." Journal of Magnetism and Magnetic Materials 480 (June 2019): 171–85. http://dx.doi.org/10.1016/j.jmmm.2019.02.075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Mirowski, Elizabeth, John Moreland, Stephen Russek, Michael Donahue, and Kuangwen Hsieh. "Manipulation of magnetic particles by patterned arrays of magnetic spin-valve traps." Journal of Magnetism and Magnetic Materials 311, no. 1 (April 2007): 401–4. http://dx.doi.org/10.1016/j.jmmm.2006.11.202.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Fletcher, W. K., M. Church, and J. Wolcott. "Fluvial-transport equivalence of heavy minerals in the sand size range." Canadian Journal of Earth Sciences 29, no. 9 (September 1, 1992): 2017–21. http://dx.doi.org/10.1139/e92-158.

Full text
Abstract:
Sediments caught in two pit traps installed in Harris Creek, a small gravel-bed stream in southern British Columbia, were sieved to give five size fractions between 53 and 425 μm, which were then separated into their magnetic and nonmagnetic components. Estimates of transport-equivalent sizes of the higher density magnetic fractions were obtained by determining the grain sizes of magnetic and nonmagnetic particles that enter the traps at proportionally similar rates for a wide range of discharge conditions. The estimates of transport-equivalent sizes are compared with settling-velocity equivalents from settling-tube data. Each heavy-mineral size fraction is transported at a rate similar to a specific larger size fraction, which is approximated by the equivalent settling diameter of particles of lower density.
APA, Harvard, Vancouver, ISO, and other styles
45

Huber, T., A. Zrenner, W. Wegscheider, and M. Bichler. "Electrostatic Exciton Traps." physica status solidi (a) 166, no. 1 (March 1998): R5—R6. http://dx.doi.org/10.1002/(sici)1521-396x(199803)166:13.0.co;2-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Lev, B. "Fabrication of micro-magnetic traps for cold neutral atoms." Quantum Information and Computation 3, no. 5 (2003): 450–64. http://dx.doi.org/10.26421/qic3.5-5.

Full text
Abstract:
Many proposals for quantum information processing require precise control over the motion of neutral atoms, as in the manipulation of coherent matter waves or the confinement and localization of individual atoms. Patterns of micron-sized wires, fabricated lithographically on a flat substrate, can conveniently produce large magnetic-field gradients and curvatures to trap cold atoms and to facilitate the production of Bose-Einstein condensates. The intent of this paper is to provide the researcher who has access to a standard clean-room enough information to design and fabricate such devices.
APA, Harvard, Vancouver, ISO, and other styles
47

Brushlinskii, K. V., and E. V. Stepin. "On equilibrium magnetoplasma configurations in “Galatea-Belt” magnetic traps." Journal of Physics: Conference Series 2028, no. 1 (October 1, 2021): 012026. http://dx.doi.org/10.1088/1742-6596/2028/1/012026.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Harris, J. G. E., R. A. Michniak, S. V. Nguyen, W. C. Campbell, D. Egorov, S. E. Maxwell, L. D. van Buuren, and J. M. Doyle. "Deep superconducting magnetic traps for neutral atoms and molecules." Review of Scientific Instruments 75, no. 1 (January 2004): 17–23. http://dx.doi.org/10.1063/1.1633993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Brushlinskii, K. V., and N. A. Chmykhova. "Plasma equilibrium in the magnetic field of Galatea traps." Mathematical Models and Computer Simulations 3, no. 1 (January 16, 2011): 9–17. http://dx.doi.org/10.1134/s2070048211010017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Vitanov, N. V., and K. A. Suominen. "Time-dependent control of ultracold atoms in magnetic traps." Physical Review A 56, no. 6 (December 1, 1997): R4377—R4380. http://dx.doi.org/10.1103/physreva.56.r4377.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography