Academic literature on the topic 'Magnetic systems dynamics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic systems dynamics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic systems dynamics"

1

Ji, J. C., Colin H. Hansen, and Anthony C. Zander. "Nonlinear Dynamics of Magnetic Bearing Systems." Journal of Intelligent Material Systems and Structures 19, no. 12 (May 20, 2008): 1471–91. http://dx.doi.org/10.1177/1045389x08088666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Bin, Jianwei Li, Fuming Xu, Yadong Wei, Jian Wang, and Hong Guo. "Transient dynamics of magnetic Co–graphene systems." Nanoscale 7, no. 22 (2015): 10030–38. http://dx.doi.org/10.1039/c5nr01525a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Awschalom, D. D., and J. M. Halbout. "Picosecond spin dynamics in dilute magnetic systems." Journal of Magnetism and Magnetic Materials 54-57 (February 1986): 1381–84. http://dx.doi.org/10.1016/0304-8853(86)90862-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rubí, J. M., A. Pérez-Madrid, and M. C. Miguel. "Relaxation dynamics in systems of magnetic particles." Journal of Non-Crystalline Solids 172-174 (September 1994): 495–500. http://dx.doi.org/10.1016/0022-3093(94)90479-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zivieri, Roberto, and Giancarlo Consolo. "Hamiltonian and Lagrangian Dynamical Matrix Approaches Applied to Magnetic Nanostructures." Advances in Condensed Matter Physics 2012 (2012): 1–16. http://dx.doi.org/10.1155/2012/765709.

Full text
Abstract:
Two micromagnetic tools to study the spin dynamics are reviewed. Both approaches are based upon the so-called dynamical matrix method, a hybrid micromagnetic framework used to investigate the spin-wave normal modes of confined magnetic systems. The approach which was formulated first is the Hamiltonian-based dynamical matrix method. This method, used to investigate dynamic magnetic properties of conservative systems, was originally developed for studying spin excitations in isolated magnetic nanoparticles and it has been recently generalized to study the dynamics of periodic magnetic nanoparticles. The other one, the Lagrangian-based dynamical matrix method, was formulated as an extension of the previous one in order to include also dissipative effects. Such dissipative phenomena are associated not only to intrinsic but also to extrinsic damping caused by injection of a spin current in the form of spin-transfer torque. This method is very accurate in identifying spin modes that become unstable under the action of a spin current. The analytical development of the system of the linearized equations of motion leads to a complex generalized Hermitian eigenvalue problem in the Hamiltonian dynamical matrix method and to a non-Hermitian one in the Lagrangian approach. In both cases, such systems have to be solved numerically.
APA, Harvard, Vancouver, ISO, and other styles
6

Kovalev, A. S., Y. E. Prilepskii, and K. A. Gradjushko. "Dynamics of pair of coupled nonlinear systems. I. Magnetic systems." Low Temperature Physics 46, no. 8 (August 2020): 856–62. http://dx.doi.org/10.1063/10.0001554.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Golubović, Leonardo, and Shechao Feng. "Dynamics of droplets in random Ising magnetic systems." Physical Review B 43, no. 1 (January 1, 1991): 972–92. http://dx.doi.org/10.1103/physrevb.43.972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Nordblad, Per. "Non-equilibrium dynamics in fine magnetic particle systems." Journal of Physics D: Applied Physics 41, no. 13 (June 19, 2008): 134011. http://dx.doi.org/10.1088/0022-3727/41/13/134011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Morrison, P. J. "Magnetic field lines, Hamiltonian dynamics, and nontwist systems." Physics of Plasmas 7, no. 6 (June 2000): 2279–89. http://dx.doi.org/10.1063/1.874062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Enomoto, Y., and R. Kato. "Annihilation dynamics of two-dimensional magnetic vortex systems." Progress in Colloid & Polymer Science 106, no. 1 (December 1997): 287–90. http://dx.doi.org/10.1007/bf01189540.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetic systems dynamics"

1

Borlenghi, Simone. "Electronic transport and magnetization dynamics in magnetic systems." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00590363.

Full text
Abstract:
L'objectif de ce travail de thèse est de comprendre l'influence mutuelle entre le transport électronique et la dynamique de l'aimantation dans des nanostructures hybrides magnétiques métalliques. Dans une première partie on a développé un modèle théorique, basé sur la théorie des matrices aléatories, pour décrire au niveau microscopique le transport dépendent du spin dans une nanostructure hétérogène. Ce modèle, appélé CRMT (pour Continuous Random Matrix Theory) a ensuite été traduit dans un code de simulation qui permet de calculer les proprietés locales (couple de transfert de spin, accumulation de spin et courant de spin) et macroscopiques (résistance) du transport dans des conducteurs ohmiques. Le modèle a été validé en le comparant avec une théorie du transport quantique basée sur le calcul des fonctions de Green hors équilibre. Le couplage des ce deux modèles a permis d'effectuer une description multi­échelle du transport dans des nanostructures métalliques hybrides, où les parties ohmiques sont décrites par CRMT et les parties purement quantiques par le formalisme des fonctions de Green. CRMT a ensuite été incorporé dans un code de simulation micromagnétique, pour décrire de façon réaliste la texture spatiale de la dynamique de l'aimantation induite par le transfert de spin. L'originalité de cette approche réside dans la modélisation des mesures spectroscopiques utilisant une détection mécanique de la résonance ferromagnétique, conduites sur des oscillateurs à transport de spin. Ce travail a permis d'obtenir le diagramme de phase dynamique de l'aimantation, ainsi que les règles de sélection des ondes de spin et la compétition entre les modes propres du systeme lors du passage d'un courant continu à travers la multicouche, en accord partiel avec les données experimentales
APA, Harvard, Vancouver, ISO, and other styles
2

Borlenghi, Garoia Simone. "Electronic transport and magnetization dynamics in magnetic systems." Paris 6, 2011. http://www.theses.fr/2011PA066009.

Full text
Abstract:
L'objectif de ce travail de thèse est de comprendre l'influence mutuelle entre transport électronique et dynamique de l'aimantation dans des nanostructures hybrides magnétiques métalliques. Dans une première partie on a développé un modèle théorique, basé sur la théorie des matrices aléatories, pour décrire à niveau microscopique le transport dépendent du spin dans une nanostructure hétérogène. Ce modèle, appélé CRMT (Continuous Random Matrix Theory) a ensuite été traduit dans un code de simulation qui permet de calculer les proprietés locales (couple de transfert de spin, accumulation de spin et courant de spin) et globales (résistance) de transport dans des conducteurs ohmiques. Le modèle a été validé en le comparant avec une théorie du transport quantique basée sur le calcul des fonctions de Green hors équilibre (NEGF-Non Equilibrium Green Function formalism). Le couplage des ce deux modèles a permis d'éffectuer une description multi-échelle du transport dans des nanostructures métalliques hybrides, où les parties ohmiques sont décrites par CRMT (plus pérformant du point de vue computationnel) et les parties purement quantiques par le formalisme des fonctions de Green. CRMT a ensuite été couplé à un code de simulation micromagnétique, pour prendre en compte la dynamique complexe de l'aimantation induite par le transfert de spin. L'originalité de cette approche réside dans la modélisation des expériences de résonance ferromagnétique conduites sur des oscillateurs a transport de spin. Ce travail a permis la mise en évidence des règles de sélection des ondes de spin induites par le transfert de spin, en accord avec les données experimentales
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Shulei. "Spin Transport and Magnetization Dynamics in Various Magnetic Systems." Diss., The University of Arizona, 2014. http://hdl.handle.net/10150/333352.

Full text
Abstract:
The general theme of the thesis is the interplay between magnetization dynamics and spin transport. The main presentation is divided into three parts. The first part is devoted to deepening our understanding on magnetic damping of ferromagnetic metals, which is one of the long-standing issues in conventional spintronics that has not been completely understood. For a nonuniformly-magnetized ferromagnetic metal, we find that the damping is nonlocal and is enhanced as compared to that in the uniform case. It is therefore necessary to generalize the conventional Landau-Lifshitz-Gilbert equation to include the additional damping. In a different vein, the decay mechanism of the uniform precession mode has been investigated. We point out the important role of spin-conserving electron-magnon interaction in the relaxation process by quantitatively examining its contribution to the ferromagnetic resonance linewidth. In the second part, a transport theory is developed for magnons which, in addition to conduction electrons, can also carry and propagate spin angular momentum via the magnon current. We demonstrate that the mutual conversion of magnon current and spin current may take place at magnetic interfaces. We also predict a novel magnon-mediated electric drag effect in a metal/magnetic-insulator/metal trilayer structure. This study may pave the way to the new area of insulator-based spintronics. In the third part of thesis, particular attention is paid to the influence the spin orbit coupling on both charge and spin transport. We theoretically investigate magnetotransport anisotropy and the conversion relations of spin and charge currents in various magnetic systems, and apply our results to interpret recent experiments.
APA, Harvard, Vancouver, ISO, and other styles
4

Pimental, Iveta Rombeiro do Rego. "Critical dynamics in spin glasses and dilute magnets." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329986.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lago, Jorge. "Magnetic ordering and dynamics of two transition metal oxide systems." Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.670216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ellis, Kevin John. "Neutron and muon studies of spin dynamics in magnetic systems." Thesis, University of Huddersfield, 2013. http://eprints.hud.ac.uk/id/eprint/18079/.

Full text
Abstract:
In this thesis I present an investigation on the spin dynamics observed during moment localisation, non-ergodic magnetic phase transitions, and weak itinerant electron magnetism. The pseudo-binary compound Y(Mn1-xAlx)2 has been investigated under the influence of equivalent opposing chemical and mechanical pressures using Muon Spin Relaxation. The results reveal the application of external mechanical pressure (4.5kbar) to destabilise the manganese moment, and produce a ground stte distinctly different to that seen under ambient pressure conditions. Short-range nuclear and spin correlations have been studies via diffuse neutron scattering, and through a combination of analysis techniques I have mapped the temperature dependence of these correlations and their evolution due to the substitution of manganese for aluminium. Applying new methods of hierarchical relaxation and non-extensive entopy I have studied the slow relaxation dynamics of the spin glass phase using Beutron Spin Echo spectroscopy. The results are dveloped further by applying the same analysis to a variety of glassy magnetic phenomena: spin glass freezing ((La1-xEr x)Al )Al2), and superparamagnetic blocking (Cr 1-xFe x). I have shown that within this framework the underlying freezing mechanisms result in distinctly different responses, and that in the case of spin glass relaxation an apparantly universal scaling relationship is present. Finally the results of a Muon Spin Relaxation study on the moment fluctuations in Au4V above the Curie temperature are reported. The temperature dependence of the muon spin relaxation rate is to be similar to that of the archetypal weak itinerant helimagnet, MnSi.
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Dawei. "Relaxation dynamics in some reentrant disordered magnetic systems, FeNiCr, FeNiMn, CrFe." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq23627.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dobramysl, Ulrich. "On the Relaxation Dynamics of Disordered Systems." Diss., Virginia Tech, 2013. http://hdl.handle.net/10919/23757.

Full text
Abstract:
We investigate the properties of two distinct disordered systems: the two-species predator-prey Lotka-Volterra model with rate variability, and an elastic line model to simulate vortex lines in type-II superconductors. We study the effects of intrinsic demographic variability with inheritance in the reaction rates of the Lotka-Volterra model via zero-dimensional Monte Carlo simulations as well as two-dimensional lattice simulations. Individuals of each species are assigned inheritable predation efficiencies during their creation, leading to evolutionary dynamics and thus population-level optimization. We derive an effective subspecies mean-field theory and compare its results to our numerical data. Furthermore, we introduce environmental variability via quenched spatial reaction-rate randomness. We investigate the competing effects and relative importance of the two types of variability, and find that both lead to a remarkable enhancement of the species densities, while the aforementioned optimization effects are essentially neutral in the densities. Additionally, we collected extinction time histograms for small systems and find a marked increase in the stability of the populations against extinction due to the presence of variability. We employ an elastic line model to investigate the steady-state properties and non-equilibrium relaxation kinetics of magnetic vortex lines in disordered type-II superconductors. To this end, we developed a versatile and efficient Langevin molecular dynamics simulation code, allowing us to do a careful study of samples with or without vortex-vortex interactions or disorder allows us to disentangle the various complex relaxational features present in this system and investigate their origin. In particular, we compare disordered samples with randomly distributed point defects versus correlated columnar defects. We extract two-time quantities such as the mean-square displacement, the height and density correlations, to investigate the relaxation kinetics of the system of flux lines. Additionally, we compare the steady-state mean velocity and gyration radius as a function of an external driving current in the presence of point-like and columnar disorder. We validate our simulation algorithm by matching our results against a previously-used Monte Carlo algorithm, verifying that these microscopically quite distinct methods yield similar results even in out-of-equilibrium settings.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Schmiel, David R. "Effects of variations in controller gains on the dynamics of magnetic bearings." Thesis, This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-11182008-063516/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yadav, Nirbhay N. "Probing porous systems using nuclear magnetic resonance diffusometry." View thesis, 2009. http://handle.uws.edu.au:8081/1959.7/46601.

Full text
Abstract:
Thesis (Ph.D.)--University of Western Sydney, 2009.
A thesis presented to the University of Western Sydney, College of Health and Science, School of Biomedical and Health Sciences, in fulfilment of the requirements for the degree of Doctor of Philosophy. Includes bibliographies.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetic systems dynamics"

1

Rabinovich, B. I. Vortex processes and solid body dynamics: The dynamic problems of spacecrafts and magnetic levitation systems. Dordrecht: Kluwer Academic, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

H, Brummell Nicholas, and International Astronomical Union, eds. Astrophysical dynamics: From stars to galaxies : proceedings of the 271st Symposium of the International Astronomical Union, held in Nice, France, June 21-25, 2010. Cambridge, U.K. ; New York: Cambridge University Press, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Skjeltorp, Arne T. Dynamical Properties of Unconventional Magnetic Systems. Dordrecht: Springer Netherlands, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skjeltorp, Arne T., and David Sherrington, eds. Dynamical Properties of Unconventional Magnetic Systems. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4988-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Peter, Entel, and Wolf Dietrich E, eds. International Symposium on Structure and Dynamics of Heterogeneous Systems: From atoms, molecules and clusters in complex environment to thin films and multilayers : Duisburg, Germany, 24-26 February 1999. Singapore: World Scientific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Suzuki, Sei. Quantum Ising Phases and Transitions in Transverse Ising Models. 2nd ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jonason, Kristian. Dynamics of Complex Magnetic Systems. Uppsala Universitet, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Martínez-Pérez, M. J., R. Kleiner, and D. Koelle. NanoSQUIDs Applied to the Investigation of Small Magnetic Systems. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.19.

Full text
Abstract:
This article discusses the use of nanoSQUIDs for investigating small magnetic systems. It begins with an overview of the basics of superconducting quantum interference devices, focusing on how a dc SQUID operates and the use of resistively and capacitively shunted junction model to describe the phase dynamics of Josephson junctions (JJs). It then considers the motivation for using nanoSQUIDs, along with the importance of their size and geometry. It also evaluates micro- and nanoSQUIDs made of various types of JJs including nanoSQUIDs based on sandwich-like junctions, constriction-like junctions, and proximized structures. After reviewing different nanoSQUID readout methods that can be used to directly sense the stray magnetic field created by a nanoscale magnetic sample, the article concludes by highlighting some of the practical constraints and challenges encountered in using nanoSQUID technology, including particle positioning with respect to the sensor’s surface.
APA, Harvard, Vancouver, ISO, and other styles
9

Rabinovich, B., A. I. Lebedev, and A. I. Mytarev. Vortex Processes and Solid Body Dynamics: The Dynamic Problems of Spacecrafts and Magnetic Levitation Systems (Fluid Mechanics and Its Applications). Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Eriksson, Olle, Anders Bergman, Lars Bergqvist, and Johan Hellsvik. Atomistic Spin Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.001.0001.

Full text
Abstract:
The purpose of this book is to provide a theoretical foundation and an understanding of atomistic spin-dynamics, and to give examples of where the atomistic Landau-Lifshitz-Gilbert equation can and should be used. The contents involve a description of density functional theory both from a fundamental viewpoint as well as a practical one, with several examples of how this theory can be used for the evaluation of ground state properties like spin and orbital moments, magnetic form-factors, magnetic anisotropy, Heisenberg exchange parameters, and the Gilbert damping parameter. This book also outlines how interatomic exchange interactions are relevant for the effective field used in the temporal evolution of atomistic spins. The equation of motion for atomistic spin-dynamics is derived starting from the quantum mechanical equation of motion of the spin-operator. It is shown that this lead to the atomistic Landau-Lifshitz-Gilbert equation, provided a Born-Oppenheimer-like approximation is made, where the motion of atomic spins is considered slower than that of the electrons. It is also described how finite temperature effects may enter the theory of atomistic spin-dynamics, via Langevin dynamics. Details of the practical implementation of the resulting stochastic differential equation are provided, and several examples illustrating the accuracy and importance of this method are given. Examples are given of how atomistic spin-dynamics reproduce experimental data of magnon dispersion of bulk and thin-film systems, the damping parameter, the formation of skyrmionic states, all-thermal switching motion, and ultrafast magnetization measurements.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetic systems dynamics"

1

Udrişte, Constantin. "Magnetic Dynamical Systems and Sabba Ştefănescu Conjectures." In Geometric Dynamics, 303–55. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4187-1_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Skjeltorp, A. T., S. Clausen, and G. Helgesen. "Magnetic Multiparticle Systems and Symbolic Dynamics." In Dynamical Properties of Unconventional Magnetic Systems, 317–42. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4988-4_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tani, J. "Chaos in Systems with Magnetic Force." In Springer Series in Nonlinear Dynamics, 153–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79329-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Loss, Daniel. "Quantum Dynamics in Mesoscopic Magnetism." In Dynamical Properties of Unconventional Magnetic Systems, 29–75. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4988-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Westervelt, R. M., and K. L. Babcock. "Dynamics of Cellular Magnetic Domain Patterns." In Nonlinear Structures in Physical Systems, 214–22. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-3440-1_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chantrell, R. W. "Introduction to Thermal Activation and High Frequency Dynamics." In Magnetic Storage Systems Beyond 2000, 321–44. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0624-8_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sachdev, Subir. "Dynamics and Transport Near Quantum-Critical Points." In Dynamical Properties of Unconventional Magnetic Systems, 133–78. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-4988-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Theveneau, Hélène. "Nuclear Magnetic Relaxation in Ionic Conductor Materials." In Structure and Dynamics of Molecular Systems, 231–54. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4662-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Mizuno, Takeshi, and Toshiro Higuchi. "Structure of Magnetic Bearing Control System for Compensating Unbalance Force." In Dynamics of Controlled Mechanical Systems, 135–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83581-0_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

de Bergevin, F., and M. Brunel. "Study of Magnetic Structures by X-ray Diffraction." In Structure and Dynamics of Molecular Systems, 69–86. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4662-0_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic systems dynamics"

1

Andreeva, Elena G., Irina A. Semina, and Sergey G. Shantarenko. "The research of the magnetic field power characteristics of a hybrid magnetic system with various concentrators." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239428.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Andreeva, Yelena G., Irina A. Semina, and Andrey S. Orlov. "The research of three-dimensional magnetic field of the hybrid magnetic system in the ANSYS Maxwell program." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818964.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Tatevosyan, Andrey A., and Aleksandr S. Tatevosyan. "Calculation of magnetic system of the magnetoelectric machines." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheredov, Alexander I., Andrey V. Shchelkanov, Ravil A. Akhmedzhanov, and Egor O. Korenev. "Magnetically sensitive converter of the magnetic field gradient based on oscillistor." In 2017 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2017. http://dx.doi.org/10.1109/dynamics.2017.8239443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tatevosyan, Andrey A. "The calculation of the magnetic field of the synchronous magnetoelectric generator." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wiese, Uwe-Jens. "Effective theories for magnetic systems." In 6th International Workshop on Chiral Dynamics. Trieste, Italy: Sissa Medialab, 2010. http://dx.doi.org/10.22323/1.086.0072.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Baranov, Pavel, Vitalia Baranova, Sergey Uchaikin, and Yana Pisarenko. "Creating a uniform magnetic field using axial coils system for calibration of magnetometers." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7818973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Udalov, Sergey N., Andrey A. Achitaev, and Alexander G. Pristup. "Improving dynamic stability of a wind turbine using a magnetic continuously variable transmission." In 2016 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2016. http://dx.doi.org/10.1109/dynamics.2016.7819102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Udalov, Sergey N., Andrey A. Achitaev, and Vitaliy A. Marchenko. "Frequency Responses of Wind Turbines with Magnetic Speed Reduction in Autonomous Power Systems." In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Diakov, Dimitar, Hristo Radev, Velizar Vassilev, and Hristiana Nikolova. "NICA Complex Buster Magnetic System Modules Geometric Parameters Measurements." In 2019 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2019. http://dx.doi.org/10.1109/dynamics47113.2019.8944480.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetic systems dynamics"

1

Ralph, Daniel C., David D. Awschalom, Robert A. Buhrman, Ramamoorthy Ramesh, Darrell G. Schlom, Lu J. Sham, and Stuart A. Wolf. Electrical Control of Magnetic Dynamics in Hybrid Metal-Semiconductor Systems. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada610862.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Krakauer, Henry, and Shiwei Zhang. Predictive Capability for Strongly Correlated Systems: Mott Transition in MnO, Multielectron Magnetic Moments, and Dynamics Effects in Correlated Materials. Office of Scientific and Technical Information (OSTI), February 2013. http://dx.doi.org/10.2172/1063633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Vannette, Matthew Dano. Dynamic magnetic susceptibility of systems with long-range magnetic order. Office of Scientific and Technical Information (OSTI), January 2009. http://dx.doi.org/10.2172/976275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rousochatzakis, Ioannis. Theoretical Investigation of Dynamic Properties of Magnetic Molecule Systems as Probed by NMR and Pulsed Fields Experiments. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/861633.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jarrell, Mark, Warren Pickett, and Richard Scalettar. Predictive Capability for Strongly Correlated Systems: Mott Transition in MnO, Multielectron Magnetic Moments, and Dynamic Effects in Correlated Materials. Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1163763.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

El-Batanouny, Maged. Investigations of surface structural, dynamical, and magnetic properties of systems exhibiting multiferroicity, and topological phases by helium scattering spectroscopies. Office of Scientific and Technical Information (OSTI), August 2015. http://dx.doi.org/10.2172/1206408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography