Academic literature on the topic 'Magnetic properties in spintronics'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic properties in spintronics.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Magnetic properties in spintronics"

1

Owen, Man Hon Samuel. "Electrical gating effects on the magnetic properties of (Ga,Mn)As diluted magnetic semiconductors." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/228705.

Full text
Abstract:
The aim of the research project presented in this thesis is to investigate the effects of electrostatic gating on the magnetic properties of carrier-mediated ferromagnetic Ga1-xMnxAs diluted magnetic semiconductors. (Ga,Mn)As can be regarded as a prototype material because of its strong spin-orbit coupling and its crystalline properties which can be described within a simple band structure model. Compressively strained (Ga,Mn)As epilayer with more complex in-plane competing cubic and uniaxial magnetic anisotropies is of particular interest since a small variation of these competing anisotropy fields provide a means for the manipulation of its magnetization via external electric field. An all-semiconductor epitaxial p-n junction field-effect transistor (FET) based on low-doped Ga0.975Mn0.025As was fabricated. It has an in-built n-GaAs back-gate, which, in addition to being a normal gate, enhances the gating effects, especially in the depletion of the epilayer, by decreasing the effective channel thickness by means of a depletion region. A shift in the Curie temperature of ~2 K and enhanced anisotropic magnetoresistance (AMR) (which at saturation reaches ~30%) is achieved with a depletion of a few volts. Persistent magnetization switchings with short electric field pulses are also observed. The magnitude of the switching field is found to decrease with increasing depletion of the (Ga,Mn)As layer. By employing the k . p semiconductor theory approach (performed by our collaborators in Institute of Physics, ASCR, Prague), including strong spin-orbit coupling effects in the host semiconductor valence band, a change in sign of Kc at hole density of approximately 1.5x1020 cm-3 is observed. Below this density, the [110]/[1⁻10] magnetization directions are favoured, consistent with experimental data. A double-gated FET, with an ionic-gel top-gate coupled with a p-n junction back-gate based on the same material, was also employed in an attempt to achieve larger effects through gating. It reaffirms the results obtained and demonstrates enhanced gating effects on the magnetic properties of (Ga,Mn)As.
APA, Harvard, Vancouver, ISO, and other styles
2

Gustavsson, Fredrik. "Properties of Fe/ZnSe Heterostructures : A Step Towards Semiconductor Spintronics." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2002. http://publications.uu.se/theses/91-554-5314-7/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Lu, Yongxiong. "Synthesis and magnetic properties of Fe₃O₄/GaAs(100) structures for spintronics." Thesis, University of York, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.424536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rovinelli, Giovanni. "Magnetic, morphological and structural properties of polycrystalline ultrathin cobalt films for organic spintronics." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
The opportunity of using the organic molecules in spintronic devices appeared challenging since these materials, having nominally high spin relaxation times, are suitable for coherent spin manipulation. The spin behaviour in these molecular spintronic devices has been demonstrated to strongly depend on the nature of the chemical bonds between the organic molecules and the magnetic electrodes affecting also the magnetic response of both molecular and metallic sides. In particular, the adsorption of an organic molecule on a ferromagnetic layer has been proved to change the local magnetism of a magnetic substrate. In spite of their technological interest, the investigation of such effect in the case of the polycrystalline magnetic thin film is still lacking. My work contributes to filling this gap by studying the structural, morphological and magnetic properties of ultrathin polycrystalline cobalt films covered by the well-known buckminsterfullerene organic molecule (C60). The combined investigation by AFM, TEM, SQUID magnetometry and anisotropic magnetoresistance allowed to correlate the sample microstructure with the magnetic response and to identify the main mechanism responsible for spin transport in these FM layers. Analysed films are composed of polycrystalline cobalt grains decoupled by non-crystalline amorphous regions. The volume ratio between crystalline grains and amorphous regions increases by increasing the film thickness. As expected, the values of saturation magnetisation decrease as the crystallinity decreases and a typical blocking behaviour is present. The cobalt layers are also subjected to oxidation at the interface with the single crystal oxide substrate. The presence of amorphous phase in polycrystalline cobalt ultrathin film impacts the analysis of transport properties: the anisotropic magnetoresistance slightly depends on the crystalline phase while it is mainly inherent to the amorphous component.
APA, Harvard, Vancouver, ISO, and other styles
5

Vahaplar, Kadir Tarı Süleyman. "Structural And Magnetic Properties os Si(100)/Ta/Co Multilayers For Spintronics Applications." [s.l.]: [s.n.], 2007. http://library.iyte.edu.tr/tezler/master/fizik/T000662.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Newhouse-Illige, T., Yaohua Liu, M. Xu, et al. "Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions." NATURE PUBLISHING GROUP, 2017. http://hdl.handle.net/10150/624333.

Full text
Abstract:
Magnetic interlayer coupling is one of the central phenomena in spintronics. It has been predicted that the sign of interlayer coupling can be manipulated by electric fields, instead of electric currents, thereby offering a promising low energy magnetization switching mechanism. Here we present the experimental demonstration of voltage-controlled interlayer coupling in a new perpendicular magnetic tunnel junction system with a GdOx tunnel barrier, where a large perpendicular magnetic anisotropy and a sizable tunnelling magnetoresistance have been achieved at room temperature. Owing to the interfacial nature of the magnetism, the ability to move oxygen vacancies within the barrier, and a large proximity-induced magnetization of GdOx, both the magnitude and the sign of the interlayer coupling in these junctions can be directly controlled by voltage. These results pave a new path towards achieving energy-efficient magnetization switching by controlling interlayer coupling.
APA, Harvard, Vancouver, ISO, and other styles
7

Tsai, I.-Ling. "Magnetic properties of two-dimensional materials : graphene, its derivatives and molybdenum disulfide." Thesis, University of Manchester, 2014. https://www.research.manchester.ac.uk/portal/en/theses/magnetic-properties-of-twodimensional-materials-graphene-its-derivatives-and-molybdenum-disulfide(59dcba1b-332e-4a58-86f6-80ed56c7fdd1).html.

Full text
Abstract:
Graphene, an atomically thin material consisting of a hexagonal, highly packed carbon lattice, is of great interests in its magnetic properties. These interests can be categorized in several fields: graphene-based magnetic materials and their applications, large diamagnetism of graphene, and the heterostructures of graphene and other two dimensional materials. In the first aspect, magnetic moments can be in theory introduced to graphene by minimizing its size or introducing structural defects, leading to a very light magnetic material. Furthermore, weak spin-orbital interaction, and long spin relaxation length make graphene promising for spintronics. The first part of this thesis addressed our experimental investigation in defect-induced magnetism of graphene. Non-interacted spins of graphene have been observed by intentionally introducing vacancies and adatoms through ion-irradiation and fluorination, respectively. The defect concentration or the magnetic moments introduced in this thesis cannot provide enough interaction for magnetic coupling. Furthermore, the spins induced by vacancies and adatoms can be controlled through shifting the Fermi energy of graphene using molecular doping, where the adatoms were alternatively introduced by annealing in the inert environment. The paramagnetic responses in graphene induced by vacancy-type defects can only be diverted to half of its maximum, while those induced by sp3 defects can be almost completely suppressed. This difference is supposed that vacancy-type defects induced two localized states (pie and sigma). Only the latter states, which is also the only states induced by sp3 defects, involves in the suppression of magnetic moments at the maximum doping achieved in this thesis. The observation through high resolution transmission electron microscope (HR-TEM) provides more information to the hypothesis of the previous magnetic findings. Reconstructed single vacancy is the majority of defects discovered in proton-irradiated graphene. This result verifies the defect-induced magnetic findings in our results, as well as the electronic properties of defected graphene in the literatures. On the other hand, the diamagnetic susceptibility of neutral graphene is suggested to be larger than that of graphite, and vanish rapidly as a delta-like function when graphene is doped. In our result, surprisingly, the diamagnetic susceptibility varies little when the Fermi level is less than 0.3 eV, in contrast with the theory. When the Fermi energy is higher than 0.3 eV, susceptibility then reduces significantly as the trend of graphite. The little variation in susceptibility near the Dirac point is probably attributed to the spatial confinement of graphene nanoflakes, which are the composition of graphene laminates. In the end of this thesis, we discuss the magnetic properties in one of the other two dimensional materials, molybdenum disulfide (MoS2). It is a potential material for graphene-based heterostructure applications. The magnetic moments in MoS2 are shown to be induced by either edges or vacancies, which are introduced by sonication or proton-irradiation, respectively, similar to the suggestions by theories. However, no significant ferromagnetic finding has been found in all of our cases.
APA, Harvard, Vancouver, ISO, and other styles
8

Lampert, Lester Florian. "High-Quality Chemical Vapor Deposition Graphene-Based Spin Transport Channels." PDXScholar, 2017. https://pdxscholar.library.pdx.edu/open_access_etds/3327.

Full text
Abstract:
Spintronics reaches beyond typical charge-based information storage technologies by utilizing an addressable degree of freedom for electron manipulation, the electron spin polarization. With mounting experimental data and improved theoretical understanding of spin manipulation, spintronics has become a potential alternative to charge-based technologies. However, for a long time, spintronics was not thought to be feasible without the ability to electrostatically control spin conductance at room temperature. Only recently, graphene, a 2D honeycomb crystalline allotrope of carbon only one atom thick, was identified because of its predicted, long spin coherence length and experimentally realized electrostatic gate tunability. However, there exist several challenges with graphene spintronics implementation including weak spin-orbit coupling that provides excellent spin transfer yet prevents charge to spin current conversion, and a conductivity mismatch due to the large difference in carrier density between graphene and a ferromagnet (FM) that must be mitigated by use of a tunnel barrier contact. Additionally, the usage of graphene produced via CVD methods amenable to semiconductor industry in conjunction with graphene spin valve fabrication must be explored in order to promote implementation of graphene-based spintronics. Despite advances in the area of graphene-based spintronics, there is a lack of understanding regarding the coupling of industry-amenable techniques for both graphene synthesis and lateral spin valve fabrication. In order to make any impact on the application of graphene spintronics in industry, it is critical to demonstrate wafer-scale graphene spin devices enabled by wafer-scale graphene synthesis, which utilizes thin film, wafer-supported CVD growth methods. In this work, high-quality graphene was synthesized using a vertical cold-wall furnace and catalyst confinement on both SiO2/Si and C-plane sapphire wafers and the implementation of the as-grown graphene for fabrication of graphene-based non-local spin valves was examined. Optimized CVD graphene was demonstrated to have ID/G ≈ 0.04 and I2D/G ≈ 2.3 across a 2" diameter graphene film with excellent continuity and uniformity. Since high-quality, large-area, and continuous CVD graphene was grown, it enabled the fabrication of large device arrays with 40 individually addressable non-local spin valves exhibiting 83% yield. Using these arrays, the effects of channel width and length, ferromagnetic-tunnel barrier width, tunnel barrier thickness, and level of oxidation for Ti-based tunnel barrier contacts were elucidated. Non-local, in-plane magnetic sweeps resulted in high signal-to-noise ratios with measured ΔRNL across the as-fabricated arrays as high as 12 Ω with channel lengths up to 2 µm. In addition to in-plane magnetic field spin signal values, vertical magnetic field precession Hanle effect measurements were conducted. From this, spin transport properties were extracted including: spin polarization efficiency, coherence lifetime, and coherence distance. The evaluation of industry-amenable production methods of both high-quality graphene and lateral graphene non-local spin valves are the first steps toward promoting the feasibility of graphene as a lateral spin transport interconnect material in future spintronics applications. By addressing issues using a holistic approach, from graphene synthesis to spin transport implementation, it is possible to begin assessment of the challenges involved for graphene spintronics.
APA, Harvard, Vancouver, ISO, and other styles
9

Staneva, Maya. "Theoretical study of dilute magnetic semiconductors : Properties of (Ga,Mn)As." Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-126096.

Full text
Abstract:
The dilute magnetic semiconductor (Ga,Mn)As , which is the most interesting and promising material for spintronics applications, has been theoretically studied by using Density Functional Theory. First of all, calculations on GaAs were done and it was found that GaAs is a semiconductor with a direct band gap. The calculated value of the band gap is ~ 0.5eV. Secondly, the material iron was considered and it was confirmed that iron is a ferromagnetic metal with 2.2µB net magnetic moment. Then a magnetic impurity of manganese, Mn was introduced in the nonmagnetic GaAs and it became ferromagnetic with a net magnetic moment of 4µB. The origin of the ferromagnetic behaviour is discussed and also the Curie temperature TC of the material. It appeared that (Ga,Mn)As is a suitable material for DMS but TC has to be increased before (Ga,Mn)As could be used for spintronics applications and on that account some methods of increasing TC are considered at the end.<br>Den magnetiska halvledaren (Ga,Mn)As som är det mest intressanta och lovande materialet för spinelektroniska tillämpningar har teoretiskt undersökts med hjälp av Täthetsfunktionalteorin. Först gjordes beräkningar på GaAs och det visade sig att GaAs är en halvledare med direkt bandgap. Det beräknade värdet på bandgapet är ca 0.5eV. Sedan var det järn som undersöktes och det blev bekräftat att järn är en ferromagnetisk metall med netto magnetisk moment lika med 2.2μB. Då magnetiska störningar i form av mangan atomer, Mn, infördes i det omagnetiska GaAs blev halvledaren ferromagnetisk med netto magnetisk moment lika med 4μB. Orsakerna till den ferromagnetiska ordningen diskuteras och även Curie temperaturen TC för materialet. Det visade sig att (Ga,Mn)As är ett lämpligt material för tillverkning av magnetiska halvledare men TC måste ökas innan (Ga,Mn)As skulle kunna användas i spinntroniska tillämpningar och av det skälet anges i slutet vissa metoder för att öka TC.
APA, Harvard, Vancouver, ISO, and other styles
10

Gupta, Shalini. "Growth of novel wide bandgap room temperature ferromagnetic semiconductor for spintronic applications." Diss., Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/33809.

Full text
Abstract:
This work presents the development of a GaN-based dilute magnetic semiconductor (DMS) by metal organic chemical vapor deposition (MOCVD) that is ferromagnetic at room temperature (RT), electrically conductive, and possesses magnetic properties that can be tuned by n- and p-doping. The transition metal series (TM: Cr, Mn, and Fe) along with the rare earth (RE) element, Gd, was investigated in this work as the magnetic ion source for the DMS. Single- phase and strain-free GaTMN films were obtained. Optical measurements revealed that Mn is a deep acceptor in GaN, while Hall measurements showed that these GaTMN films were semi-insulating, making carrier mediated exchange unlikely. Hysteresis curves were obtained for all the GaTMN films, and by analyzing the effect of n- and p-dopants on the magnetic properties of these films it was determined that the magnetization is due to magnetic clusters. These findings are supported by the investigation of the effect of TM dopants in GaN nanostructures which reveal that TMs enhance nucleation resulting in superparamagnetic nanostructures. Additionally, this work presents the first report on the development of GaGdN by MOCVD providing an alternate route to developing a RT DMS. Room temperature magnetization results revealed that the magnetization strength increases with Gd concentration and can be enhanced by n- and p-doping, with holes being more efficient at stabilizing the ferromagnetic signal. The GaGdN films obtained in this work are single-phase, unstrained, and conductive making them suitable for the development of multifunctional devices that integrate electrical, optical, and magnetic properties.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography