Academic literature on the topic 'Magnetic Nano Composite'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic Nano Composite.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic Nano Composite"

1

Zhao, Bin, Qilei Wang, and Lin Jin. "Heat-resistant antiflaming and friction mechanisms in nano-Fe2O3-reinforced silicon rubber." Science and Engineering of Composite Materials 20, no. 4 (November 1, 2013): 331–35. http://dx.doi.org/10.1515/secm-2013-0026.

Full text
Abstract:
AbstractA ferric oxide (Fe2O3)/silicone rubber (SR) composite was prepared to produce a magnetic rubber with good heat-resistant and friction properties: SR and nano-Fe2O3 were used as its raw materials. The heat-resistant, antiflaming, magnetic, and mechanical properties of such composites with different proportions of nano-Fe2O3 were studied. The results showed that the Fe2O3 nanoparticles were uniformly distributed throughout the composites. The physical and mechanical properties of SR were improved when Fe2O3 nanoparticles were added. The maximum elongation and tensile strength of the composites were relatively good when the ratio of Fe2O3 was 20 phr. The heat-resistance and antiflaming properties of SR were improved by adding nano-Fe2O3, which had good combined heat resistance. The friction properties of these composites were optimal at 20 phr addition of nano-Fe2O3, which laid the foundation for further applications of this type of composite in high-temperature sealing and shock absorption environments.
APA, Harvard, Vancouver, ISO, and other styles
2

Chen, C. P., T. H. Chang, and T. F. Wang. "Synthesis of magnetic nano-composite particles." Ceramics International 28, no. 8 (January 2002): 925–30. http://dx.doi.org/10.1016/s0272-8842(02)00075-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Singh, Akanksha, Mandar Shirolkar, Mukta V. Limaye, Shubha Gokhale, Chantal Khan-Malek, and Sulabha K. Kulkarni. "A magnetic nano-composite soft polymeric membrane." Microsystem Technologies 19, no. 3 (August 12, 2012): 409–18. http://dx.doi.org/10.1007/s00542-012-1646-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Jian Ling, and Decai Li. "Research on Magnetization Mechanism of Nano-Magnetic Fluid." Defect and Diffusion Forum 295-296 (January 2010): 19–26. http://dx.doi.org/10.4028/www.scientific.net/ddf.295-296.19.

Full text
Abstract:
In this paper, we first analyzed the nano-magnetic fluid composition and properties. Then we studied the characteristics of nano-magnetic fluid magnetization and magnetization mechanism. In addition, we also studied the nano-Fe3O4 magnetic particle size and surface modification effect on the magnetic properties of magnetic fluids. Nano-magnetic fluid is a new type of liquid nano-composite functional material. It also has magnetism and mobility, and therefore it has many unique properties and a wide range of applications. Nano-magnetic fluid magnetization characteristic is one of its main properties, its performance and application of magnetic fluid play a decisive role.
APA, Harvard, Vancouver, ISO, and other styles
5

Panchal, Nital R., and Rajshree B. Jotania. "Enhancement of Magnetic Properties in Co-Sr Ferrite Nano Composites Prepared by an SHS Route." Solid State Phenomena 209 (November 2013): 164–68. http://dx.doi.org/10.4028/www.scientific.net/ssp.209.164.

Full text
Abstract:
The preparation and characterization of composite materials containing nanometer-sized constituents is currently a very active and exciting area of research at laboratories around the world. In order to improve the magnetic and electromagnetic absorption properties of magnetic materials, composite of soft/hard ferrite is required in proper composition. For high-density magnetic recording, decrease in the coercive field and simultaneously increase in saturation magnetization has attracted much attention. To achieve these properties, new modified CoFe2O4-SrFe12O19 composite ferrite nanoparticles were prepared by using an SHS route. Composites of spinel: hexaferrite were prepared in the ratio 1:0, 1:2 and 0:1. The enhancement of maximum energy product BHmax is achieved by the addition of Spinel ferrite into M-type hexaferrite particles. The exchange interactions between hard and soft magnetic phases improve the microwave absorption properties. The parameters, Hc, σs, and particle size d, can easily be controlled by changing the content of spinel ferrite in the composite with Sr-M hexaferrite.
APA, Harvard, Vancouver, ISO, and other styles
6

Arumugam, Vasanthakumar, Gyanasivan G. Redhi, and Robert M. Gengan. "Efficient Catalytic Activity of Ionic Liquid-Supported NiFe2O4 Magnetic Nanoparticle Doped Titanium Dioxide Nano-Composite." International Journal of Chemical Engineering and Applications 7, no. 6 (December 2016): 422–27. http://dx.doi.org/10.18178/ijcea.2016.7.6.618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Liu, Maoyuan, and Lei Chen. "Research on Magnetic Property of Nd2Fe14B/α-Fe Nanocomposite Under Different Roller Speeds." Open Materials Science Journal 8, no. 1 (December 31, 2014): 127–30. http://dx.doi.org/10.2174/1874088x01408010127.

Full text
Abstract:
Nano-composite permanent magnetic material is a new type of permanent magnetic material, and it is the synthesis of soft and hard magnetic phase within the nanoscale. On the basis of exchange coupling hard magnetizing theory, nano-composite permanent magnetic material can, at the same time, have high residual magnetization intensity of soft magnetic phase and high coercivity of hard magnetic phase, which can be developed into new generation high performance permanent magnetic material. Nevertheless, magnetic energy of permanent nano-composite magnet derived from experiments differs greatly from the theoretical value, and this is mainly due to fairly great difference between the micro-structure of material and the theoretical model. In this paper, the constituent was taken as (Nd, Pr, Dy)2(Fe, Nb)14B/α-Fe, and the fusant rapid quenching method was adopted to study the impact of different roller speeds on the magnetic property. Moreover, through the result of VSM, XRD and SPM, the magnetic property, phase composition and micro structure of alloy were analyzed.
APA, Harvard, Vancouver, ISO, and other styles
8

Yan, Liang, Biao Yan, and Lei Peng. "Microstructure and Magnetic Properties of Grain Boundary Insulated Fe/Mn0.5Zn0.5Fe2O4 Soft Magnetic Composites." Materials 15, no. 5 (March 2, 2022): 1859. http://dx.doi.org/10.3390/ma15051859.

Full text
Abstract:
Mn0.5Zn0.5Fe2O4 nano-powder was coated on Fe microparticles by mechanical ball milling combined with high-temperature annealing. The effects of milling time on the particle size, phase structure and magnetic properties of core–shell powder were studied. Scanning electron microscopy (SEM), energy-dispersive spectroscopy and X-ray diffraction showed that the surface of the milled composite powder was composed of thin layers of uniform Mn0.5Zn0.5Fe2O4 insulating powder. SEM also revealed a cell structure of Fe particles, indicating that the Fe particles were well separated and isolated by the thin Mn0.5Zn0.5Fe2O4 layers. Then, Fe/Mn0.5Zn0.5Fe2O4 soft magnetic composites were prepared by spark plasma sintering. The amplitude permeability of Fe/Mn0.5Zn0.5Fe2O4 SMCs in the Fe/Mn0.5Zn0.5Fe2O4 soft magnetic composites was stable. The resistivity decreased with the increase in sintering temperature. The loss of the composite core was obviously less than that of the iron powder core. Hence, the preparation method of Mn0.5Zn0.5Fe2O4 insulating iron powder is promising for reducing core loss and improving the magnetic properties of soft magnetic composites.
APA, Harvard, Vancouver, ISO, and other styles
9

Bureš, R., M. Fáberová, and P. Kurek. "Microstructure and Mechanical Properties of Fe/MgO Micro-Nano Composite for Electrotechnical Applications." Powder Metallurgy Progress 18, no. 2 (November 1, 2018): 103–10. http://dx.doi.org/10.1515/pmp-2018-0011.

Full text
Abstract:
Abstract The composite based on the microns iron size powder and MgO nanopowder was prepared using pressing followed by conventional and microwave sintering. Microstructure of the composite was investigated to evaluate the changes induced by different sintering technology. Young’s modulus, flexural strength and hardness of composites were analyzed to investigate the mechanical properties in dependence on MgO content, as well as in dependence on the sintering method. Microstructure and mechanical properties as well as functional magnetic properties of prepared composites are discussed in the paper. The main benefit of microwave heating found within process time shortening was confirmed in the case of the microwave sintered Fe/MgO composite.
APA, Harvard, Vancouver, ISO, and other styles
10

张, 建修. "Research on Magnetic-Optical Performance of Composite Magnetic Nano-Array Films." Optoelectronics 11, no. 01 (2021): 35–44. http://dx.doi.org/10.12677/oe.2021.111005.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetic Nano Composite"

1

Nyamsi, Francois T. "Carbon Nanotube and Soft Magnetic Lightweight Materials in Electric Machines." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535381574629281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bsawmaii, Laure. "Exaltation des différents effets magnéto-optiques à l’aide de réseaux résonants diélectriques basés sur un nano-composite magnétique obtenu par voie sol-gel." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSES028.

Full text
Abstract:
Les dispositifs photoniques magnéto-optiques (MO) sont l’objet d’une attention particulière pour leur capacité à améliorer la sensibilité des biocapteurs ou leur sensibilité au champ magnétique. Les effets MO, pouvant se manifester par une rotation de polarisation ou une modification d'intensité de la lumière sous champ magnétique, sont cependant plutôt faibles lors d’interactions simples (réflexion ou transmission) avec les films magnétiques classiques. Le dispositif proposé dans le cadre de ce travail permet d’exalter les effets MO. C’est une structure diélectrique planaire simple formée par un réseau 1D de résine photosensible (PR) déposé à la surface d’un film MO lui-même déposé sur un substrat de verre. Selon les conditions de couplage imposées par le réseau, des modes guidés (TE et TM) sont excités dans le film MO par la lumière incidente, augmentant ainsi l'interaction lumière-matière. Un tel couplage produit ainsi une résonance étroite qui se traduit par un creux (pic) dans le spectre de la transmittance (réflectance). Le film MO est un composite formé par des nanoparticules magnétiques (CoFe2 04) insérés dans une matrice de silice par un procédé sol-gel. Ce composite nano-structurable peut être facilement déposé sur des substrats classiques à faible température de recuit (90°C), ce qui n'est pas le cas de la plupart des matériaux MO utilisés dans les plates-formes d’optiques intégrées. Des exaltations importantes des différents effets de rotation de polarisation (Faraday et Kerr longitudinal) ont été atteintes par les mesures et les simulations grâce à cette structure résonnante toute diélectrique. Les principaux résultats de ce travail concernent cependant l'effet Kerr MO transverse (TMOKE). Cet effet induit un décalage spectral non réciproque de la résonance de transmittance (réflectance) lors de l'inversion de l'aimantation, résultant en une modulation d'intensité. Des valeurs de TMOKE atteignant 9,5% et 18,5% ont été mesurées respectivement en transmission avec T = 80%, et en réflexion avec R = 5%. Ces valeurs très significatives de TMOKE sont principalement dues au facteur de qualité élevé des résonances de transmittance (réflectance) du mode TM. La valeur de TMOKE pour un film MO sans réseau étant d'environ 0,01%, une exaltation de trois ordres de grandeur a ainsi été obtenue grâce à la structure fabriquée. Les valeurs mesurées de TMOKE sont bien positionnées par rapport à la littérature où, à notre connaissance, des valeurs maximales de 1,5% et 15% ont été démontrées expérimentalement par des structures respectivement diélectriques et magnéto-plasmoniques. De plus, des effets magnétiques réciproques inattendus ont été démontrés expérimentalement. Enfin, la structure proposée est un dispositif à faible coût, qui peut être fabriqué sur des substrats à grande échelle, est capable d'exalter tous les effets MO. Cela en fait une structure à fort potentiel pour des applications comme le contrôle non destructif, les capteurs de champ magnétique et même les biocapteurs
Magneto-optical (MO) photonic devices are currently highly desirable because of their ability to improve the sensitivity of biosensors or their sensitivity to the magnetic field. However, MO effects being rather small through classical magnetic films, it is relevant to find ways to enhance such effects which can manifest as light polarization rotation or intensity modification under magnetic field. The proposed device in this work to enhance MO effects is an all-dielectric planar structure formed by a 1D photoresist (PR) grating deposited on top of a MO film itself deposited on a glass substrate. Under coupling conditions through the grating, guided-modes (TE and TM) with narrow resonances are excited in the MO film by the incident light, increasing hence the light-matter interaction. Such coupling results as a dip (peak) in the transmittance (reflectance) spectrum. The MO film is a composite formed by magnetic nanoparticles (CoFe2 04) embedded in a silica matrix and obtained through sol-gel process. This nano-structurable composite can be easily deposited on common substrates with low annealing temperature (90°C), which is not the case of the most MO materials used within integrated optics platforms. Large enhancements of the different non-reciprocal polarization rotation effects (such as Faraday and longitudinal MO Kerr) were achieved experimentally and numerically through the all-dielectric resonant structure. The main results of this work concern the transverse MO Kerr effect (TMOKE). This effect induces a non-reciprocal spectral shift of the transmittance (reflectance) resonance upon magnetization reversal, resulting in an intensity modulation effect. TMOKE values up to 9.5% and 18.5% were measured respectively in transmission with T = 80% and in reflection with R = 5%. These large TMOKE values are mainly due to the high quality factor of TM transmittance (reflectance) resonances. The TMOKE signal for a single MO film is around 0.01%, hence an enhancement with three orders of magnitude was achieved through the fabricated structure. The reached measured TMOKE values are highly competitive with the literature where, to our knowledge, maximum values of 1.5% and 15% were experimentally demonstrated respectively through all-dielectric and magneto-plasmonic structures. Moreover, unexpected reciprocal magnetic effects were experimentally evidenced. Finally, the proposed all-dielectric structure is a low-cost device, which can be fabricated on large scale substrate, and able to enhance all the MO effects. Hence, it is a promising structure for non-destructive testing, magnetic field sensing and even biosensing
APA, Harvard, Vancouver, ISO, and other styles
3

Cook, James. "Optical magnetism with metallic nano-composites." Thesis, University of Surrey, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616915.

Full text
Abstract:
The transmission and effective magnetic properties of a metamaterial consisting of silver nanowires that we call a "silver nanoforest" was investigated using finite element numerical simulations in the optical regime. The variation of these properties with the arrangement and size of the nanowires was also investigated along with resilience to fabrication disorder. The silver nanoforest metamaterial exhibited low loss diamagnetism associated with Fabry Perot interference. In addition to diamagnetism both negative pelmeability and negative refractive index were obtained, but not simultaneously at same' wavelength and geometry. Both negative permeability and negative index experienced significant loss and therefore low transmission due to the plasmonic Origins of these effects. Magnetic responses of the silver nanoforest metamaterial were dampened but not inhibited by disorder, with diamagnetic response being the most resilient magnetic response to disorder.
APA, Harvard, Vancouver, ISO, and other styles
4

Silva, Gabriela Cordeiro da. "Development of nano-sized Mn3O4 magnetic composites: application in wastewater treatment." Universidade Federal de Minas Gerais, 2012. http://hdl.handle.net/1843/BUBD-93CFKJ.

Full text
Abstract:
Composites with magnetic properties have been successfully synthesized by means of the deposition of manganese oxide, Mn3O4, precipitated by using O2 (an ecofriendly oxidant), onto magnetite particles. The magnetite particles in the composites (~40m2.g-1) form agglomerates with Mn3O4 particles. Solid-liquid separation by means of the application of a magnetic field is possible. The application of the magnetic composite in the oxidative adsorption of As3+ was evaluated. The arsenic sorption isotherm fits return values of b>1 for the Langmuirconstant, demonstrating high affinity of the composites for As(III), which is desired for the removal of trace and sub-trace contaminants from water. The maximum adsorption capacity is ~14mgAs.gsolid -1 (0.0048mmolAs.m-2 solid). During the As oxidation-adsorption process, iron is not released and part of the Mn(II) released to solution is being adsorbed or precipitated, or both, which implies in a less contaminants release to solution. XANES of the As-loaded composites show thatthe arsenic adsorbed is in the oxidized arsenic form, As(V), emonstrating that As(III) is successfully oxidized by Mn3O4. Raman and IR spectral data of Asloaded (5.0 to 16mg.g-1) samples suggest the presence of As-O bands referring to the formation of inner-sphere monodentate and bidentate complexes, elucidating arsenic surface complexes on the composite. The magnetic Mn3O4 composite was also applied to oxidize and remove methylene blue (MB) from water. UV-vis results show that Mn3O4 composite is capable of oxidizing MB forming its partially and fully demethylated derivatives. Decolorization of 85% is achieved in 60min, atpH 3. For pH>3, oxidation does not occur and only 50% of the MB is adsorbed. Desorption by methanol of the organic compounds adsorbed in the composite have shown that the fully demethylated MB derivative, thionine, is the only adsorbed compound. Therefore, the present work simplifies the synthesis of a manganese oxide composite to be applied in environmental systems as both an oxidant and an adsorbent. Moreover, the work improves the knowledge about the mode of Asinteractions with Mn3O4 by using vibrational spectroscopic techniques.
Compósitos com propriedades magnéticas foram sintetizados com sucesso por meio da deposição de óxido de manganês, Mn3O4, sobre partículas de magnetita. O óxido de manganês é obtido por precipitação usando O2 como oxidante. As partículas de magnetita nos compósitos (~40m2.g-1) formam aglomerados com as partículas de Mn3O4. A separação sólido-líquido é possível, por meio da aplicação de um campo magnético. A aplicação do compósito magnético na adsorção oxidativa de As(III) foi avaliada. Os ajustes das isotermas de sorção retornam valores de b>1 para a constante de Langmuir, demonstrando elevada afinidade dos compósitos por As(III), o que é desejado na remoção de contaminantes traços e sub-traços. A capacidade de adsorção máxima é 14mgAs.g-1 sólido (0,0048mmolAs.m-2 sólido). Durante o processo de adsorção e oxidação, o ferro não é liberado e parte do Mn2+ liberado para a solução, é adsorvido ou precipitado, ou ambos, o que implica em poucos contaminantes liberados e portanto, uma solução mais limpa. O espectro XANES dos compósitos carregados com As mostram que o arsênio adsorvido está na formaoxidada, As(V), demonstrando que o As(III) é oxidado com sucesso pelo Mn3O4. Dados espectrais de Raman e infravermelho das amostras carregadas com As (5,0 a 16mg.g-1) sugerem a presença de bandas As-O referindo-se à formação de complexos monodentados e bidentados, elucidando a adsorção de arsênio na superfície do compósito. O compósito magnético de Mn3O4 foi também aplicadopara oxidar e remover azul de metileno (MB) de soluções aquosas. Resultados de UV-vis mostram que o compósito de Mn3O4 é capaz de oxidar MB formando seus derivados parcial e totalmente desmetilados. A descoloração de 85% é alcançado em 60min, em pH 3. Para pH>3, a oxidação não ocorre, e apenas 50% do MB é adsorvido. Dessorção por metanol dos compostos orgânicos adsorvidos no compósito mostra que o derivado de MB totalmente desmetilado, a tionina, é o único composto adsorvido. Portanto, o presente trabalho simplifica a síntese de umcompósito magnético de óxido de manganês para ser aplicado em sistemas ambientais, tanto como oxidante, quanto como adsorvente. Além disso, o trabalho acrescenta conhecimento sobre o modo das interações de As com Mn3O4 usando técnicas espectroscópicas vibracionais.
APA, Harvard, Vancouver, ISO, and other styles
5

Nong, Thi Thanh Huyen. "Electric control of magnetic behavior in artificial multiferroic composites." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD070.

Full text
Abstract:
Les matériaux multiferroïques présentent plusieurs ordres ferroïques, i.e. ferromagnétiques, ferroélectriques et/ou ferroélastiques. Le couplage entre ses ordres ferroïques permet de contrôler les propriétés magnétiques en appliquant un champ électrique et vice versa. Afin d’utiliser leur multifonctionnalités dans des nouvelles applications, ce couplage doit être efficace à température ambiante. Cette thèse étudie les systèmes couplant artificiellement ensemble une phase ferromagnétique / magnétostrictive à une phase ferroélectrique / piézoélectrique. Le couplage entre ces deux phases est appelée magnétoélectrique (ME). Le premier chapitre décrit l’état de l’art de ce couplage ME dans différentes structures composites multiferroïques. Tandis que les techniques de caractérisation et les outils de simulation micromagnétiques utilisées sont présentées dans le deuxième chapitre. Dans le troisième chapitre, une hétéro-structure type film magnétostrictif/substrat flexible/actuateur piézoélectrique (FeCuNbSiB/Kapton/PE) a été étudiée. Les domaines magnétiques du FeCuNbSiB ainsi que leur orientation sont contrôlées en appliquant un champ électrique et étudiées par microscopie locale (MFM). Le quatrième chapitre étudie un composite incluant des nanoparticules magnétostrictives dans une matrice piézoélectrique flexible (polymère PVDF). L’effet des inclusions (nanoparticules) sur la réponse piézoélectrique locale du PVDF est étudiée par microscopie de piézoréponse (PFM). Symétriquement, l’influence de la matrice piézoélectrique sur les propriétés magnétiques des nanoparticules est analysée. Dans le dernier chapitre, l’optimisation des propriétés magnétiques statiques d’un ensemble de nanoparticules anisotropes (nanofils de cobalt) est étudiées sous l’influence de leur structure, de leur forme et de leurs interactions. Cette étude expérimentale est corroborée par les simulations et vise des nouveaux composites incluant ces nanoparticules anisotropes dans une matrice piézoélectrique flexible
Multiferroic materials present several ferroic orders, i.e. ferromagnetic, ferroelectric and/or ferroelastic. The coupling between these ferroic orders allow the control of the magnetic properties by applying an electric field and vice versa. In order to use their multifunctionality in new applications, this coupling must be efficient at room temperature. This thesis concentrates on materials artificially coupling together a ferromagnetic/ magnetostrictive phase with a ferroelectric/piezoelectric one. The coupling between these two phases is called magnetoelectric (ME). The first chapter describes the state of the art of this ME coupling for different multiferroic composite structures. Characterization techniques and micromagnetic simulation tools are presented in the second chapter. In the third chapter, a hetero-structure given by a magnetostrictive film/flexible substrate/piezoelectric actuator (FeCuNbSiB/Kapton/PE) is studied. The magnetic domains of FeCuNbSiB as well as their orientation are controlled by applying an electric field and studied by local microscopy (MFM). The fourth chapter focuses on a nanocomposite material including magnetostrictive nanoparticles in a flexible piezoelectric matrix (PVDF polymer). The effect of these inclusions (nanoparticles) on the local piezoelectric response of the PVDF is studied by piezoeponse microscopy (PFM). Symmetrically, the influence of the piezoelectric matrix on the static magnetic properties of the nanoparticles is analyzed. In the last chapter, the optimization of the magnetic properties of a set of anisotropic nanoparticles (cobalt nanowires) is studied as fonction of their structure, shape and mutual interactions. This experimental study is corroborated by simulations and targets new composites ME materials including the anisotropic nanoparticles in a flexible piezoelectric matrix
APA, Harvard, Vancouver, ISO, and other styles
6

Biehl, Philip [Verfasser], Felix [Gutachter] Schacher, and Thomas [Gutachter] Heinze. "Tailoring the Interface of Magnetic Nano-Composites / Philip Biehl ; Gutachter: Felix Schacher, Thomas Heinze." Jena : Friedrich-Schiller-Universität Jena, 2020. http://d-nb.info/121957404X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kryklia, S. O., Yu M. Samchenko, N. O. Pasmurtseva, V. V. Konovalova, and S. M. Scherbakov. "Nano-Sized Hydrogel Composites Based on N-Isopropylacrylamide and Magnetite for Controlled Drug Delivery." Thesis, Sumy State University, 2015. http://essuir.sumdu.edu.ua/handle/123456789/42510.

Full text
Abstract:
Synthesis and characterization studies of promising nano-sized hydrogel composites based on nisopropylacrylamide and magnetite have been studied. N-isopropylacrylamide (NIPA) gel component was used as a carrier of various drugs, magnetite was used as a magneto-responsive component. Presence of magnetite it was proved by EPR method. Composite nanoparticles were characterized by electron microscopy (TEM) and by dynamyc light scattering (DLS) method. It was shown that the average size of nanoparticles is 50 or 100 nm, depending on the method of preparation. The hydrogel is characterized by clear phase transition between swollen and collapsed state upon heating above 32⁰C. Rapid release of the incorporated drug (as a model was used the photosensibilizer -Methylene Blue) observed during thermoresponsive nanocomposite gels heating in the physiologically acceptable range, but still above phase transition temperature (up to 40–50 ⁰C), allows application of the discussed drug delivery systems in medical hyperthermia.
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Wai Chung. "Preparation and characterization of noble metal-magnetite hybrid nano/micro composites towards drug delivery and heterogeneous catalysis." HKBU Institutional Repository, 2019. https://repository.hkbu.edu.hk/etd_oa/668.

Full text
Abstract:
This thesis describes the preparation and characterization of core-shell noble metal-magnetite hybrid hollow nanocomposites utilizing hierarchical architecture. The hollow magnetite (hFe3O4) nanoparticles were prepared by hydrothermal method, forming the cavity via Oswald ripening. Further surface modifications involved both inorganic and organic coatings, conferring the intracellular drug delivery ability and the catalytic enhancement. In the first part, a series of hierarchical core-shell nanostructures flower-like hFe3O4@AlOOH was synthesized through solvothermal method and sol-gel process. The formation of cavity accessible hFe3O4@γ-AlOOH was achieved using silica-templated solvothermal treatment where the Kirkendall effect was observed. The morphologies of the as-prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). Then, the nano-encapsulation of platinum drug using hollow magnetite and its derivatives, has been developed with improved loading efficiency via co-solvent system. A dimethylformamide/water co-solvent system was found to be the most efficient system to encapsulate water-insoluble cisplatin. The platinum content was further quantitatively and qualitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and FTIR spectroscopy. The enhancement of loading efficiency could be driven by emulsification due to the diffusion of hydrophobic cisplatin into the hollow cavity of iron oxide nanoparticles. By incorporating water, the loading efficiency of hFe3O4 and hFe3O4@γ-AlOOH increased from 1-2% to 27% and from 6% to 54%, respectively. The grafting of cisplatin on AlOOH nanoflakes might account for the high loading efficiency of flower-like hFe3O4@AlOOH. As a complement to naked hFe3O4, a cell-penetrating poly(disulfide)s (CPD)-decorated hollow iron oxide nanoparticle was synthesized by immobilizing both cysteine and MPTMS as an initiator, followed by in situ polymerization to form hFe3O4-Cys-CPD-CONH2 and hFe3O4-MPS-CPD-CONH2. The morphologies were characterized by TEM/energy-dispersive X-ray spectroscopy (TEM/EDX) and the compositions of the as-prepared iron oxide nanocomposites were characterized by TGA, FTIR and X-ray photoelectron spectroscopy (XPS) and ICP-MS. The CPD coating not only serve as a protective layer, but also prevent the encapsulated cisplatin from a premature release. The hFe3O4-MPS-CPD-CONH2 exhibit promising features for the intracellular delivery of cisplatin, demonstrating a glutathione (GSH)-responsive drug release. Comparing with other hFe3O4 nanoparticles, an enhancement of cellular uptake of hFe3O4-MPS-CPD-CONH2 could be observed by optical microscope, showing rapid accumulation of the hFe3O4-MPS-CPD-CONH2 nanocomposites in the primary human renal proximal tubular epithelial cells (HRPTEpiCs) cell in 2 h. At 24 h, hFe3O4 (F), hFe3O4-MPS (FS) and hFe3O4-MPS-CPD-CONH2 (FSC) together with cisplatin treatment did not cause any significant cytotoxicity to the cells when the particle concentration is less than 10 µg/mL. Interestingly, FSCC showed a certain extent of toxicity with increasing Fe and Pt concentration along with the treated time. It may suggest that the hFe3O4-MPS-CPD-CONH2 nanoparticle, as a cisplatin carrier, could enhance the drug efficiency by increasing cellular uptake of the nanoparticles in HRPTEpiCs together with the boosted cytotoxicity. Based on these data, cisplatin- hFe3O4-MPS-CPD-CONH2 (FSCC) treatments with the concentration less than 20 µg/mL and duration no more than 24 h could maintain around 70% of the cell viability of the HRPTEpiCs. The hypothesis, at which CPD serves as an efficient carrier for intracellular cisplatin delivery, could be confirmed by both microscopic images and the cell viability test. In the second part, a series of Au/Fe3O4 hybrid nanocomposites was prepared to investigate their catalytic efficiencies using 4-nitrophenol reduction as a model system. The flower-like hFe3O4@γ-AlOOH@SiO2-NH2@Au was prepared by using protonated ammonium on hFe3O4@γ-AlOOH@SiO2-NH2 to entangle gold nanoparticles (AuNPs) via electrostatic attraction. In comparison to numerous of catalytic studies, the turnover frequency (TOF) of hFe3O4@γ-AlOOH@SiO2-NH2@Au shows a superior conversion rate up to 7.57 min-1 (4-nitrophenol per Au per min) for the 4-nitrophenol using sodium borohydride as a reductant. A rapid conversion of 4-nitrohpenol was observed using flower like composites that converted the 4-nitrophenol within 2 min. Our result suggests that silica residue hinders the reduction rate of the 4-nitrophenol. A significant deviation from pseudo first order was observed for densely AuNPs-functionalized nanoflower system, hFe3O4@γ-AlOOH@SiO2-NH2@Au2X, which is different from most of the 4-nitrophenol reductions reported in literature. The hFe3O4@γ-AlOOH@SiO2-NH2@Au also demonstrates catalytic activity when heated up to 800 °C before reduction. The recyclability was examined using magnetically recycled hFe3O4@γ-AlOOH@SiO2-NH2@Au, which showed insignificant decrease in the catalytic efficiency. To prove the concept, platinum nanoparticles (PtNPs) immobilized hFe3O4@γ-AlOOH@SiO2-NH2@Pt and hFe3O4@γ-AlOOH@SiO2-NH2@Pt/Au were also prepared via electrostatic attraction to verify the feasibility of endowing modular functionality via post modification.
APA, Harvard, Vancouver, ISO, and other styles
9

Jouni, Mohammad. "Nouvelles architectures de nano-systèmes polymères conducteurs à base de mélanges de nanocharges conductrices." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0148/document.

Full text
Abstract:
Le domaine de nanocomposites polymères conducteurs a fait l’objet de nombreux travaux et recherches, vu que ces matériaux présentent un fort potentiel pour de nombreuses applications concernant différents secteurs. Toutefois, malgré les progrès et les résultats obtenus pour l’instant, les performances de ce type des matériaux restent insuffisantes pour certaines applications qui peuvent requérir l’association de diverses propriétés (électriques, thermiques, blindage électromagnétique…). Dans cette thèse, on détaille l’élaboration et la caractérisation de nanocomposites polymères conducteurs. Deux types de nanocharges conductrices (nanotubes de carbone (MWCNTs) et nanoparticules d’argent (Ag-NPs)) ont été dispersées soit dans un polymère thermoplastique (polyéthylène PE), soit dans une matrice thermodurcissable (résine époxy amine). Les nanocomposites polymères conducteurs obtenus ont présenté de bonnes propriétés électriques et thermiques ainsi qu’une bonne tenue mécanique favorisée par des taux de charges relativement faibles. La thèse a non seulement étudié des propriétés fondamentales d’un point de vue expérimental mais aussi plus théorique avec de la modélisation. Entre autres, on a pu analyser les mécanismes de conduction à très basses température dans ce type de composites. Les propriétés en termes de conductivité thermique se sont révélées cohérentes avec celles obtenues en conductivité électrique. Des propriétés de blindage électromagnétique de nos composites à base de PE ont été mis en évidence par résonance magnétique nucléaire (RMN)
Conductive polymer nanocomposites have been the object of intense researches and investigations recently. In fact, these materials have shown a great potential to be useful for many applications including different sectors. However, despite the promising results reported at the moment in this area, there is still a lack in the performance which can be improved by synchronization of their properties. In this PhD work, we present the preparation and full characterization of conductive polymer nanocomposites. Two kinds of conductive nanofillers (carbon nanotubes (MWCNTs) and silver nanoparticles (Ag-NPs)) have been dispersed either in a thermoplastic polymer (polyethylene PE), or in a thermoset matrix (epoxy amine). The conductive polymer nanocomposites obtained exhibit good electrical and/or thermal properties with conserving the mechanical properties ensured by low fillers fraction. The study was not only based on experimental characterizations but also on modulation to analyze the charge carrier transport at very low temperature in these systems to provide successful understanding to some basic properties which are still actually not fully investigated. Electrical properties are in good agreement with thermal properties. Electromagnetic shielding of our PE based nanocomposites have been studied by Nuclear Magnetic Resonance (NMR)
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Sih Han, and 王思涵. "Magnetic Behavior Analysis of Magnetic Composite Nano/Micro Structure." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/09708299442991158342.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetic Nano Composite"

1

Younes, Abderrahmane, Nacer Eddine Bacha, Mourad Zergoug, Mokrane Gousmine, Heider Dehdouh, and Amirouche Bouamer. "Effect of Grain Size of Nano Composite on Raman and Magnetic Proprieties." In Lecture Notes in Mechanical Engineering, 425–33. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41468-3_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ferreira, L.-M. P., E. Bayraktar, I. Miskioglu, and M.-H. Robert. "Design of Magnetic Aluminium (AA356) Composites (AMCs) Reinforced with Nano Fe3O4, and Recycled Nickel: Copper Particles." In Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5, 93–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95510-0_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ferreira, L. M. P., E. Bayraktar, M. H. Robert, and I. Miskioglu. "Optimization of Magnetic and Electrical Properties of New Aluminium Matrix Composite Reinforced with Magnetic Nano Iron Oxide (Fe3O4)." In Conference Proceedings of the Society for Experimental Mechanics Series, 11–18. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21762-8_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Saito, Sho, Yoshio Sakka, Tohru S. Suzuki, and Takeshi Nakata. "Preparation and Properties of Al2O3-Mullite-SiC Nano-Composite by Slip Casting in a High Magnetic Field and Reaction Sintering." In Key Engineering Materials, 1133–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1133.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Saxena, Reena, Amit Lochab, and Megha Saxena. "Magnetite Carbon Nanomaterials for Environmental Remediation." In Environmental Remediation Through Carbon Based Nano Composites, 85–122. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6699-8_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wu, Jia, Qiao Ling Hu, Fu Ping Chen, Bao Qiang Li, and Jia Cong Shen. "Study of The Mechanical Property of Magnetite/ Hydroxyapatite/ Chitosan Nano-Composite." In Key Engineering Materials, 435–38. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-422-7.435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kolev, Svetoslav, and Tatyana Koutzarova. "Microwave Characteristics (Reflection Losses) of Composite Materials Consisting of Magnetic Nanoparticles." In NATO Science for Peace and Security Series B: Physics and Biophysics, 251–57. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2018-0_20.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kijima-Aoki, Hanae. "High-Frequency Soft Magnetic Properties of Nano-Granular Cobalt-(Metal-Oxide, Metal-Nitride) Thin Films with Perpendicular Magnetic Anisotropy." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 247–63. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gutiérrez, Lucía, María del Puerto Morales, and Alejandro G. Roca. "Synthesis and Applications of Anisotropic Magnetic Iron Oxide Nanoparticles." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 65–89. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tovstolytkin, Alexandr, Anatolii Belous, Yaryna Lytvynenko, Yuliia Shlapa, Serhii Solopan, and Larissa Bubnovskaya. "Nanoscale Heat Mediators for Magnetic Hyperthermia: Materials, Problems, and Prospects." In Surfaces and Interfaces of Metal Oxide Thin Films, Multilayers, Nanoparticles and Nano-composites, 25–64. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74073-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic Nano Composite"

1

Saxena, Ayush, and S. S. Godara. "Magnetic nano composite materials: A review." In 1ST INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND NANOTECHNOLOGY (ICAMEN 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123944.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Jha, Amit Kumar, Meng Li, Ewan S. Douglas, Erin R. Maier, Fiorenzo G. Omenetto, and Corey Fucetola. "Modeling light-controlled actuation of flexible magnetic composite structures using the finite element method (FEM)." In Molecular and Nano Machines III, edited by Zouheir Sekkat and Takashige Omatsu. SPIE, 2020. http://dx.doi.org/10.1117/12.2568919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Takeuchi, Mitsuaki, Yoshihito Matsumura, Hirohisa Uchida, Masakazu Fujita, and Toshiro Kuji. "Characterization of giant magnetostrictive composite materials prepared under magnetic field." In SPIE's International Symposium on Smart Materials, Nano-, and Micro- Smart Systems, edited by Alan R. Wilson. SPIE, 2002. http://dx.doi.org/10.1117/12.469174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rahbar, Mona, and Bonnie L. Gray. "Maximizing deflection in MEMS and microfluidic actuators fabricated in permanently magnetic composite polymers." In 2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2017. http://dx.doi.org/10.1109/nano.2017.8117294.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ataie, A., H. R. Emamian, A. Honarbakhsh-raouf, Mohamad Rusop, and Tetsuo Soga. "Synthesis of BaFe[sub 12]O[sub 19]∕MCM-41 Magnetic Nano-Composite." In NANOSCIENCE AND NANOTECHNOLOGY: International Conference on Nanoscience and Nanotechnology—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3160189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Pan, Yayue, and Lu Lu. "Additive Manufacturing of Magnetic Field-Responsive Smart Polymer Composites." In ASME 2016 11th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/msec2016-8865.

Full text
Abstract:
In this paper, an additive manufacturing process, named Magnetic Field-assisted Projection Stereolithography (M-PSL), is presented for applications such as fabricating magnetic field-responsive smart polymer composites. The 3D printed magnetic field-responsive smart polymer composite creates a wide range of motions, opening up possibilities for various new applications, like sensing and actuation in soft robotics, biomedical devices, and autonomous systems. In M-PSL process, a certain amount of nano- or micro-scale ferromagnetic particles is deposited into resin vat with a programmable microdeposition nozzle. Then a magnetic field is applied to direct the magnetic particles to the desired area. After that, digital mask images are used to cure particles in photopolymer with certain patterns. Important issues like magnetic particle movements, curing mechanisms, and manufacturing process planning are discussed. Two test cases, an impeller and a two-wheel roller, have been successfully fabricated for remote control under external magnetic field, showing the capability of printed smart polymer composites on performing desired functions.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Jia-Han, Yu-Dong Ma, Yi-Da Chung, and Gwo-Bin Lee. "An integrated microfluidic system for dual aptamer assay utilizing magnetic-composite-membranes." In 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). IEEE, 2017. http://dx.doi.org/10.1109/nems.2017.8017060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Makarov, Alexander, Viktor Sverdlov, and Siegfried Selberherr. "Composite magnetic tunnel junctions for fast memory devices and efficient spin-torque nano-oscillators." In International Conference on Information Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/icie130451.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gray, Bonnie L., Mona Rahbar, Avin Babataheri, and Abdul I. Barakat. "Microinstrument for optical monitoring of endothelial cell migration under controlled tension/compression via integrated magnetic composite polymer actuation." In 2014 IEEE 14th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2014. http://dx.doi.org/10.1109/nano.2014.6968129.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yang, Xin, Ning Gan, Nai-xing Luo, Dong-hua Xie, and Wei-gang Wen. "A Disposable and Magnetic Nano-Particles Composite Membrane Modified Amperometric Immunosensor for Determination of Chloramphenicol." In 2009 2nd International Conference on Biomedical Engineering and Informatics. IEEE, 2009. http://dx.doi.org/10.1109/bmei.2009.5304881.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography