Journal articles on the topic 'Magnetic microtraps'

To see the other types of publications on this topic, follow the link: Magnetic microtraps.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 37 journal articles for your research on the topic 'Magnetic microtraps.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

HERRERA, IVAN, GIUSEPPE D'ARRIGO, MARIO SICILIANI DE CUMIS, and FRANCESCO SAVERIO CATALIOTTI. "MAGNETIC MICROTRAPS FOR QUANTUM CONTROL." International Journal of Quantum Information 05, no. 01n02 (February 2007): 23–31. http://dx.doi.org/10.1142/s0219749907002487.

Full text
Abstract:
We will review the realization of magnetic microtraps for ultracold atoms. Such devices combine experimental simplicity with unsurpassed versatility in designing confining potentials. We will show how combining magnetic microtraps with optical lattices one can realize many possible quantum systems of interest in many fields ranging from solid state physics to condensed matter. We will also illustrate new possibilities in the quantum simulation of different physical systems.
APA, Harvard, Vancouver, ISO, and other styles
2

Fortágh, József, and Claus Zimmermann. "Magnetic microtraps for ultracold atoms." Reviews of Modern Physics 79, no. 1 (February 1, 2007): 235–89. http://dx.doi.org/10.1103/revmodphys.79.235.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Reichel, J., W. Hänsel, P. Hommelhoff, and T. W. Hänsch. "Applications of integrated magnetic microtraps." Applied Physics B 72, no. 1 (January 2001): 81–89. http://dx.doi.org/10.1007/s003400000460.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tran, Tien Duy, Yibo Wang, Alex Glaetzle, Shannon Whitlock, Andrei Sidorov, and Peter Hannaford. "Magnetic Lattices for Ultracold Atoms." Communications in Physics 29, no. 2 (May 14, 2019): 97. http://dx.doi.org/10.15625/0868-3166/29/2/13678.

Full text
Abstract:
This article reviews the development in our laboratory of magnetic lattices comprising periodic arrays of magnetic microtraps created by patterned magnetic films to trap periodic arrays of ultracold atoms. Recent achievements include the realisation of multiple Bose-Einstein condensates in a 10 \(\mu\)m-period one-dimensional magnetic lattice; the fabrication of sub-micron-period square and triangular magnetic lattice structures suitable for quantum tunnelling experiments; the trapping of ultracold atoms in a sub-micron-period triangular magnetic lattice; and a proposal to use long-range interacting Rydberg atoms to achieve spin-spin interactions between sites in a large-spacing magnetic lattice.
APA, Harvard, Vancouver, ISO, and other styles
5

Treutlein, P., T. Steinmetz, Y. Colombe, B. Lev, P. Hommelhoff, J. Reichel, M. Greiner, et al. "Quantum information processing in optical lattices and magnetic microtraps." Fortschritte der Physik 54, no. 8-10 (August 23, 2006): 702–18. http://dx.doi.org/10.1002/prop.200610325.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jian-Jun, Hu, and Yin Jian-Ping. "Magnetic Surface Microtraps for Two-Species Bose-Einstein Condensations." Chinese Physics Letters 19, no. 6 (May 28, 2002): 782–85. http://dx.doi.org/10.1088/0256-307x/19/6/312.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Mabuchi, H., M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer, and S. J. van Enk. "Quantum networks based on cavity QED." Quantum Information and Computation 1, Special (December 2001): 7–12. http://dx.doi.org/10.26421/qic1.s-3.

Full text
Abstract:
We review an ongoing program of interdisciplinary research aimed at developing hardware and protocols for quantum communication networks. Our primary experimental goals are to demonstrate quantum state mapping from storage/processing media (internal states of trapped atoms) to transmission media (optical photons), and to investigate a nanotechnology paradigm for cavity QED that would involve the integration of magnetic microtraps with photonic bandgap structures.
APA, Harvard, Vancouver, ISO, and other styles
8

Andersson, Erika, and Stig Stenholm. "Quantum logic gate with microtraps." Optics Communications 188, no. 1-4 (February 2001): 141–48. http://dx.doi.org/10.1016/s0030-4018(00)01161-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Singh, M., M. Volk, A. Akulshin, A. Sidorov, R. McLean, and P. Hannaford. "One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip." Journal of Physics B: Atomic, Molecular and Optical Physics 41, no. 6 (March 10, 2008): 065301. http://dx.doi.org/10.1088/0953-4075/41/6/065301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lesanovsky, I., and P. Schmelcher. "Selected aspects of the quantum dynamics and electronic structure of atoms in magnetic microtraps." European Physical Journal D 35, no. 1 (May 3, 2005): 31–42. http://dx.doi.org/10.1140/epjd/e2005-00062-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Herrera, I., Y. Wang, P. Michaux, D. Nissen, P. Surendran, S. Juodkazis, S. Whitlock, et al. "Sub-micron period lattice structures of magnetic microtraps for ultracold atoms on an atom chip." Journal of Physics D: Applied Physics 48, no. 11 (February 24, 2015): 115002. http://dx.doi.org/10.1088/0022-3727/48/11/115002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Yin, Jianping, Weijian Gao, Jianjun Hu, and Yiqiu Wang. "Magnetic surface microtraps for realizing an array of alkali atomic Bose–Einstein condensates or Bose clusters." Optics Communications 206, no. 1-3 (May 2002): 99–113. http://dx.doi.org/10.1016/s0030-4018(02)01390-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Leung, V. Y. F., D. R. M. Pijn, H. Schlatter, L. Torralbo-Campo, A. L. La Rooij, G. B. Mulder, J. Naber, et al. "Magnetic-film atom chip with 10 μm period lattices of microtraps for quantum information science with Rydberg atoms." Review of Scientific Instruments 85, no. 5 (May 2014): 053102. http://dx.doi.org/10.1063/1.4874005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Leung, V. Y. F., A. Tauschinsky, N. J. van Druten, and R. J. C. Spreeuw. "Microtrap arrays on magnetic film atom chips for quantum information science." Quantum Information Processing 10, no. 6 (September 18, 2011): 955–74. http://dx.doi.org/10.1007/s11128-011-0295-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Whitlock, Shannon, Alexander W. Glaetzle, and Peter Hannaford. "Simulating quantum spin models using Rydberg-excited atomic ensembles in magnetic microtrap arrays." Journal of Physics B: Atomic, Molecular and Optical Physics 50, no. 7 (March 10, 2017): 074001. http://dx.doi.org/10.1088/1361-6455/aa6149.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Chen, Huiyu, Ruihua Zhou, Chunju Xu, Yaqing Liu, and Guizhe Zhao. "Cobalt microtrees assembled by dendrites: Hydrothermal synthesis and their enhanced magnetic properties." Materials Letters 99 (May 2013): 1–4. http://dx.doi.org/10.1016/j.matlet.2013.02.063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Modlin, C. S., K. D. Fisher, and J. M. Cioffi. "Analysis of and detector comparisons using the microtrack model of magnetic recording." IEEE Transactions on Magnetics 34, no. 1 (1998): 63–68. http://dx.doi.org/10.1109/20.663445.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hwang, Jiann-Yang, and Mijeong Lee Jeong. "Separation and Quantitation of Hazardous Wastes from Abrasive Blast Media." Journal of AOAC INTERNATIONAL 84, no. 3 (May 1, 2001): 693–98. http://dx.doi.org/10.1093/jaoac/84.3.693.

Full text
Abstract:
Abstract A sample of glass bead abrasive blasting material (ABM) waste, received from Robins Air Force Base (Georgia), was examined to determine whether the waste could be rendered nonhazardous by separating paint contaminants from the ABM. The sample was analyzed with size distribution and toxicity characteristics leaching procedure. A Microtrac analyzer was used to measure the size of fine particles (−325 Tyler mesh), and scanning electron microscopy analysis was performed to identify the nature of the contaminants in the ABM waste. Tests using froth flotation, magnetic separation, desliming, and acid washing were conducted to develop a process for removing the contaminants. A pilot plant test using the developed process rendered 82.1% or the ABM waste material nonhazardous.
APA, Harvard, Vancouver, ISO, and other styles
19

Zou, X., Z. Qin, K. Cai, K. S. Chai, W. Ye, and K. P. Tan. "Read channel simulation based on microtrack and micromagnetic modeling for 1Tb/in2 magnetic recording." Journal of Magnetism and Magnetic Materials 320, no. 22 (November 2008): 3128–31. http://dx.doi.org/10.1016/j.jmmm.2008.08.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Marrow, M. N., M. K. Cheng, P. H. Siegel, and J. K. Wolf. "A Fast Microtrack Simulator for High-Density Perpendicular Recording." IEEE Transactions on Magnetics 40, no. 4 (July 2004): 3117–19. http://dx.doi.org/10.1109/tmag.2004.828993.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Bele, E., B. A. Bouwhuis, C. Codd, and G. D. Hibbard. "Structural ceramic coatings in composite microtruss cellular materials." Acta Materialia 59, no. 15 (September 2011): 6145–54. http://dx.doi.org/10.1016/j.actamat.2011.06.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Bele, E., B. A. Bouwhuis, and G. D. Hibbard. "Failure mechanisms in metal/metal hybrid nanocrystalline microtruss materials." Acta Materialia 57, no. 19 (November 2009): 5927–35. http://dx.doi.org/10.1016/j.actamat.2009.08.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Lee, Jin Woo, Kyong Soo Lee, Nana Cho, Byeong Kwon Ju, Kyu Back Lee, and Sang Ho Lee. "Topographical guidance of mouse neuronal cell on SiO2 microtracks." Sensors and Actuators B: Chemical 128, no. 1 (December 2007): 252–57. http://dx.doi.org/10.1016/j.snb.2007.06.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Gorbunkov, M. V., Yu Ya Maslova, V. A. Petukhov, M. A. Semenov, and Yu V. Shabalin. "Generation of a regular sequence of short-pulse microtrains with a discretely varied repetition period." Bulletin of the Lebedev Physics Institute 36, no. 9 (September 2009): 270–76. http://dx.doi.org/10.3103/s1068335609090048.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Fortágh, J., H. Ott, S. Kraft, A. Günther, and C. Zimmermann. "Surface effects in magnetic microtraps." Physical Review A 66, no. 4 (October 24, 2002). http://dx.doi.org/10.1103/physreva.66.041604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lenz, Martin, Sebastian Wüster, Christopher J. Vale, Norman R. Heckenberg, Halina Rubinsztein-Dunlop, C. A. Holmes, G. J. Milburn, and Matthew J. Davis. "Dynamical tunneling with ultracold atoms in magnetic microtraps." Physical Review A 88, no. 1 (July 29, 2013). http://dx.doi.org/10.1103/physreva.88.013635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Boetes, A. G., R. V. Skannrup, J. Naber, S. J. J. M. F. Kokkelmans, and R. J. C. Spreeuw. "Trapping of Rydberg atoms in tight magnetic microtraps." Physical Review A 97, no. 1 (January 31, 2018). http://dx.doi.org/10.1103/physreva.97.013430.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Schroll, C., W. Belzig, and C. Bruder. "Decoherence of cold atomic gases in magnetic microtraps." Physical Review A 68, no. 4 (October 15, 2003). http://dx.doi.org/10.1103/physreva.68.043618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Whitlock, S., B. V. Hall, T. Roach, R. Anderson, M. Volk, P. Hannaford, and A. I. Sidorov. "Effect of magnetization inhomogeneity on magnetic microtraps for atoms." Physical Review A 75, no. 4 (April 2, 2007). http://dx.doi.org/10.1103/physreva.75.043602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Wang, Daw-Wei, Mikhail D. Lukin, and Eugene Demler. "Disordered Bose-Einstein Condensates in Quasi-One-Dimensional Magnetic Microtraps." Physical Review Letters 92, no. 7 (February 18, 2004). http://dx.doi.org/10.1103/physrevlett.92.076802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Hohenester, Ulrich, Per Kristian Rekdal, Alfio Borzì, and Jörg Schmiedmayer. "Optimal quantum control of Bose-Einstein condensates in magnetic microtraps." Physical Review A 75, no. 2 (February 1, 2007). http://dx.doi.org/10.1103/physreva.75.023602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gerritsma, R., S. Whitlock, T. Fernholz, H. Schlatter, J. A. Luigjes, J. U. Thiele, J. B. Goedkoop, and R. J. C. Spreeuw. "Lattice of microtraps for ultracold atoms based on patterned magnetic films." Physical Review A 76, no. 3 (September 19, 2007). http://dx.doi.org/10.1103/physreva.76.033408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jäger, Georg, and Ulrich Hohenester. "Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Consideration of filter effects." Physical Review A 88, no. 3 (September 9, 2013). http://dx.doi.org/10.1103/physreva.88.035601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Cano, D., B. Kasch, H. Hattermann, D. Koelle, R. Kleiner, C. Zimmermann, and J. Fortágh. "Impact of the Meissner effect on magnetic microtraps for neutral atoms near superconducting thin films." Physical Review A 77, no. 6 (June 5, 2008). http://dx.doi.org/10.1103/physreva.77.063408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Albrecht, B., Y. Meng, C. Clausen, A. Dareau, P. Schneeweiss, and A. Rauschenbeutel. "Fictitious magnetic-field gradients in optical microtraps as an experimental tool for interrogating and manipulating cold atoms." Physical Review A 94, no. 6 (December 30, 2016). http://dx.doi.org/10.1103/physreva.94.061401.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Jäger, Georg, Daniel M. Reich, Michael H. Goerz, Christiane P. Koch, and Ulrich Hohenester. "Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of gradient-ascent-pulse-engineering and Krotov optimization schemes." Physical Review A 90, no. 3 (September 25, 2014). http://dx.doi.org/10.1103/physreva.90.033628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hänsel, W., J. Reichel, P. Hommelhoff, and T. W. Hänsch. "Trapped-atom interferometer in a magnetic microtrap." Physical Review A 64, no. 6 (November 14, 2001). http://dx.doi.org/10.1103/physreva.64.063607.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography