Journal articles on the topic 'Magnetic microrheology'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Magnetic microrheology.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Peredo-Ortíz, R., and M. Hernández-Contreras. "Diffusion microrheology of ferrofluids." Revista Mexicana de Física 64, no. 1 (February 8, 2018): 82. http://dx.doi.org/10.31349/revmexfis.64.82.
Full textKim, Jin Chul, Myungeun Seo, Marc A. Hillmyer, and Lorraine F. Francis. "Magnetic Microrheology of Block Copolymer Solutions." ACS Applied Materials & Interfaces 5, no. 22 (November 14, 2013): 11877–83. http://dx.doi.org/10.1021/am403569f.
Full textWang, Hanqing, Tomaž Mohorič, Xianren Zhang, Jure Dobnikar, and Jürgen Horbach. "Active microrheology in two-dimensional magnetic networks." Soft Matter 15, no. 22 (2019): 4437–44. http://dx.doi.org/10.1039/c9sm00085b.
Full textBrasovs, Artis, Jānis Cīmurs, Kaspars Ērglis, Andris Zeltins, Jean-Francois Berret, and Andrejs Cēbers. "Magnetic microrods as a tool for microrheology." Soft Matter 11, no. 13 (2015): 2563–69. http://dx.doi.org/10.1039/c4sm02454k.
Full textRaikher, Yu L., and V. V. Rusakov. "Magnetic rotary microrheology in a Maxwell fluid." Journal of Magnetism and Magnetic Materials 300, no. 1 (May 2006): e229-e233. http://dx.doi.org/10.1016/j.jmmm.2005.10.086.
Full textBerezney, John P., and Megan T. Valentine. "A compact rotary magnetic tweezers device for dynamic material analysis." Review of Scientific Instruments 93, no. 9 (September 1, 2022): 093701. http://dx.doi.org/10.1063/5.0090199.
Full textRadiom, Milad, Romain Hénault, Salma Mani, Aline Grein Iankovski, Xavier Norel, and Jean-François Berret. "Magnetic wire active microrheology of human respiratory mucus." Soft Matter 17, no. 32 (2021): 7585–95. http://dx.doi.org/10.1039/d1sm00512j.
Full textLiu, Wei, Xiangjun Gong, To Ngai, and Chi Wu. "Near-surface microrheology reveals dynamics and viscoelasticity of soft matter." Soft Matter 14, no. 48 (2018): 9764–76. http://dx.doi.org/10.1039/c8sm01886c.
Full textPreece, Daryl, Rebecca Warren, R. M. L. Evans, Graham M. Gibson, Miles J. Padgett, Jonathan M. Cooper, and Manlio Tassieri. "Optical tweezers: wideband microrheology." Journal of Optics 13, no. 4 (March 4, 2011): 044022. http://dx.doi.org/10.1088/2040-8978/13/4/044022.
Full textBerret, Jean François. "Microrheology of viscoelastic solutions studied by magnetic rotational spectroscopy." International Journal of Nanotechnology 13, no. 8/9 (2016): 597. http://dx.doi.org/10.1504/ijnt.2016.079661.
Full textRebêlo, L. M., J. S. de Sousa, J. Mendes Filho, J. Schäpe, H. Doschke, and M. Radmacher. "Microrheology of cells with magnetic force modulation atomic force microscopy." Soft Matter 10, no. 13 (December 9, 2013): 2141–49. http://dx.doi.org/10.1039/c3sm52045e.
Full textLin, Jun, and Megan T. Valentine. "Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements." Applied Physics Letters 100, no. 20 (May 14, 2012): 201902. http://dx.doi.org/10.1063/1.4717988.
Full textBesseris, George J., and Donovan B. Yeates. "Rotating magnetic particle microrheometry in biopolymer fluid dynamics: Mucus microrheology." Journal of Chemical Physics 127, no. 10 (September 14, 2007): 105106. http://dx.doi.org/10.1063/1.2766947.
Full textBehrend, Caleb J., Jeffrey N. Anker, Brandon H. McNaughton, and Raoul Kopelman. "Microrheology with modulated optical nanoprobes (MOONs)." Journal of Magnetism and Magnetic Materials 293, no. 1 (May 2005): 663–70. http://dx.doi.org/10.1016/j.jmmm.2005.02.072.
Full textHelseth, L. E., and T. M. Fischer. "Fundamental limits of optical microrheology." Journal of Colloid and Interface Science 275, no. 1 (July 2004): 322–27. http://dx.doi.org/10.1016/j.jcis.2004.01.052.
Full textLin, Jun, and Megan T. Valentine. "High-force NdFeB-based magnetic tweezers device optimized for microrheology experiments." Review of Scientific Instruments 83, no. 5 (May 2012): 053905. http://dx.doi.org/10.1063/1.4719916.
Full textKollmannsberger, Philip, Claudia Mierke, and Ben Fabry. "Nonlinear mechanical response of adherent cells measured by magnetic bead microrheology." Bone 46 (March 2010): S50—S51. http://dx.doi.org/10.1016/j.bone.2010.01.115.
Full textRich, Jason P., Jan Lammerding, Gareth H. McKinley, and Patrick S. Doyle. "Nonlinear microrheology of an aging, yield stress fluid using magnetic tweezers." Soft Matter 7, no. 21 (2011): 9933. http://dx.doi.org/10.1039/c1sm05843f.
Full textPuig-De-Morales, Marina, Mireia Grabulosa, Jordi Alcaraz, Joaquim Mullol, Geoffrey N. Maksym, Jeffrey J. Fredberg, and Daniel Navajas. "Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation." Journal of Applied Physiology 91, no. 3 (September 1, 2001): 1152–59. http://dx.doi.org/10.1152/jappl.2001.91.3.1152.
Full textHuang, Derek E., and Roseanna N. Zia. "Sticky, active microrheology: Part 1. Linear-response." Journal of Colloid and Interface Science 554 (October 2019): 580–91. http://dx.doi.org/10.1016/j.jcis.2019.07.004.
Full textSohn, I. S., R. Rajagopalan, and A. C. Dogariu. "Spatially resolved microrheology through a liquid/liquid interface." Journal of Colloid and Interface Science 269, no. 2 (January 2004): 503–13. http://dx.doi.org/10.1016/s0021-9797(03)00728-8.
Full textWu, Chenjun, Qingxu Zhang, Yihu Song, and Qiang Zheng. "Microrheology of magnetorheological silicone elastomers during curing process under the presence of magnetic field." AIP Advances 7, no. 9 (September 2017): 095004. http://dx.doi.org/10.1063/1.5002121.
Full textAprelev, Pavel, Bonni McKinney, Chadwick Walls, and Konstanin G. Kornev. "Magnetic stage with environmental control for optical microscopy and high-speed nano- and microrheology." Physics of Fluids 29, no. 7 (July 2017): 072001. http://dx.doi.org/10.1063/1.4989548.
Full textRaikher, Yu L., and V. V. Rusakov. "Rotational Microrheology of Viscoelastic Fluid: Orientational Kinetics of Magnetic Particles in the Inertialess Approximation." Colloid Journal 67, no. 5 (September 2005): 610–24. http://dx.doi.org/10.1007/s10595-005-0140-2.
Full textGarcía Daza, Fabián A., Antonio M. Puertas, Alejandro Cuetos, and Alessandro Patti. "Microrheology of colloidal suspensions via dynamic Monte Carlo simulations." Journal of Colloid and Interface Science 605 (January 2022): 182–92. http://dx.doi.org/10.1016/j.jcis.2021.07.088.
Full textMedronho, B., A. Filipe, C. Costa, A. Romano, B. Lindman, H. Edlund, and M. Norgren. "Microrheology of novel cellulose stabilized oil-in-water emulsions." Journal of Colloid and Interface Science 531 (December 2018): 225–32. http://dx.doi.org/10.1016/j.jcis.2018.07.043.
Full textGan, Tiansheng, Xiangjun Gong, Holger Schönherr, and Guangzhao Zhang. "Microrheology of growing Escherichia coli biofilms investigated by using magnetic force modulation atomic force microscopy." Biointerphases 11, no. 4 (December 2016): 041005. http://dx.doi.org/10.1116/1.4968809.
Full textInoue, Masao, and Akira Yoshimori. "Effects of interactions between particles on dynamics in microrheology." Journal of Molecular Liquids 200 (December 2014): 81–84. http://dx.doi.org/10.1016/j.molliq.2014.05.029.
Full textMeng, Xianghe, Xiaomo Wu, Jianmin Song, Hao Zhang, Mingjun Chen, and Hui Xie. "Quantification of the Microrheology of Living Cells Using Multi-Frequency Magnetic Force Modulation Atomic Force Microscopy." IEEE Transactions on Instrumentation and Measurement 71 (2022): 1–9. http://dx.doi.org/10.1109/tim.2022.3153994.
Full textMalgaretti, Paolo, Antonio M. Puertas, and Ignacio Pagonabarraga. "Active microrheology in corrugated channels: Comparison of thermal and colloidal baths." Journal of Colloid and Interface Science 608 (February 2022): 2694–702. http://dx.doi.org/10.1016/j.jcis.2021.10.193.
Full textLiu, Wei, Yuwei Zhu, Tong Zhang, Hui Zhu, Chuanxin He, and To Ngai. "Microrheology of thermoresponsive poly(N-isopropylacrylamide) microgel dispersions near a substrate surface." Journal of Colloid and Interface Science 597 (September 2021): 104–13. http://dx.doi.org/10.1016/j.jcis.2021.03.181.
Full textMolaei, Mehdi, and John C. Crocker. "Interfacial microrheology and tensiometry in a miniature, 3-d printed Langmuir trough." Journal of Colloid and Interface Science 560 (February 2020): 407–15. http://dx.doi.org/10.1016/j.jcis.2019.09.112.
Full textBausch, Andreas R., Ulrike Hellerer, Markus Essler, Martin Aepfelbacher, and Erich Sackmann. "Rapid Stiffening of Integrin Receptor-Actin Linkages in Endothelial Cells Stimulated with Thrombin: A Magnetic Bead Microrheology Study." Biophysical Journal 80, no. 6 (June 2001): 2649–57. http://dx.doi.org/10.1016/s0006-3495(01)76234-0.
Full textHuang, Shilin, Kornelia Gawlitza, Regine von Klitzing, Laurent Gilson, Johannes Nowak, Stefan Odenbach, Werner Steffen, and Günter K. Auernhammer. "Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology." Langmuir 32, no. 3 (January 11, 2016): 712–22. http://dx.doi.org/10.1021/acs.langmuir.5b01438.
Full textAponte-Rivera, Christian, and Roseanna N. Zia. "The confined Generalized Stokes-Einstein relation and its consequence on intracellular two-point microrheology." Journal of Colloid and Interface Science 609 (March 2022): 423–33. http://dx.doi.org/10.1016/j.jcis.2021.11.037.
Full textChu, Henry C. W., and Roseanna N. Zia. "Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions." Journal of Colloid and Interface Science 539 (March 2019): 388–99. http://dx.doi.org/10.1016/j.jcis.2018.12.055.
Full textHuang, Derek E., and Roseanna N. Zia. "Sticky-probe active microrheology: Part 2. The influence of attractions on non-Newtonian flow." Journal of Colloid and Interface Science 562 (March 2020): 293–306. http://dx.doi.org/10.1016/j.jcis.2019.11.057.
Full textChen, Yin-Quan, Chia-Yu Kuo, Ming-Tzo Wei, Kelly Wu, Pin-Tzu Su, Chien-Shiou Huang, and Arthur Chiou. "Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology." Journal of Biomedical Optics 19, no. 1 (July 17, 2013): 011008. http://dx.doi.org/10.1117/1.jbo.19.1.011008.
Full textHabibi, Ahlem, Christophe Blanc, Nadia Ben Mbarek, and Taoufik Soltani. "Passive and active microrheology of a lyotropic chromonic nematic liquid crystal disodium cromoglycate." Journal of Molecular Liquids 288 (August 2019): 111027. http://dx.doi.org/10.1016/j.molliq.2019.111027.
Full textMoschakis, Thomas, Brent S. Murray, and Eric Dickinson. "On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology." Journal of Colloid and Interface Science 345, no. 2 (May 2010): 278–85. http://dx.doi.org/10.1016/j.jcis.2010.02.005.
Full textNeckernuss, T., L. K. Mertens, I. Martin, T. Paust, M. Beil, and O. Marti. "Active microrheology with optical tweezers: a versatile tool to investigate anisotropies in intermediate filament networks." Journal of Physics D: Applied Physics 49, no. 4 (December 29, 2015): 045401. http://dx.doi.org/10.1088/0022-3727/49/4/045401.
Full textAlves, Luis, Bruno Medronho, Alexandra Filipe, Filipe E. Antunes, Björn Lindman, Daniel Topgaard, Irina Davidovich, and Yeshayahu Talmon. "New Insights on the Role of Urea on the Dissolution and Thermally-Induced Gelation of Cellulose in Aqueous Alkali." Gels 4, no. 4 (December 11, 2018): 87. http://dx.doi.org/10.3390/gels4040087.
Full textJones, Dustin P., William Hanna, Gwendolyn M. Cramer, and Jonathan P. Celli. "In situ measurement of ECM rheology and microheterogeneity in embedded and overlaid 3D pancreatic tumor stroma co-cultures via passive particle tracking." Journal of Innovative Optical Health Sciences 10, no. 06 (November 2017): 1742003. http://dx.doi.org/10.1142/s1793545817420032.
Full textWilhelm, C., J. Browaeys, A. Ponton, and J. C. Bacri. "Rotational magnetic particles microrheology: The Maxwellian case." Physical Review E 67, no. 1 (January 22, 2003). http://dx.doi.org/10.1103/physreve.67.011504.
Full textMao, Yating, Paige Nielsen, and Jamel Ali. "Passive and Active Microrheology for Biomedical Systems." Frontiers in Bioengineering and Biotechnology 10 (July 5, 2022). http://dx.doi.org/10.3389/fbioe.2022.916354.
Full textBerret, Jean-François. "Comment on “Bilayer aggregate microstructure determines viscoelasticity of lung surfactant suspensions” by C. O. Ciutara and J. A. Zasadzinski, Soft Matter, 2021, 17, 5170–5182." Soft Matter, 2022. http://dx.doi.org/10.1039/d2sm00653g.
Full textWilhelm, C., F. Gazeau, and J. C. Bacri. "Rotational magnetic endosome microrheology: Viscoelastic architecture inside living cells." Physical Review E 67, no. 6 (June 23, 2003). http://dx.doi.org/10.1103/physreve.67.061908.
Full text"Viscoelasticity of the bacteriophage Pf1 network measured by magnetic microrheology." Magnetohydrodynamics 46, no. 1 (March 2010): 23–30. http://dx.doi.org/10.22364/mhd.46.1.2.
Full textChevry, L., N. K. Sampathkumar, A. Cebers, and J. F. Berret. "Magnetic wire-based sensors for the microrheology of complex fluids." Physical Review E 88, no. 6 (December 13, 2013). http://dx.doi.org/10.1103/physreve.88.062306.
Full textWilhelm, Claire. "Effective temperature inside living cells." MRS Proceedings 1227 (2009). http://dx.doi.org/10.1557/proc-1227-jj05-03.
Full text