Academic literature on the topic 'Magnetic-manipulation system'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic-manipulation system.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic-manipulation system"

1

Chang, Ming, Jacque Lynn Gabayno, Ming Yi Chang, Yu Hao Lin, and Ke Wei Huang. "Magnetic Field-Driven Manipulation System and its Applications in Micromixing and Microablation." Applied Mechanics and Materials 736 (March 2015): 152–57. http://dx.doi.org/10.4028/www.scientific.net/amm.736.152.

Full text
Abstract:
This study showcases two independent magnetic manipulation systems to remotely control the movement of Fe3O4 nanomaterial in microfluidic chips. One system utilizes a homogeneous rotating magnetic field to carry out magnetic stirring in 100 μm and 300 μm flow channels. The mixing results of this system revealed that adding Fe3O4 nanoparticles to the solution enhances the efficiency of the micromixer by twice as much that of a device without the nanomaterial. The second manipulation system utilizes oscillating magnetic field for rapid microablation of thrombus in a microchannel. A customizable magnetic platform using 3D-printed material is also constructed. This is proposed as a feasible low-cost and portable magnetic manipulation device that can implement both applications.
APA, Harvard, Vancouver, ISO, and other styles
2

Guckenberger, David J., Hannah M. Pezzi, Mary C. Regier, et al. "Magnetic System for Automated Manipulation of Paramagnetic Particles." Analytical Chemistry 88, no. 20 (2016): 9902–7. http://dx.doi.org/10.1021/acs.analchem.6b02257.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Abu-Nimeh, F. T., and F. M. Salem. "An Integrated Open-Cavity System for Magnetic Bead Manipulation." IEEE Transactions on Biomedical Circuits and Systems 7, no. 1 (2013): 31–42. http://dx.doi.org/10.1109/tbcas.2012.2191151.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Im, Seyeong, Sungjun Kim, Joongho Yun, and Jaekwang Nam. "Robot-Aided Magnetic Navigation System for Wireless Capsule Manipulation." Micromachines 14, no. 2 (2023): 269. http://dx.doi.org/10.3390/mi14020269.

Full text
Abstract:
Magnetic navigation systems (MNSs) have been developed to use in the diagnosis of gastrointestinal problems. However, most conventional magnetic navigation systems are expensive and have structural problems because of their large weights and volumes. Therefore, this paper proposes C-Mag, a novel compact MNS composed of two electromagnets and a robotic arm. The two electromagnets generate a planar magnetic field, and the robotic arm rotates and translates the electromagnets to manipulate the magnetic capsule in a large 3-dimensional (3-D) space. The C-Mag design considers the payload of the robotic arm and the capacity of the power supply unit. Under these limited conditions, the C-Mag was optimized to generate the maximum magnetic field considering several major factors. Finally, the C-Mag was constructed, and the maximum magnetic field that could be generated in one direction was 18.65 mT in the downward direction. Additionally, the maximum rotating magnetic field was 13.21 mT, which was used to manipulate the capsule. The performance was verified by measuring the generated magnetic field, and it matched well with the simulated result. Additionally, the path-following experiment of the magnetic capsule showed that the proposed C-Mag can effectively manipulate the magnetic capsule in 3-D space using the robotic arm. This study is expected to contribute to the further development of magnetic navigation systems to treat gastrointestinal problems.
APA, Harvard, Vancouver, ISO, and other styles
5

Yu, Chang-Ho, and Sung Hoon Kim. "Multifunctional Robotic Guidewire System using Spiral-type Magnetic Microrobot with Magnetic Manipulation." Journal of Magnetics 21, no. 4 (2016): 616–21. http://dx.doi.org/10.4283/jmag.2016.21.4.616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lee, H., Y. Liu, R. M. Westervelt, and D. Ham. "IC/Microfluidic Hybrid System for Magnetic Manipulation of Biological Cells." IEEE Journal of Solid-State Circuits 41, no. 6 (2006): 1471–80. http://dx.doi.org/10.1109/jssc.2006.874331.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

FISHER, J. K., L. VICCI, J. CRIBB, E. T. O'BRIEN, R. M. TAYLOR, and R. SUPERFINE. "MAGNETIC FORCE MICROMANIPULATION SYSTEMS FOR THE BIOLOGICAL SCIENCES." Nano 01, no. 03 (2006): 191–205. http://dx.doi.org/10.1142/s1793292006000276.

Full text
Abstract:
Manipulation systems using magnetic field gradients have the ability to apply a large range of forces noninvasively to a specific target. Depending on the requirements of a given experiment, the systems may be as simple as a single electromagnet for unidirectional manipulation or as complex as a high-frequency three-dimensional manipulator with force feedback. Here, we discuss the motivation for developing such systems, theory and design considerations, and give examples of the broad range of manipulators that has been put to use. In addition, we discuss a variety of applications demonstrating the range of experiments for which such a system is applicable.
APA, Harvard, Vancouver, ISO, and other styles
8

Xie, Hui, Mengmeng Sun, Xinjian Fan, et al. "Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation." Science Robotics 4, no. 28 (2019): eaav8006. http://dx.doi.org/10.1126/scirobotics.aav8006.

Full text
Abstract:
Swimming microrobots that are energized by external magnetic fields exhibit a variety of intriguing collective behaviors, ranging from dynamic self-organization to coherent motion; however, achieving multiple, desired collective modes within one colloidal system to emulate high environmental adaptability and enhanced tasking capabilities of natural swarms is challenging. Here, we present a strategy that uses alternating magnetic fields to program hematite colloidal particles into liquid, chain, vortex, and ribbon-like microrobotic swarms and enables fast and reversible transformations between them. The chain is characterized by passing through confined narrow channels, and the herring school–like ribbon procession is capable of large-area synchronized manipulation, whereas the colony-like vortex can aggregate at a high density toward coordinated handling of heavy loads. Using the developed discrete particle simulation methods, we investigated generation mechanisms of these four swarms, as well as the “tank-treading” motion of the chain and vortex merging. In addition, the swarms can be programmed to steer in any direction with excellent maneuverability, and the vortex’s chirality can be rapidly switched with high pattern stability. This reconfigurable microrobot swarm can provide versatile collective modes to address environmental variations or multitasking requirements; it has potential to investigate fundamentals in living systems and to serve as a functional bio-microrobot system for biomedicine.
APA, Harvard, Vancouver, ISO, and other styles
9

Zhang, Ning, Qiang Guo, Wen Ye, Rui Feng, and Heng Yuan. "Temperature Fluctuations Compensation with Multi-Frequency Synchronous Manipulation for a NV Magnetometer in Fiber-Optic Scheme." Sensors 22, no. 14 (2022): 5218. http://dx.doi.org/10.3390/s22145218.

Full text
Abstract:
Nitrogen-vacancy (NV) centers in diamonds play a large role in advanced quantum sensing with solid-state spins for potential miniaturized and portable application scenarios. With the temperature sensitivity of NV centers, the temperature fluctuations caused by the unknown environment and the system itself will mix with the magnetic field measurement. In this research, the temperature-sensitive characteristics of different diamonds, alongside the temperature noise generated by a measurement system, were tested and analyzed with a homemade NV magnetometer in a fiber-optic scheme. In this work, a multi-frequency synchronous manipulation method for resonating with the NV centers in all axial directions was proposed to compensate for the temperature fluctuations in a fibered NV magnetic field sensing scheme. The symmetrical features of the resonance lines of the NV centers, the common-mode fluctuations including temperature fluctuations, underwent effective compensation and elimination. The fluorescence change was reduced to 1.0% by multi-frequency synchronous manipulation from 5.5% of the single-frequency manipulation within a ±2 °C temperature range. Additionally, the multi-frequency synchronous manipulation improved the fluorescence contrast and the magnetic field measurement SNR through an omnidirectional manipulation scheme. It was very important to compensate for the temperature fluctuations, caused by both internal and external factors, to make use of the NV magnetometer in fiber-optic schemes’ practicality. This work will promote the rapid development and widespread applications of quantum sensing based on various systems and principles.
APA, Harvard, Vancouver, ISO, and other styles
10

Ullrich, Franziska, Stefano Fusco, George Chatzipirpiridis,, Salvador Pané, and Bradley J. Nelson. "Recent Progress in Magnetically Actuated Microrobotics for Ophthalmic Therapies." European Ophthalmic Review 08, no. 02 (2014): 120. http://dx.doi.org/10.17925/eor.2014.08.02.120.

Full text
Abstract:
Age-related visual loss and ageing demographics account for a large impact on societal health costs on a global scale. Efficient ocular surgery must be precise, safe and cost effective. Current research focuses on robotic systems to assist in ophthalmic surgery. Furthermore, several platforms for drug delivery in the posterior segment of the eye have been introduced. Moreover, magnetic manipulation of tethered and untethered structures has been suggested to assist in teleoperated ophthalmic surgery and targeted drug delivery in the posterior eye due to its many advantages. Magnetic manipulation systems generate magnetic fields and gradients to guide magnetic objects with high precision and force feedback. A hybrid actuation system for guiding a flexible catheter with a sharp edge magnetic tip has been introduced for capsulorhexis – a major step in cataract surgery. Research has demonstrated the potential of wireless magnetic microrobots for targeted drug delivery and simple mechanical operations in the posterior eye segment inex vivoandin vivoexperiments.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography