Academic literature on the topic 'Magnetic Interaction - Transition Metal Complexes'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic Interaction - Transition Metal Complexes.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic Interaction - Transition Metal Complexes"

1

Heit, Yonaton N., Dumitru-Claudiu Sergentu, and Jochen Autschbach. "Magnetic circular dichroism spectra of transition metal complexes calculated from restricted active space wavefunctions." Physical Chemistry Chemical Physics 21, no. 10 (2019): 5586–97. http://dx.doi.org/10.1039/c8cp07849a.

Full text
Abstract:
Multiconfigurational restricted active space (RAS) self-consistent field (SCF) or configuration interaction (CI) approaches, augmented with a treatment of spin–orbit coupling by state interaction, were used to calculate the magnetic circular dichroism , , and/or for closed- and open-shell transition metal complexes.
APA, Harvard, Vancouver, ISO, and other styles
2

Echeverría, Jorge. "The n → π* interaction in metal complexes." Chemical Communications 54, no. 24 (2018): 3061–64. http://dx.doi.org/10.1039/c8cc00763b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Pelletier, Yanick, and Christian Reber. "Single-crystal absorption spectroscopy of binuclear complexes of iron(III) and manganese(III) with the μ-oxo-bis(μ-acetato)dimetal core." Canadian Journal of Chemistry 73, no. 2 (February 1, 1995): 249–54. http://dx.doi.org/10.1139/v95-034.

Full text
Abstract:
Single-crystal absorption spectroscopy at variable temperature is used to determine exchange couplings between transition metal centers in both the electronic ground and excited states in two new homobimetallic complexes with the formula [LM(μ-O)(μ-CH3CO2)2ML′](ClO4)2, where M is iron(III) or manganese(III). L and L' denote 1,4,7-triazacyclononane and 1,4,7-trimethyl-1,4,7-triazacyclononane, respectively. Values for the ground state exchange coupling constant J are −295 cm−1 and +10 cm−1 for the iron and manganese compounds, respectively, using Hex = −JS1•S2. Exchange interactions in excited states are qualitatively analyzed, indicating that a spin-forbidden transition of the Fe–Fe binuclear unit occurs with significant intensity by the single-ion mechanism, and not as expected by the Tanabe pair intensity mechanism for spin-forbidden transitions, the dominant mechanism for isoelectronic complexes of manganese(II). Keywords: absorption spectra, exchange interaction, magnetic properties, bimetallic complexes of iron(III), bimetallic complexes of manganese(III)
APA, Harvard, Vancouver, ISO, and other styles
4

Pierpont, Cortlandt G., and Attia S. Attia. "Spin Coupling Interactions in Transition Metal Complexes Containing Radical o-Semiquinone Ligands. A Review." Collection of Czechoslovak Chemical Communications 66, no. 1 (2001): 33–51. http://dx.doi.org/10.1135/cccc20010033.

Full text
Abstract:
Transition metal complexes ofo-semiquinone (SQ) ligands have been studied extensively over the past 25 years. A particularly interesting aspect of this coordination chemistry concerns magnetic interactions between paramagnetic metal ions and the radical anionic ligands. In this review we begin with a survey of relatively simple complexes consisting of a paramagnetic metal ion chelated by a single SQ ligand. Recent studies have revealed the importance of SQ-SQ coupling through diamagnetic metals, and complexes of this class are described in the second section of the review. Both interactions combine to account for the often complicated magnetic properties of complexes containing multiple SQ ligands chelated to a paramagnetic metal ion. Research on these complexes is surveyed in the third section with a concluding look toward polymeric SQ complexes. A review with 51 references.
APA, Harvard, Vancouver, ISO, and other styles
5

Weheabby, Saddam, Mohammad A. Abdulmalic, Matteo Atzori, Roberta Sessoli, Azar Aliabadi, and Tobias Rüffer. "Promotion of antiferromagnetic exchange interaction in multinuclear copper(ii) complexes via fused oxamato/oxamidato ligands." Dalton Transactions 47, no. 45 (2018): 16164–81. http://dx.doi.org/10.1039/c8dt03691h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Flores, Sonia, and D. E. Ellis. "Magnetic Interactions in Dimeric Transition Metal Complexes: Basicerythro-Chromium(III)." Inorganic Chemistry 37, no. 24 (November 1998): 6346–53. http://dx.doi.org/10.1021/ic981049x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Boča, Roman, Ivan Nemec, Ivan Šalitroš, Ján Pavlik, Radovan Herchel, and Franz Renz. "Interplay between spin crossover and exchange interaction in iron(III) complexes." Pure and Applied Chemistry 81, no. 8 (July 20, 2009): 1357–83. http://dx.doi.org/10.1351/pac-con-08-07-20.

Full text
Abstract:
In the dinuclear and polynuclear metal complexes exhibiting the low-spin (LS) to high-spin (HS) transition, the spin-crossover phenomenon interferes with the magnetic exchange interaction. The latter manifests itself in forming spin-multiplets, which causes a possible overlap of the band originating in different reference spin states (LL, LH, HL, and HH). A series of dinuclear Fe(III) complexes has been prepared; the iron centers are linked by a bidentate bridge (CN-, and diamagnetic metallacyanates {Fe(CN)5(NO)}, {Ni(CN)4}, {Pt(CN)4}, and {Ag(CN)2}). Magnetic measurements confirm that the spin crossover proceeds on the thermal propagation. This information has been completed also by the Mössbauer spectral (MS) data. A theoretical model has been developed that allows a simultaneous fitting of all available experimental data (magnetic susceptibility, magnetization, HS mole fraction) on a common set of parameters.
APA, Harvard, Vancouver, ISO, and other styles
8

El-Ghamry, Hoda A., Mohamed Gaber, and Thoraya A. Farghaly. "Synthesis, Structural Characterization, Molecular Modeling and DNA Binding Ability of CoII, NiII, CuII, ZnII, PdII and CdII Complexes of Benzocycloheptenone Thiosemicarbazone Ligand." Mini-Reviews in Medicinal Chemistry 19, no. 13 (August 21, 2019): 1068–79. http://dx.doi.org/10.2174/1389557519666190301143322.

Full text
Abstract:
Background & Objective: Six novel complexes of transition metal namely, [CoLCl2(H2O)2]0.5H2O, [NiLCl2(H2O)2]0.5H2O, [CuLCl2]0.5H2O, [ZnLCl2], [PdLCl2]H2O and [CdLCl2]H2O, where L is benzocycloheptenone thiosemicarbazone ligand, have been obtained. The confirmation of the structures of the obtained metal chelates depends on the different spectral and physicochemical techniques including CHN analysis, infrared spectra, molar conductivity measurement, UV-vis, thermogravimetric analysis and magnetic moment. The infrared spectral results ascertained that the ligand behaved as neutral bidentate connecting the metal centers via N and S atoms of C=N and C=S groups, respectively. Methods: The UV-Vis, molar conductivity and magnetic susceptibility results implied that the geometrical structures of the metal chelates are octahedral for Co(II) & Ni(II) complexes, tetrahedral for Zn(II) & Cd(II) complexes and square planar for Cu(II) & Pd(II) complexes which have been confirmed by molecular modeling studies. Conclusion: Moreover, the mode of interaction between some chosen metal complexes towards SSDNA has been thoughtful by UV-Vis spectra and viscosity measurements. The value of the intrinsic binding constant (Kb) for the examined compounds has been found to be lower than the binding affinity of the classical intercalator ethedium bromide. Also, the viscosity measurements of the complexes proved that they bind to DNA, most likely, by a non-intercalative mode like H-bonding or electrostatic interactions.
APA, Harvard, Vancouver, ISO, and other styles
9

Ananyev, Ivan V., Nadezhda A. Bokach, and Vadim Yu Kukushkin. "Structure-directing sulfur...metal noncovalent semicoordination bonding." Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 76, no. 3 (May 21, 2020): 436–49. http://dx.doi.org/10.1107/s2052520620005685.

Full text
Abstract:
The abundance and geometric features of nonbonding contacts between metal centers and `soft' sulfur atoms bound to a non-metal substituent R were analyzed by processing data from the Cambridge Structural Database. The angular arrangement of M, S and R atoms with ∠(R—S...M) down to 150° was a common feature of the late transition metal complexes exhibiting shortened R—S...M contacts. Several model nickel(II), palladium(II), platinum(II) and gold(I) complexes were chosen for a theoretical analysis of R—S...M interactions using the DFT method applied to (equilibrium) isolated systems. A combination of the real-space approaches, such as Quantum Theory of Atoms in Molecules (QTAIM), noncovalent interaction index (NCI), electron localization function (ELF) and Interacting Quantum Atoms (IQA), and orbital (Natural Bond Orbitals, NBO) methods was used to provide insights into the nature and energetics of R—S...M interactions with respect to the metal atom identity and its coordination environment. The explored features of the R—S...M interactions support the trends observed by inspecting the CSD statistics, and indicate a predominant contribution of semicoordination bonds between nucleophilic sites of the sulfur atom and electrophilic sites of the metal. A contribution of chalcogen bonding (that is formally opposite to semicoordination) was also recognized, although it was significantly smaller in magnitude. The analysis of R—S...M interaction strengths was performed and the structure-directing role of the intramolecular R—S...M interactions in stabilizing certain conformations of metal complexes was revealed.
APA, Harvard, Vancouver, ISO, and other styles
10

Chalmers, James E., Anant Kumar Srivastava, Richard J. C. Dixey, Krrishna Sivakumaran, and Paul J. Saines. "Low dimensional and frustrated antiferromagnetic interactions in transition metal chloride complexes with simple amine ligands." CrystEngComm 21, no. 5 (2019): 894–901. http://dx.doi.org/10.1039/c8ce01901k.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetic Interaction - Transition Metal Complexes"

1

Tilford, Claire. "Experimental investigations of the electronic interactions within multinuclear first row transition metal complexes." Thesis, University of East Anglia, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302144.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Chilton, Nicholas Frederick. "Magnetic anisotropy of transition metal complexes." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/magnetic-anisotropy-of-transition-metal-complexes(64b34057-8a7a-44db-a89a-22a233fdefb5).html.

Full text
Abstract:
The study of magnetic anisotropy in molecular systems permeates the physical sciences and finds application in areas as diverse as biomedical imaging and quantum information processing. The ability to understand and subsequently to design improved agents requires a detailed knowledge of their fundamental operation. This work outlines the background theory of the electronic structure of magnetic molecules and provides examples, for elements across the Periodic Table, of how it may be employed to aid in the understanding of magnetically anisotropic molecules. The magnetic anisotropies of a series of dimetallic NiII2 complexes and a RuIII2MnII triangle are determined through multi-frequency Electron Paramagnetic Resonance (EPR) spectroscopy and ab initio calculations. The magnetic anisotropy of the former is found to be on the same order of magnitude as the isotropic exchange interactions, while that of the latter is found to be caused by large antisymmetric exchange interactions involving the RuIII ions. An intuitive electrostatic strategy for the prediction of the magnetic anisotropy of DyIII complexes is presented, allowing facile determination of magnetic anisotropy for low symmetry molecules. Through the presentation of the first near-linear pseudo-two-coordinate 4f-block complex, a new family of DyIII complexes with unprecedented Single Molecule Magnet (SMM) properties is proposed. Design criteria for such species are elucidated and show that in general any two-coordinate complex of DyIII is an attractive synthetic target. The exchange interaction between two DyIII ions is directly measured with multi-frequency EPR spectroscopy, explaining the quenching of the slow magnetic relaxation in the pure species compared to the SMM properties of the diluted form. The interpretation of this complex system was achieved with supporting ab initio calculations.
APA, Harvard, Vancouver, ISO, and other styles
3

Avalos, Ovando Oscar Rodrigo. "Magnetic Interactions in Transition Metal Dichalcogenides." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1540818398439166.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Johnson, Donald Martin. "Cyanoscorpionates and Transition Metal Complexes." Digital Commons @ East Tennessee State University, 2010. https://dc.etsu.edu/etd/1725.

Full text
Abstract:
The new dihydrobis(4-cyano-3-tert-butylpyrazolylborate) ligand has been synthesized. Isolated crystals of the thallium complex were collected and structurally characterized by X-ray diffraction. Transition metal complexes of the ligand are currently under investigation.
APA, Harvard, Vancouver, ISO, and other styles
5

Ajulu, Florence Adhiambo. "Interaction of phosphirenes and phosphinidenes with transition metal complexes." Thesis, University of Sussex, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Jassim, Ishmaeel Khalil. "Magnetic and lattice interaction in 3D transition metal compounds." Thesis, Loughborough University, 1990. https://dspace.lboro.ac.uk/2134/31919.

Full text
Abstract:
The importance and nature of magnetic and lattice degrees of freedom and their interaction in transition metal magnets has been investigated. Two different alloy systems in which the magnetic 3D electrons either had localised or itinerant characteristics were chosen. As an example of localised behaviour, Heusler alloys in which the magnetic moment was confined to Mn atoms were chosen, e.g. Pd2MnIn. The manganese atoms are separated by more than 4.6Å. These materials provide a good approximation to a Heisenberg system, having long-range interactions.
APA, Harvard, Vancouver, ISO, and other styles
7

Saureu, Artesona Sergi. "From mononuclear to dinuclear: magnetic properties of transition metal complexes." Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/386451.

Full text
Abstract:
En les darreres dècades, el món de la tecnologia i el desenvolupament de nous aparells electrònics s'han convertit en vitals per la nostra societat. Considerant la creixent demanda per la interpretació de resultats experimentals, la millora dels mètodes teòrics i el creixement dels recursos computacionals ens han permés un millor enteniment del comportament magnètic en sistemes amb metalls de transició. L'objectiu d'aquesta tesi és contribuir en aquest camp d'investigació amb l'estudi de materials magnètics utilitzant eines computacionals (DFT, TD-DFT, CASSCF, CASPT2, DDCI, etc.), i en alguns casos, combinant-ho amb resultats experimentals. La primera part (Capítols 3 i 4) inclou l'estudi dels estats electronics de complexes de spin-crossover de Fe(II) i Fe(III) combinant la teoria funcional de la densitat (DFT i TD-DFT) amb mètodes multiconfiguracionals (CASSCF, CASPT2). A més a més, utilitzant la mateixa combinació, hem descrit el fenomen LIESST en complexes de Fe(III). La segona part (Cap. 5 i 6) exposa l'estudi de les propietats magnètiques associades a l'acoblament magnètic utilitzant mètodes variacionals (DDCI, DDCI-2), en un complex de Fe(IV) i un complex bimetàl·lic [MnCr]-oxalat, y com els canvis estructurals afecten a aquest acoblament. Altrament, hem fet un rigurós anàlisi de l'estructura electrònica del complex de Fe(IV) per proporcionar més informació en la descripció més adequada del sistema.
En las últimas décadas, el mundo de la tecnologia y el desarrollo de nuevos aparatos electrónicos se han convertido en vitales para nuestra sociedad. Considerando la creciente demanda para la interpretación de resultados experimentales, la mejora de los métodos teóricos y el crecimiento de los recursos computacionales nos han permitido un mejor entendimiento de los comportamientos magnéticos en los sistemas con metales de transición. El objetivo de esta tesis es contribuir a este campo de investigación con el estudio de materiales magnéticos usando herramientas computacionales (DFT, TD-DFT, CASSCF, CASPT2, DDCI, etc.), y en algunos casos, combinando con resultados experimentales. La primera parte (Capítulo 3 y 4) incluye el estudio de los estados electrónicos de los complejos de spin-crossover de Fe(II) y Fe(III) combinando la teoria funcional de la densidad (DFT y TD-DFT) con métodos multiconfiguracionales (CASSCF, CASPT2). Además, usando la misma combinación, hemos descrito el fenómeno LIESST en complejos de Fe(III). La segunda parte (Cap. 5 y 6) expone el estudio de las propiedades magnéticas asociadas al acoplamiento magnético utilizando metodos variacionales (DDCI, DDCI-2), en un complejo de Fe(IV) y un complejo bimetálico [MnCr]-oxalato, y como los cambios estructurales afectan a ese acoplamiento. Por otra parte, hemos hecho un riguroso analisis de la estructura electrónica del complejo de Fe(IV) para aportar la información para la descripción mas adecuada del sistema.
Over the last decades the world of technology and the development of new devices have become vital for our society. Considering the growing demand for interpretation of experimental observations, the improvement of theoretical methods and the increasing of the computational resources has allowed us to deepen the understanding of magnetic beahvior of metal transitions architectures. The aim of this thesis is to contribute to this research field with the study of magnetic materials by using computational tools (DFT, TD-DFT, CASSCF, CASPT2, DDCI, etc.), and in some cases combining it with experimental results. The first part (Chapters 3 and 4) includes the study of the electronic states of Fe(II) and Fe(III) spin-crossover complexes combining the density functional theory (DFT and TD-DFT) with multiconfigurational methodologies (CASSCF, CASPT2). In addition, we have described the LIESST phenomenon in Fe(III) using the same combination. The second part (Chapters 5 and 6) exposes the study of the magnetic properties related to the magnetic coupling using variational methods (DDCI, DDCI-2) of a Fe(IV) complex and bimetallic [MnCr] oxalate-based complexes and how changes can influence to the coupling. Moreover, a rigorous analysis of the electronic structure of the Fe(IV) system has been performed to provide more information about the most adequate description of the system in terms of intuitive chemical concepts.
APA, Harvard, Vancouver, ISO, and other styles
8

Wood, D. "Magnetic and spectroscopic studies of transition metal complexes of water soluble porphyrius." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Xia, Shihua. "Synthesis, characterization and magnetic properties of some transition metal diorganophosphinate and dimethylarsinate complexes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq25190.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Tabookht, Zahra. "Theoretical study of magnetic and conducting properties of transition metal nanowires." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/52798.

Full text
Abstract:
En la presente tesis doctoral se ha realizado un estudio computacional de las propiedades electrónicas de sistemas basados en cadenas metálicas monodimensionales de la familia de los llamados nanowires, concretamente su magnetismo y conductividad. Estas cadenas lineales se sustentan gracias a los ligandos orgánicos que se organizan a su alrededor, cuyo número de sitios de unión determina la nuclearidad de la cadena. Para estas moléculas, llamadas cadenas metálicas extendidas, se han calculado los parámetros de acoplamiento magnético con el método CASPT2. El uso del Hamiltoniano de Heisenberg estándar para los sistemas M3(dpa)4Cl2 cuando hay dos electrones no desapareados en cada centro, ha sido examinado mediante el cálculo del valor de λ mediante cálculos DFT. Las diferentes conductividades eléctricas observadas en las cadenas MMX [Ni2(dta)4I]∞ y [Pt2(dta)4I]∞ (dta = CH3CS2) y sus estados de ordenación de carga han sido analizados con parámetros de estructura electrónica extraídos a partir de cálculos DFT periódicos y de correlación combinados con la teoría del Hamiltoniano efectivo.
In the present thesis, magnetic and conducting properties of systems, one-dimensional chains of the family of so-called nanowires, have been studied computationally. These linear chains are supported by organic ligands surrounding the metal backbone where the number of binding sites determines the nuclearity of the chain. For these molecules, also called extended metal atom chains, magnetic coupling parameters have been calculated with the CASPT2 method. The use of standard Heisenberg Hamiltonian for systems M3(dpa)4Cl2 when two unpaired electrons are localized on each magnetic center has been examined by calculating the value of λ from DFT calculations. The different electrical conductivities observed in MMX chains [Ni2(dta)4I]∞ and [Pt2(dta)4I]∞ (dta = CH3CS2) and the charge ordering state have been analyzed with DFT periodic calculations and also through the comparison of extracted electronic structure parameters from ab initio calculations combined with the effective Hamiltonian theory.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetic Interaction - Transition Metal Complexes"

1

Aldrich-Wright, Janice. Metallointercalators: Synthesis and Techniques to Probe Their Interactions with Biomolecules. Vienna: Springer-Verlag/Wien, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Aldrich-Wright, Janice. Metallointercalators: Synthesis and Techniques to Probe Their Interactions with Biomolecules. Springer, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Aldrich-Wright, Janice. Metallointercalators: Synthesis and Techniques to Probe Their Interactions with Biomolecules. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Magnetism and Transition Metal Complexes. Dover Publications, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kunz, Roland W., and Paul S. Pregosin. 31P and 13C NMR of Transition Metal Phosphine Complexes. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kunz, Roland W., and Paul S. Pregosin. 31P and 13C N.M.R. of Transition Metal Phosphine Complexes. Springer, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jassim, Ishmaeel Khalil. Magnetic and lattice interaction in 3d transition metal compounds. 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

(Contributor), R. Boca, and D. M. P. Mingos (Editor), eds. Magnetic Functions Beyond the Spin-Hamiltonian (Structure and Bonding) (Structure and Bonding). Springer, 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetic Interaction - Transition Metal Complexes"

1

Stein, Matthias. "Anisotropic Magnetic Spin Interactions of Transition Metal Complexes and Metalloenzymes from Spectroscopy and Quantum Chemistry." In Transition Metals in Coordination Environments, 35–64. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11714-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kettle, S. F. A. "Magnetic properties of transition metal complexes." In Physical Inorganic Chemistry, 185–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-25191-1_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Farrell, Nicholas. "Interaction of Metal Complexes with DNA." In Transition Metal Complexes as Drugs and Chemotherapeutic Agents, 8–45. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-011-7568-5_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Figgis, B. N., and J. Lewis. "The Magnetic Properties of Transition Metal Complexes." In Progress in Inorganic Chemistry, 37–239. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470166079.ch2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Mitra, S. "Chemical Applications of Magnetic Anisotropy Studies on Transition Metal Complexes." In Progress in Inorganic Chemistry, 309–408. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. http://dx.doi.org/10.1002/9780470166239.ch3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rey, P., D. Luneau, and A. Cogne. "Coordination Chemistry of the Imino Nitroxides. Ferromagnetic Behavior of Some First Row Transition Metal Complexes." In Magnetic Molecular Materials, 203–14. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3254-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Atanasov, Mihail, and Peter Comba. "Magnetic Anisotropy in Cyanide Complexes of First Row Transition Metal Ions." In Structure and Function, 53–85. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2888-4_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Maurice, Rémi, Nicolas Suaud, and Nathalie Guihéry. "Analytical Derivations for the Description of Magnetic Anisotropy in Transition Metal Complexes." In Challenges and Advances in Computational Chemistry and Physics, 63–110. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-31038-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sakaki, S. "Stereochemistry and Metal-ligand Interaction of Group VIII Low-Valent Transition Metal Complexes. An ab-initio MO and Energy Decomposition Analysis Study." In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, 319–31. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4656-9_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Jones, M. Thomas, Megh Singh, James H. Roble, and Toshio Maruo. "Single Crystal ESR Studies of Transition metal (o-Benzene-Diselenolate) 2 - [BDS] and (o-Benzenedithiolate) 2 - [BDT] Complexes: Potential Synthetic Metal Precursors." In 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 531–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_278.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic Interaction - Transition Metal Complexes"

1

Bodenstein, Tilmann, and Karin Fink. "Ab initio calculations on the magnetic properties of transition metal complexes." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2015 (ICCMSE 2015). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4938819.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ondo, Akihiro, and Takayuki Ishida. "Structures and magnetic properties of transition metal complexes involving 2,2’-bipyridin-6-yl nitroxide." In THE IRAGO CONFERENCE 2016: 360 Degree Outlook on Critical Scientific and Technological Challenges for a Sustainable Society. Author(s), 2017. http://dx.doi.org/10.1063/1.4974805.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ishida, T., S. I. Mitsubori, N. Takeda, M. Ishikawa, H. Iwamura, and T. Nogami. "Intra- and inter-molecular ferromagnetic interaction of transition metal complexes containing pyrimidine or pyrazine derivatives." In International Conference on Science and Technology of Synthetic Metals. IEEE, 1994. http://dx.doi.org/10.1109/stsm.1994.835691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

T.SAEED, Farah, and Kawkib ABDUL AZIZ. "SYNTHESIS AND CHARACTERIZATION OF SOME MULTI DENTATE LIGAND WITH TRANSITION METALS." In VII. INTERNATIONAL SCIENTIFIC CONGRESSOF PURE,APPLIEDANDTECHNOLOGICAL SCIENCES. Rimar Academy, 2023. http://dx.doi.org/10.47832/minarcongress7-19.

Full text
Abstract:
In this study we synthesized and characterized new complexes containing ((isophthalohyrazide ) N,N (1,3-dithioformylphthalamide)) ligand which prepared from reaction between phathalic acid with thiosemicarbazied in the rate of (2:2) presence of the hydraulic acid with some transition metal (Cr(III),Mn(II),Fe(II), Co(II),Ni(II), Cu(II), Zn(II)). Elemental analyses, FTIR (Fourier transform infrared) and UV-vis spectral investigations, magnetic measurement, conductivity measurement, and 1HNMR for the ligand (L) and some of the complexes have all been used to characterize the complexes. The complexes' stoichiometry has been determined from analytical data to be (1:2) (metal: ligand), and conductance results show that they are (1:2) electrolyte.The electronic spectra and magnetic measurements indicate that the type of complexes [M(L)]Cl2 and [M(L)]Cl3 have a tetrahedral environment around the metal ions.
APA, Harvard, Vancouver, ISO, and other styles
5

Yang, Tzuen Rong, and MiRa Kim. "Exchange interaction of 3D transition metal impurity with band electrons in diluted magnetic semiconductors." In Photonics Taiwan, edited by Yan-Kuin Su and Pallab Bhattacharya. SPIE, 2000. http://dx.doi.org/10.1117/12.392110.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Eom, Hyo Soon, Cheon Min Kim, Sae Chae Jeoung, and Dongho Kim. "Ultrafast Vibrational Relaxation and Ligand Photodissociation/Photoassociation Processes of Nickel(II) Porphyrins." In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/up.1996.fe.54.

Full text
Abstract:
The nickel(II) porphyrins have been well suited for an ideal system for investigating electronic decay, axial ligand photodissociation and photoassociation dynamics.1Of great significance in governing photophysics of the four- and six-coordinate nickel(II) complexes is the presence of a low-lying metal excited (dz2,dx2−y2) state having ~250 ps lifetme below porphyrin ring (π,π*) states.1 The (d,d) excited state shows characteristic sharply featured absorption difference spectra, compared to the broader featured more diffuse spectra of the ring (π,π*) and metal⇔ring charge transfer excited states. This favorable properties of the nickel(II) complexes provide a good opportunity for examining the deactivation dynamics in the porphyrin and its interaction with environment that may accompany a transition from an electronic excited state of the macrocycle to an electronic excited state of the metal.
APA, Harvard, Vancouver, ISO, and other styles
7

Barrionuevo, Manoel V. F., Yuri Dezotti, Rafael Añez, Wdeson Pereira Barros, and Miguel A. San-Miguel. "Structural, Electronic, Magnetic and Adsorption Study of a Cu–3,4–Hpvb MOF." In VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol202034.

Full text
Abstract:
Herein, we present a theoretical study of a proposed metal-organic framework (MOF) based on Cu complexes of 3{2-(4-pyridinyl)vinylbenzoic} acid (3,4–Hpvb), which belongs to a monoclinic crystal symmetry system of type P121/c1. By using periodic boundary conditions (PBC) within the density functional theory (DFT) framework, as well as through the density of states (DOS) analysis, we suggest that thanks to the metal center, the bulk material has a magnetic character of about 2.27 μB/cell. All the coordinated atoms presented a slight magnetization character, and more interestingly, the carboxylic carbon from the acid groups is also influenced by the partial magnetization of its oxygen atom, which coordinates to the metal center. Yet for the adsorption studies, we show that the adsorption of a monoatomic gas as Ar tends to present little to no polarization of the MOF’s organic structure, and there is a decrease of the adsorption energy as more Ar atoms are added to the pore. Also, for CO2 the adsorption energy tends to decrease from 1 to 2 molecules but increase as the pore is populated with 3 to 4 molecules, causing a significant polarization of the MOF’s structure. Finally, we investigated the adsorption of dimethylformamide (DMF), which caused an expressive polarization of the MOF’s structure, and showed a strong interaction with the MOF, with increasing strength from 1 to 4 molecules.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography