To see the other types of publications on this topic, follow the link: Magnetic fermion materials.

Journal articles on the topic 'Magnetic fermion materials'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetic fermion materials.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yanagisawa, Takashi. "Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System." Symmetry 12, no. 3 (March 2, 2020): 373. http://dx.doi.org/10.3390/sym12030373.

Full text
Abstract:
Physics of topological materials has attracted much attention from both physicists and mathematicians recently. The index and the fermion number of Dirac fermions play an important role in topological insulators and topological superconductors. A zero-energy mode exists when Dirac fermions couple to objects with soliton-like structure such as kinks, vortices, monopoles, strings, and branes. We discuss a system of Dirac fermions interacting with a vortex and a kink. This kind of systems will be realized on the surface of topological insulators where Dirac fermions exist. The fermion number is fractionalized and this is related to the presence of fermion zero-energy excitation modes. A zero-energy mode can be regarded as a Majorana fermion mode when the chemical potential vanishes. Our discussion includes the case where there is a half-flux quantum vortex associated with a kink in a magnetic field in a bilayer superconductor. A normalizable wave function of fermion zero-energy mode does not exist in the core of the half-flux quantum vortex. The index of Dirac operator and the fermion number have additional contributions when a soliton scalar field has a singularity.
APA, Harvard, Vancouver, ISO, and other styles
2

Ul Haq, Rukhsan, and Louis H. Kauffman. "Z2 Topological Order and Topological Protection of Majorana Fermion Qubits." Condensed Matter 6, no. 1 (February 24, 2021): 11. http://dx.doi.org/10.3390/condmat6010011.

Full text
Abstract:
The Kitaev chain model exhibits topological order that manifests as topological degeneracy, Majorana edge modes and Z2 topological invariant of the bulk spectrum. This model can be obtained from a transverse field Ising model(TFIM) using the Jordan–Wigner transformation. TFIM has neither topological degeneracy nor any edge modes. Topological degeneracy associated with topological order is central to topological quantum computation. In this paper, we explore topological protection of the ground state manifold in the case of Majorana fermion models which exhibit Z2 topological order. We show that there are at least two different ways to understand this topological protection of Majorana fermion qubits: one way is based on fermionic mode operators and the other is based on anti-commuting symmetry operators. We also show how these two different ways are related to each other. We provide a very general approach to understanding the topological protection of Majorana fermion qubits in the case of lattice Hamiltonians. We then show how in topological phases in Majorana fermion models gives rise to new braid group representations. So, we give a unifying and broad perspective of topological phases in Majorana fermion models based on anti-commuting symmetry operators and braid group representations of Majorana fermions as anyons.
APA, Harvard, Vancouver, ISO, and other styles
3

LIU, S. H. "ELECTRONIC POLARON EFFECTS IN MIXED VALENCE AND HEAVY FERMION MATERIALS." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 9–13. http://dx.doi.org/10.1142/s0217979293000032.

Full text
Abstract:
It is shown that the Coulomb interaction between f electrons and broad band electrons has a profound influence on the dynamical properties of an f hole in mixed valence and heavy fermion materials. At zero temperature the dynamics of the screening process contains an infrared divergence. The broadening of this divergence by temperature causes the motion of the f electrons to crossover from wave propagation to diffusion. This mechanism explains the observed dual nature of the f electrons, namely that at low temperatures they behave like a Fermi liquid, while at high temperatures they evolve into a lattice of localized magnetic moments.
APA, Harvard, Vancouver, ISO, and other styles
4

Fisk, Z. "Searching for heavy fermion materials." Physica B: Condensed Matter 378-380 (May 2006): 13–16. http://dx.doi.org/10.1016/j.physb.2006.01.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Farakos, K., and N. E. Mavromatos. "Gauge-Theory Approach to Planar Doped Antiferromagnets and External Magnetic Fields." International Journal of Modern Physics B 12, no. 07n08 (March 30, 1998): 809–36. http://dx.doi.org/10.1142/s0217979298000478.

Full text
Abstract:
Within the framework of a relativistic non-Abelian gauge theory approach to the physics of spin–charge separation in doped quantum antiferromagnetic planar systems, proposed recently by the authors, we are examining here the effects of constant external magnetic fields on excitations about the superconducting state in the model. The electrically-charged Dirac fermions (holons), describing excitations about specific points on the fermi surface, e.g. those corresponding to the nodes of a d-wave superconducting gap in high-T c cuprates, condense, resulting in the opening of a Kosterlitz–Thouless–like gap (KT) at such nodes. This leads, in general, to a second superconducting phase transition, which occurs at low temperatures[Formula: see text], in addition to the high-T c superconductivity [Formula: see text] due to the bulk of the fermi surface for holons in a (d-wave) spin–charge separated superconductor. In the presence of strong external magnetic fields at the surface regions of the planar superconductor, in the direction perpendicular to the superconducting planes, these KT gaps appear to be enhanced. Our preliminary analysis, based on analytic Schwinger–Dyson treatments, seems to indicate that for an even number of Dirac fermion species, required in our model as a result of gauging a particle–hole SU(2) symmetry, Parity or Time Reversal violation does not necessarily occurs. Based on these considerations, we argue that recent experimental findings, concerning thermal conductivity plateaux of quasiparticles in planar high-T c cuprates in strong external magnetic fields, may indicate the presence of such KT gaps, caused by charged Dirac-fermion excitations in these materials, as suggested in the above model.
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Changfeng. "High-spin magnetic heavy-fermion states at ferromagnet/heavy-fermion interfaces." Physica B: Condensed Matter 194-196 (February 1994): 1343–44. http://dx.doi.org/10.1016/0921-4526(94)91001-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kim, J. W., and Y. S. Kwon. "Anomalous magnetic properties of heavy fermion." Physica B: Condensed Matter 378-380 (May 2006): 833–34. http://dx.doi.org/10.1016/j.physb.2006.01.306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Mason, T. E., T. Petersen, G. Aeppli, W. J. L. Buyers, E. Bucher, J. D. Garrett, K. N. Clausen, and A. A. Menovsky. "Magnetic fluctuations in heavy-fermion metals." Physica B: Condensed Matter 213-214 (August 1995): 11–15. http://dx.doi.org/10.1016/0921-4526(95)00051-a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tiden, N. N., P. A. Alekseev, V. N. Lazukov, A. Podlesnyak, E. S. Clementyev, and A. Furrer. "Magnetic correlations in heavy fermion CeAl3 compound." Solid State Communications 141, no. 8 (February 2007): 474–79. http://dx.doi.org/10.1016/j.ssc.2006.11.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Flouquet, J., P. Haen, P. Lejay, P. Morin, D. Jaccard, J. Schweizer, C. Vettier, R. A. Fisher, and N. E. Phillips. "Magnetic instability in Ce heavy fermion compounds." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 377–82. http://dx.doi.org/10.1016/s0304-8853(10)80138-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Steglich, F., C. Geibel, S. Horn, U. Ahlheim, M. Lang, G. Spam, A. Loidl, A. Krimmel, and W. Assmus. "Magnetic phase diagrams in heavy-fermion compounds." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 383–88. http://dx.doi.org/10.1016/s0304-8853(10)80139-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nakamura, H., Y. Kitaoka, M. Inoue, K. Asayama, and Y. Ōnuki. "Magnetic structure of antiferromagnetic heavy fermion UCu5." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 459–60. http://dx.doi.org/10.1016/s0304-8853(10)80165-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Halperin, Bertrand I. "Composite fermions and the Fermion–Chern–Simons theory." Physica E: Low-dimensional Systems and Nanostructures 20, no. 1-2 (December 2003): 71–78. http://dx.doi.org/10.1016/j.physe.2003.09.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raymond, S., J. Flouquet, K. Kuwahara, K. Iwasa, M. Kohgi, K. Kaneko, N. Metoki, H. Sugawara, Y. Aoki, and H. Sato. "Magnetic excitations in the heavy-fermion superconductor." Physica B: Condensed Matter 359-361 (April 2005): 898–900. http://dx.doi.org/10.1016/j.physb.2005.01.256.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Fåk, B., Ch Rüegg, P. G. Niklowitz, D. F. McMorrow, P. C. Canfield, S. L. Bud’ko, Y. Janssen, and K. Habicht. "Magnetic phase diagram of heavy-fermion YbAgGe." Physica B: Condensed Matter 378-380 (May 2006): 669–70. http://dx.doi.org/10.1016/j.physb.2006.01.450.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Neumann, M., A. J. Casey, L. V. Levitin, B. Cowan, and J. Saunders. "Magnetic Susceptibility of Heavy Fermion 3He-Bilayers." Journal of Low Temperature Physics 158, no. 1-2 (October 8, 2009): 207–12. http://dx.doi.org/10.1007/s10909-009-9988-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Süllow, S., B. Janossy, G. L. E. van Vliet, G. J. Nieuwenhuys, A. A. Menovsky, and J. A. Mydosh. "The magnetic torque of the heavy-fermion system." Journal of Physics: Condensed Matter 8, no. 6 (February 5, 1996): 729–40. http://dx.doi.org/10.1088/0953-8984/8/6/013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Kowalczyk, A., T. Toliński, M. Reiffers, M. Pugaczowa-Michalska, G. Chełkowska, and E. Gažo. "Electronic and magnetic properties of heavy fermion CeCu4Al." Journal of Physics: Condensed Matter 20, no. 25 (May 28, 2008): 255252. http://dx.doi.org/10.1088/0953-8984/20/25/255252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Hunt, M., P. Meeson, P. A. Probst, P. Reinders, M. Springford, W. Assmus, and W. Sun. "Magnetic oscillations in the heavy-fermion superconductor CeCu2Si2." Journal of Physics: Condensed Matter 2, no. 32 (August 13, 1990): 6859–64. http://dx.doi.org/10.1088/0953-8984/2/32/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Evans, S. M. M. "Theory of magnetic instabilities in heavy fermion compounds." Journal of Physics: Condensed Matter 3, no. 43 (October 28, 1991): 8441–56. http://dx.doi.org/10.1088/0953-8984/3/43/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Leaw, Jia Ning, Ho-Kin Tang, Maxim Trushin, Fakher F. Assaad, and Shaffique Adam. "Universal Fermi-surface anisotropy renormalization for interacting Dirac fermions with long-range interactions." Proceedings of the National Academy of Sciences 116, no. 52 (December 9, 2019): 26431–34. http://dx.doi.org/10.1073/pnas.1913096116.

Full text
Abstract:
Recent experimental [I. Joet al.,Phys. Rev. Lett.119, 016402 (2017)] and numerical [M. Ippoliti, S. D. Geraedts, R. N. Bhatt,Phys. Rev. B95, 201104 (2017)] evidence suggests an intriguing universal relationship between the Fermi surface anisotropy of the noninteracting parent 2-dimensional (2D) electron gas and the strongly correlated composite Fermi liquid formed in a strong magnetic field close to half-filling. Inspired by these observations, we explore more generally the question of anisotropy renormalization in interacting 2D Fermi systems. Using a recently developed [H. -K. Tanget al.,Science361, 570 (2018)] nonperturbative and numerically exact projective quantum Monte Carlo simulation as well as other numerical and analytic techniques, only for Dirac fermions with long-range Coulomb interactions do we find a universal square-root decrease of the Fermi-surface anisotropy. For theν=1/2composite Fermi liquid, this result is surprising since a Dirac fermion ground state was only recently proposed as an alternative to the usual Halperin–Lee–Read state. Our proposed universality can be tested in several anisotropic Dirac materials including graphene, topological insulators, organic conductors, and magic-angle twisted bilayer graphene.
APA, Harvard, Vancouver, ISO, and other styles
22

Yoshii, S., K. Kindo, K. Katoh, Y. Niide, and A. Ochiai. "Magnetic properties of the heavy fermion antiferromagnet YbPtIn." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E99—E100. http://dx.doi.org/10.1016/j.jmmm.2004.01.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Alekseev, P. A., V. N. Lazukov, N. N. Tiden, R. Kahn, J. M. Mignot, A. Podlesnyak, E. S. Clementyev, and I. P. Sadikov. "Magnetic correlations in the CeAl3 heavy-fermion system." Crystallography Reports 52, no. 3 (May 2007): 398–402. http://dx.doi.org/10.1134/s106377450703008x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Kozii, Vladyslav, Jörn W. F. Venderbos, and Liang Fu. "Three-dimensional Majorana fermions in chiral superconductors." Science Advances 2, no. 12 (December 2016): e1601835. http://dx.doi.org/10.1126/sciadv.1601835.

Full text
Abstract:
Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentumJformed by Bloch electrons with angular momentumjin crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit–coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs4Sb12and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.
APA, Harvard, Vancouver, ISO, and other styles
25

Kaga, H. "Temperature-dependent magnetic susceptibilities and magnetic moments of Ce heavy-fermion systems." Journal of Physics: Condensed Matter 2, no. 4 (January 29, 1990): 969–81. http://dx.doi.org/10.1088/0953-8984/2/4/016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Lin, Zhi. "Progress Review on Topological Properties of Heusler Materials." E3S Web of Conferences 213 (2020): 02016. http://dx.doi.org/10.1051/e3sconf/202021302016.

Full text
Abstract:
Starting from crystal, electronic and magnetic structures of Heusler compounds, this paper studies the new topological materials related to Heusler compounds and their topological properties, such as anomalous Hall effect, skyrmions, chiral anomaly, Dirac fermion, Weyl fermion, transverse Nernst thermoelectric effect, thermal spintronics and topological surface states. It can be discovered that the topological state of Heusler compound can be well protected due to its high symmetry, thus producing rich topological properties. Heusler materials belonged to Weyl semimetals usually have strong anomalous Hall effect, and the Heusler materials with doping or Anomalous Nernst Effect (ANE) usually have higher thermoelectric figure of merit. These anomalous effects are closely related to the strong spin–orbit interaction. In application, people can use the non-dissipative edge state of quantum anomalous Hall effect to develop a new generation of low-energy transistors and electronic devices. The conversion efficiency of thermoelectric materials can be improved by ANE, and topological superconductivity can be used to promote the progress of quantum computation.
APA, Harvard, Vancouver, ISO, and other styles
27

Líbero, V. L., and D. L. Cox. "Simple model for coupled magnetic and quadrupolar instabilities in uranium heavy-fermion materials." Physical Review B 48, no. 6 (August 1, 1993): 3783–91. http://dx.doi.org/10.1103/physrevb.48.3783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sheikin, I., Y. Wang, F. Bouquet, P. Lejay, and A. Junod. "Specific heat of heavy-fermion CePd2Si2in high magnetic fields." Journal of Physics: Condensed Matter 14, no. 28 (July 4, 2002): L543—L549. http://dx.doi.org/10.1088/0953-8984/14/28/104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nakamura, H., Y. Kitaoka, T. Iwai, H. Yamada, and K. Asayama. "Nuclear magnetic resonance study of magnetic correlation in the heavy-fermion superconductor CeCu2Si2." Journal of Physics: Condensed Matter 4, no. 2 (January 13, 1992): 473–86. http://dx.doi.org/10.1088/0953-8984/4/2/015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

HALL, D., T. P. MURPHY, E. C. PALM, S. W. TOZER, Z. FISK, N. HARRISON, R. G. GOODRICH, U. ALVER, and J. L. SARRAO. "THE DE HAAS-VAN ALPHEN EFFECT IN CeMIn5 (Where M = Rh and Co)." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3004–7. http://dx.doi.org/10.1142/s0217979202013432.

Full text
Abstract:
To understand the electronic structure of the heavy fermion superconductors CeMIn 5, we have performed a comprehensive magnetic study of these materials.1-4 Our quantum oscillation studies reveal that the Fermi surface becomes systematically more 2-d (and displays heavier effective masses) as one progresses from M=Rh to M=Ir to M=Co, consistent with the observed increase in superconducting Tc. Furthermore, dilution studies show that the f-electrons in CeRhIn5 are substantially localized whereas in CeIrIn 5 and CeCoIn 5 a more itinerant character is observed.
APA, Harvard, Vancouver, ISO, and other styles
31

Morris, G. D., R. H. Heffner, J. E. Sonier, D. E. MacLaughlin, O. O. Bernal, G. J. Nieuwenhuys, A. T. Savici, P. G. Pagliuso, and J. L. Sarrao. "Magnetism and superconductivity in CeRh1−xIrxIn5 heavy fermion materials." Physica B: Condensed Matter 326, no. 1-4 (February 2003): 390–93. http://dx.doi.org/10.1016/s0921-4526(02)01640-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Muro, Y., S. Takahashi, K. Sunahara, K. Motoya, M. Akatsu, and N. Shirakawa. "Heavy-fermion behavior in." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e40-e41. http://dx.doi.org/10.1016/j.jmmm.2006.10.086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

He, Danqi, Xin Mu, Hongyu Zhou, Cuncheng Li, Shifang Ma, Pengxia Ji, Weikang Hou, et al. "Effects of Fe3O4 Magnetic Nanoparticles on the Thermoelectric Properties of Heavy-Fermion YbAl3 Materials." Journal of Electronic Materials 47, no. 6 (October 11, 2017): 3338–43. http://dx.doi.org/10.1007/s11664-017-5842-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Sidorov, V. A., J. D. Thompson, and Z. Fisk. "Magnetic transitions in a heavy-fermion antiferromagnet U2Zn17at high pressure." Journal of Physics: Condensed Matter 22, no. 40 (September 22, 2010): 406002. http://dx.doi.org/10.1088/0953-8984/22/40/406002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Reynolds, A. M., D. M. Edwards, and A. C. Hewson. "The Gutzwiller approach to magnetic instabilities in heavy-fermion systems." Journal of Physics: Condensed Matter 4, no. 37 (September 14, 1992): 7589–96. http://dx.doi.org/10.1088/0953-8984/4/37/006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

NAMIKI, T. "Magnetic anisotropy of the heavy fermion state in PrFe4P12." Physica B: Condensed Matter 329-333 (May 2003): 462–63. http://dx.doi.org/10.1016/s0921-4526(02)02032-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Özcan, S., W. M. Yuhasz, N. A. Frederick, and M. B. Maple. "Magnetic penetration depth measurements of the heavy-fermion superconductor." Physica B: Condensed Matter 378-380 (May 2006): 182–83. http://dx.doi.org/10.1016/j.physb.2006.01.283.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Hunt, M., P. Meeson, P.-A. Probst, P. Reinders, M. Springford, W. Assmus, and W. Sun. "Magnetic oscillation phenomena in the heavy fermion superconductor CeCu2Si2." Physica B: Condensed Matter 165-166 (August 1990): 323–24. http://dx.doi.org/10.1016/s0921-4526(90)81011-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schmiedeshoff, G. M., Z. Fisk, and J. L. Smith. "Anomalous magnetic torque in the heavy-fermion superconductor UBe13." Physica B: Condensed Matter 194-196 (February 1994): 245–46. http://dx.doi.org/10.1016/0921-4526(94)90452-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Brison, Jean-Pascal, Loı̈c Glémot, Hermann Suderow, Andrew Huxley, Shinsaku Kambe, and Jacques Flouquet. "Heavy fermion superconductivity." Physica B: Condensed Matter 280, no. 1-4 (May 2000): 165–71. http://dx.doi.org/10.1016/s0921-4526(99)01551-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Faulhaber, E., O. Stockert, M. Rheinstädter, M. Deppe, C. Geibel, M. Loewenhaupt, and F. Steglich. "Magnetic structure of the heavy-fermion alloy CeCu2(Si0.5Ge0.5)2." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 44–45. http://dx.doi.org/10.1016/j.jmmm.2003.11.037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ohara, S., R. Watanabe, T. Suzuki, and I. Sakamoto. "Pressure effect on magnetic transitions in heavy-fermion antiferromagnet Ce2RhIn8." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 316–18. http://dx.doi.org/10.1016/j.jmmm.2006.10.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Thompson, J. D., R. Movshovich, Z. Fisk, F. Bouquet, N. J. Curro, R. A. Fisher, P. C. Hammel, et al. "Superconductivity and magnetism in a new class of heavy-fermion materials." Journal of Magnetism and Magnetic Materials 226-230 (May 2001): 5–10. http://dx.doi.org/10.1016/s0304-8853(00)00602-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Bao, W., S. F. Trevino, J. W. Lynn, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson, and Z. Fisk. "Effect of pressure on magnetic structure in heavy-fermion CeRhIn 5." Applied Physics A: Materials Science & Processing 74 (December 1, 2002): s557—s558. http://dx.doi.org/10.1007/s003390101121.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Schlottmann, P. "Nano-scale heavy fermion particles." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): E57—E58. http://dx.doi.org/10.1016/j.jmmm.2003.11.396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Larrea J, J., M. Fontes, E. Baggio-Saitovitch, M. M. Abd-Elmeguid, J. Plessel, J. Ferstl, C. Geibel, and M. Continentino. "heavy fermion system under pressure." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): e206-e208. http://dx.doi.org/10.1016/j.jmmm.2006.10.709.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Kowalczyk, A., T. Toliński, A. Szewczyk, M. Gutowska, V. H. Tran, and G. Chełkowska. "Magnetic, electronic and thermodynamic properties of the heavy fermion compound CeNiAl4." Intermetallics 17, no. 8 (August 2009): 603–6. http://dx.doi.org/10.1016/j.intermet.2009.01.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

SARRAO, J. L. "CeMIn5(M=Co, Ir, Rh) HEAVY FERMION SUPERCONDUCTORS AND THE UTILITY OF HIGH MAGNETIC FIELDS." International Journal of Modern Physics B 16, no. 20n22 (August 30, 2002): 3025–30. http://dx.doi.org/10.1142/s0217979202013481.

Full text
Abstract:
We review the properties of the recently discovered CeMIn 5 (M=Co, Ir, Rh) heavy fermion superconductors and discuss the present state of our understanding of these materials. A particular focus is the role that magnetic fields have played in elucidating the properties of these materials. Specifically, we discuss quantum oscillation measurements on CeMIn , the influence of applied field on the linear coefficient of specific heat, γ, and the nature of the HT phase diagrams in both the normal and superconducting states of these materials.
APA, Harvard, Vancouver, ISO, and other styles
49

Beschoten, B., C. Quitmann, R. Borowski, N. Knauf, and G. Güntherodt. "Fermion-Fermion scattering in the Hall mobility of La-214 HTSC." Physica B: Condensed Matter 194-196 (February 1994): 1519–20. http://dx.doi.org/10.1016/0921-4526(94)91259-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Shaginyan, Vasily R., Alfred Z. Msezane, Miron Ya Amusia, John W. Clark, George S. Japaridze, Vladimir A. Stephanovich, and Yulya S. Leevik. "Thermodynamic, Dynamic, and Transport Properties of Quantum Spin Liquid in Herbertsmithite from an Experimental and Theoretical Point of View." Condensed Matter 4, no. 3 (August 7, 2019): 75. http://dx.doi.org/10.3390/condmat4030075.

Full text
Abstract:
In our review, we focus on the quantum spin liquid (QSL), defining the thermodynamic, transport, and relaxation properties of geometrically frustrated magnet (insulators) represented by herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 . The review mostly deals with an historical perspective of our theoretical contributions on this subject, based on the theory of fermion condensation closely related to the emergence (due to geometrical frustration) of dispersionless parts in the fermionic quasiparticle spectrum, so-called flat bands. QSL is a quantum state of matter having neither magnetic order nor gapped excitations even at zero temperature. QSL along with heavy fermion metals can form a new state of matter induced by the topological fermion condensation quantum phase transition. The observation of QSL in actual materials such as herbertsmithite is of fundamental significance both theoretically and technologically, as it could open a path to the creation of topologically protected states for quantum information processing and quantum computation. It is therefore of great importance to establish the presence of a gapless QSL state in one of the most prospective materials, herbertsmithite. In this respect, the interpretation of current theoretical and experimental studies of herbertsmithite are controversial in their implications. Based on published experimental data augmented by our theoretical analysis, we present evidence for the the existence of a QSL in the geometrically frustrated insulator herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 , providing a strategy for unambiguous identification of such a state in other materials. To clarify the nature of QSL in herbertsmithite, we recommend measurements of heat transport, low-energy inelastic neutron scattering, and optical conductivity σ ¯ in ZnCu 3 ( OH ) 6 Cl 2 crystals subject to an external magnetic field at low temperatures. Our analysis of the behavior of σ ¯ in herbertsmithite justifies this set of measurements, which can provide a conclusive experimental demonstration of the nature of its spinon-composed quantum spin liquid. Theoretical study of the optical conductivity of herbertsmithite allows us to expose the physical mechanisms responsible for its temperature and magnetic field dependence. We also suggest that artificially or spontaneously introducing inhomogeneity at nanoscale into ZnCu 3 ( OH ) 6 Cl 2 can both stabilize its QSL and simplify its chemical preparation, and can provide for tests that elucidate the role of impurities. We make predictions of the results of specified measurements related to the dynamical, thermodynamic, and transport properties in the case of a gapless QSL.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography