Journal articles on the topic 'Magnetic carbon'

To see the other types of publications on this topic, follow the link: Magnetic carbon.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Magnetic carbon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Makarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Magnetic carbon." Nature 413, no. 6857 (October 18, 2001): 716–18. http://dx.doi.org/10.1038/35099527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rukhadze, Leri, Elguja R. Kutelia, N. Maisuradze, B. Eristavi, and Sayavur I. Bakhtiyarov. "Magnetic Carbon Nanopowders." i-manager's Journal on Mechanical Engineering 1, no. 1 (January 15, 2011): 16–20. http://dx.doi.org/10.26634/jme.1.1.1212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Makarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Erratum: Magnetic carbon." Nature 436, no. 7054 (August 2005): 1200. http://dx.doi.org/10.1038/nature04100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Shandong, Guangbin Ji, and Liya Lü. "Magnetic Carbon Nanofoams." Journal of Nanoscience and Nanotechnology 9, no. 2 (February 1, 2009): 1133–36. http://dx.doi.org/10.1166/jnn.2009.c103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Makarova, T. L., B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. Davydov, L. S. Kashevarova, and A. V. Rakhmanina. "Correction: Retraction: Magnetic carbon." Nature 440, no. 7084 (March 2006): 707. http://dx.doi.org/10.1038/nature04622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malthouse, J. P. G., and P. Phelan. "Effect of magnetic field strength on the linewidth and spin-lattice relaxation time of the thiocyanate carbon of cyanylated β-lactoglobulin B: optimization of the experimental parameters for observing thiocyanate carbons in proteins." Biochemical Journal 306, no. 2 (March 1, 1995): 531–35. http://dx.doi.org/10.1042/bj3060531.

Full text
Abstract:
The linewidths and spin-lattice relaxation times of the 13C-n.m.r. signal at 109.7 p.p.m. due to the thiocyanate carbon of intact [cyanato-13C]cyanylated-beta-lactoglobulin-B have been determined at magnetic field strengths of 1.88, 6.34 and 11.74 T as well as the spin-lattice relaxation times of its backbone alpha-carbon atoms. The linewidths were directly proportional to the square of the magnetic field strength and we conclude that, at magnetic field strengths of 6.34 T or above, more than 70% of the linewidth will be determined by chemical-shift anisotropy. We estimate that the spin-lattice relaxation time resulting from the chemical-shift anisotropy of the thiocyanate carbon is 1.52 +/- 0.1 s and we conclude that for magnetic field strengths of 6.34 T and above the observed spin-lattice relaxation time of the thiocyanate carbon will be essentially independent of magnetic field strength. Using the rigid-rotor model we obtain estimates of the rotational correlation time of [cyanato-13C]cyanylated-beta-lactoglobulin-B and of the chemical-shift anisotropy shielding tensor of its thiocyanate carbon. We have calculated the linewidths and spin-lattice relaxation times of thiocyanate carbons at magnetic field strengths of 1.88-14.1 T in proteins with M(r) values in the range 10,000-400,000. The effects of magnetic field strength on the resolution and signal-to-noise ratios of the signals due to thiocyanate carbons attached to proteins of M(r) greater than 10,000 are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Kamishima, Kenji, Daisuke Miyata, Yuki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of Pyrolytc Magnetic Carbon under Magnetic Field." Journal of the Japan Society of Powder and Powder Metallurgy 56, no. 7 (2009): 456–60. http://dx.doi.org/10.2497/jjspm.56.456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kamishima, Kenji, Daisuke Miyata, Yūki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of pyrolytic magnetic carbon under magnetic field." Journal of Physics: Conference Series 200, no. 11 (January 1, 2010): 112003. http://dx.doi.org/10.1088/1742-6596/200/11/112003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diao, Xiuhui, Hongyu Chen, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan. "Magnetic Carbon Nanotubes for Protein Separation." Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/806019.

Full text
Abstract:
Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve oriented conjunction of antibodies (IgG). It was also demonstrated that the obtained magnetic CSCNTs-APBA-IgG conjugates could readily react with target antigens through specific antigen-antibody reaction and be used as new magnetic systems for protein separation.
APA, Harvard, Vancouver, ISO, and other styles
10

Goze-Bac, C., S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, and P. Bernier. "Magnetic interactions in carbon nanostructures." Carbon 40, no. 10 (August 2002): 1825–42. http://dx.doi.org/10.1016/s0008-6223(02)00061-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ajiki, Hiroshi, and Tsuneya Ando. "Magnetic Properties of Carbon Nanotubes." Journal of the Physical Society of Japan 62, no. 7 (July 15, 1993): 2470–80. http://dx.doi.org/10.1143/jpsj.62.2470.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Ajiki, Hiroshi, and Tsuneya Ando. "Magnetic Properties of Carbon Nanotubes." Journal of the Physical Society of Japan 63, no. 11 (November 15, 1994): 4267. http://dx.doi.org/10.1143/jpsj.63.4267.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Kustov, E. F., and V. M. Novotortsev. "Magnetic susceptibility of carbon nanotubes." Russian Journal of Inorganic Chemistry 60, no. 13 (December 2015): 1708–22. http://dx.doi.org/10.1134/s0036023615130033.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Kumar, Dinesh, Karamjit Singh, and H. S. Bhatti. "Magnetic Properties of Carbon Nanostructures." Advanced Science, Engineering and Medicine 8, no. 4 (April 1, 2016): 319–23. http://dx.doi.org/10.1166/asem.2016.1857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Byszewski, P., and M. Baran. "Magnetic Susceptibility of Carbon Nanotubes." Europhysics Letters (EPL) 31, no. 7 (September 1, 1995): 363–66. http://dx.doi.org/10.1209/0295-5075/31/7/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Goze-Bac, C., S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, and P. Bernier. "Magnetic Interactions in Carbon Nanostructures." ChemInform 34, no. 1 (January 7, 2003): no. http://dx.doi.org/10.1002/chin.200301223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Urias, F. Lopez, J. A. Rodriguez Manzo, M. Terrones, and H. Terrones. "Magnetic properties of carbon nanostructures." International Journal of Nanotechnology 4, no. 6 (2007): 651. http://dx.doi.org/10.1504/ijnt.2007.015461.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Makarova, T. L. "Magnetic properties of carbon structures." Semiconductors 38, no. 6 (June 2004): 615–38. http://dx.doi.org/10.1134/1.1766362.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Heremans, J., C. H. Olk, and D. T. Morelli. "Magnetic susceptibility of carbon structures." Physical Review B 49, no. 21 (June 1, 1994): 15122–25. http://dx.doi.org/10.1103/physrevb.49.15122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Boncel, Sławomir, Artur P. Herman, and Krzysztof Z. Walczak. "Magnetic carbon nanostructures in medicine." J. Mater. Chem. 22, no. 1 (2012): 31–37. http://dx.doi.org/10.1039/c1jm13734d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Lähderanta, E., A. V. Lashkul, K. G. Lisunov, D. A. Zherebtsov, D. M. Galimov, and A. N. Titkov. "Magnetic properties of carbon nanoparticles." IOP Conference Series: Materials Science and Engineering 38 (August 20, 2012): 012010. http://dx.doi.org/10.1088/1757-899x/38/1/012010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

GRIFFEY, RICHARD H. "Carbon-13 Magnetic Resonance Spectroscopy." Investigative Radiology 24, no. 12 (December 1989): 1017–19. http://dx.doi.org/10.1097/00004424-198912000-00021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Rao†, B. P. C., S. Ramaswamy†, C. Gopalakrishnan, N. Satya Vijayakumar, K. R. Ganesh, D. J. Thiruvadigal, and M. Ponnavaikko. "Magnetic properties of carbon nanosheets." Philosophical Magazine 90, no. 25 (September 7, 2010): 3463–73. http://dx.doi.org/10.1080/14786435.2010.489032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Bystrzejewski, M., H. Lange,, and A. Huczko. "Carbon Encapsulation of Magnetic Nanoparticles." Fullerenes, Nanotubes and Carbon Nanostructures 15, no. 3 (April 2007): 167–80. http://dx.doi.org/10.1080/15363830701236357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Shirun, Zhang, Liu Shouxin, Fang Guizhen, Zhu Ying, and Cheng Zhifen. "Preparation of magnetic activated carbon." Journal of Forestry Research 8, no. 4 (December 1997): 250–53. http://dx.doi.org/10.1007/bf02875016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Qiu, Bin, Yiran Wang, Dezhi Sun, Qiang Wang, Xin Zhang, Brandon L. Weeks, Ryan O'Connor, Xiaohua Huang, Suying Wei, and Zhanhu Guo. "Cr(vi) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures." Journal of Materials Chemistry A 3, no. 18 (2015): 9817–25. http://dx.doi.org/10.1039/c5ta01227a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Monsalve, Leandro N., Laura Pampillo, Ricardo Martinez, and Mariano Escobar. "Heterodimer Magnetic Nanoparticles-Carbon Nanotubes with Tunable Magnetic Properties." Journal of Nanoscience and Nanotechnology 17, no. 12 (December 1, 2017): 9224–29. http://dx.doi.org/10.1166/jnn.2017.13901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Chen, Jin, and Hai Yan Zhang. "Peparation and Magnetic Propriety of Carbon-Coated Iron Magnetic Nanoparticles by Starch Coating Method." Applied Mechanics and Materials 164 (April 2012): 17–20. http://dx.doi.org/10.4028/www.scientific.net/amm.164.17.

Full text
Abstract:
We synthesized carbon-coated iron magnetic nanoparticles by a low cost method using Ferric nitrate as the iron precursor and starch as both reductive agent and carbon source under H2 atmosphere. The structure, size distribution, phase composition, magnetic properties and oxidation resistance of the particles were investigated by transmission electron microscopy, X-ray diffraction, vibrating sample magnetometry and differential scanning calorimetry. The results show that the carbon-coated iron nanoparticles are spherical particles with a diameter of 20-40 nm. They are particles of core-shell structure with an iron core inside and an onion skin carbon layer outside, carbon layer can protect inner iron core from been oxidized, the hysteresis curves show that they are super paramagnetic materials. At the same time the annealing can change the magnetic properties of carbon coated iron nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
29

Vieira, Bruno Rafael Del Rio, Larissa Castaldelli Grigoleto, Gylles Ricardo Ströher, and Fernanda Lini Seixas. "Synthesis of magnetic activated carbon from passion fruit seeds and its application in the adsorption of methylene blue dye / Síntese de carvão ativado magnético de sementes de maracujá e a sua aplicação na adsorção do corante azul de metileno." Brazilian Journal of Development 8, no. 5 (May 31, 2022): 42419–30. http://dx.doi.org/10.34117/bjdv8n5-626.

Full text
Abstract:
Brazil is a large producer of passion fruit, approximately 600 thousand tons of this fruit were produced in the year 2019, but about 70% of the mass is considered waste. The waste from this production could be aggregated in the synthesis of activated carbons for the treatment of textile effluents. However, the activated carbons need to be changed periodically and these can be removed from the inserted medium using magnetic fields by incrementing particles sensitive to this field on the surface of the adsorbent reducing the cost of the operation. The present work presents a comparison of 3 different carbons: (i) conventionally activated carbon with NaOH as an activating agent from dried passion fruit seeds at 500 °C, (ii) magnetic field sensitive activated carbon synthesized in the laboratory using FeCl3 6H2O as magnetizing agent at 700 °C and (iii) commercial activated carbon. The three types of carbons were characterized using the analyses of: FTIR, PZC, TGA and nitrogen physisorption. The adsorption tests were performed on the adsorption of methylene in batch. Four kinetic models were evaluated to predict the adsorption kinetics: pseudo-first order, pseudo-second order, Elovich and Weber-Moris and four adsorption isotherm models: Langmuir, Freundlich, Temkin and Redlich-Peterson. The characterization of the conventional activated carbon presented an adsorbent with a degradation curve by TGA that followed the dry seeds, presenting low concentration of non-volatile material, the FTIR showed in its surface ketone groups and CH2, with a pHPZC on the surface of approximately 5.46, with a microporous surface with 690 m² g-1 of type I for microporous surfaces and shows . The magnetization of this carbon significantly changed the properties on the surface, cation ionic surface; the TGA showed more non-volatile compounds, sensitivity of magnetic field, showing more acidic components on its surface such as hydroxyls and carboxyls and the surface pHPZC is 4.14 and a microporous surface with 501 m² g-1 specific surface area. The kinetic and isothermal tests showed promising, the conventional activated carbon showed a higher adsorption capacity than the commercial one and the magnetic activated carbon showed a similar adsorption capacity as the commercially available. All the adsorbents presented very similar behaviors among them, presenting a kinetics with characteristics of physisorption of a pseudo-first order adsorption and the adsorption isotherms presented a favorable behavior, endothermic and with Langmuir adsorption. Thus, the present work infers in the potential use of magnetic activated carbons in relation to the ones available in the market, with similar performance.
APA, Harvard, Vancouver, ISO, and other styles
30

Wu, Yan, Guosheng Duan, and Xiang Zhao. "Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in γ-Fe temperature region." International Journal of Modern Physics B 29, no. 10n11 (April 23, 2015): 1540001. http://dx.doi.org/10.1142/s0217979215400019.

Full text
Abstract:
Effects of magnetic field intensity on carbon diffusion coefficient in pure iron in the γ- Fe temperature region were investigated using carburizing technology. The carbon penetration profiles from the iron surface to interior were measured by field emission electron probe microanalyzer. The carbon diffusion coefficient in pure iron carburized with different magnetic field intensities was calculated according to the Fick's second law. It was found that the magnetic field intensity could obviously affect the carbon diffusion coefficient in pure iron in the γ- Fe temperature region, and the carbon diffusion coefficient decreased obviously with the enhancement of magnetic field intensity, when the magnetic field intensity was higher than 1 T, the carbon diffusion coefficient in field annealed specimen was less than half of that of the nonfield annealed specimen, further enhancing the magnetic field intensity, the carbon diffusion coefficient basically remains unchanged. The stiffening of lattice due to field-induced magnetic ordering was responsible for an increase in activation barrier for jumping carbon atoms. The greater the magnetic field intensity, the stronger the inhibiting effect of magnetic field on carbon diffusion.
APA, Harvard, Vancouver, ISO, and other styles
31

Hirono, S., T. Hayashi, J. J. Delaunay, S. Umemura, and M. Tomita. "Cobalt-Carbon Nanogranular Magnetic Thin Films." Journal of the Magnetics Society of Japan 22, S_1_ISFA_97 (1998): S1_135–137. http://dx.doi.org/10.3379/jmsjmag.22.s1_135.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Ferreira, M. S., and S. Sanvito. "Magnetic proximity effect in carbon nanotubes." Journal of Magnetism and Magnetic Materials 290-291 (April 2005): 286–89. http://dx.doi.org/10.1016/j.jmmm.2004.11.210.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ando, Tsuneya. "Magnetic Susceptibility of Collapsed Carbon Nanotubes." Journal of the Physical Society of Japan 86, no. 2 (February 15, 2017): 024704. http://dx.doi.org/10.7566/jpsj.86.024704.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Ma, Ji, Chunting Liu, and Kezheng Chen. "Magnetic carbon bubble for pollutants removal." Separation and Purification Technology 225 (October 2019): 74–79. http://dx.doi.org/10.1016/j.seppur.2019.05.038.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Levi, Barbara Goss. "Can Polymeric Carbon-60 Be Magnetic?" Physics Today 54, no. 12 (December 2001): 18–19. http://dx.doi.org/10.1063/1.1445531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Lin, M. F. "Magnetic properties of chiral carbon toroids." Physica B: Condensed Matter 269, no. 1 (July 1999): 43–48. http://dx.doi.org/10.1016/s0921-4526(99)00047-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Korneva, Guzeliya, Haihui Ye, Yury Gogotsi, Derek Halverson, Gary Friedman, Jean-Claude Bradley, and Konstantin G. Kornev. "Carbon Nanotubes Loaded with Magnetic Particles." Nano Letters 5, no. 5 (May 2005): 879–84. http://dx.doi.org/10.1021/nl0502928.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Chauvet, O., L. Forro, W. Bacsa, D. Ugarte, B. Doudin, and Walt A. de Heer. "Magnetic anisotropies of aligned carbon nanotubes." Physical Review B 52, no. 10 (September 1, 1995): R6963—R6966. http://dx.doi.org/10.1103/physrevb.52.r6963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Sharma, Swati, Arpad M. Rostas, Lorenzo Bordonali, Neil MacKinnon, Stefan Weber, and Jan G. Korvink. "Micro and nano patternable magnetic carbon." Journal of Applied Physics 120, no. 23 (December 21, 2016): 235107. http://dx.doi.org/10.1063/1.4972476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Ovchinnikov, A. A., and V. V. Atrazhev. "Magnetic susceptibility of multilayered carbon nanotubes." Physics of the Solid State 40, no. 10 (October 1998): 1769–73. http://dx.doi.org/10.1134/1.1130653.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Aleshnikov, Alexander, Haider S. Mohammed Al-Azzawi, Y. Kalinin, Alexander Sitnikov, and Oksana Tarasova. "Magnetic Properties of Nanocomposites Metal-Carbon." Solid State Phenomena 233-234 (July 2015): 538–41. http://dx.doi.org/10.4028/www.scientific.net/ssp.233-234.538.

Full text
Abstract:
The films of heterogeneous systems based on ferromagnetic alloy and С were obtained by ion-beam sputtering. The concentration dependence of the resistance of composites was measured before and after heat treatment. The research of magnetostatic and magnetodynamic properties of heterogeneous metal-carbon showed that compounds (Co)Х(C)100-Х (Co40Fe40B20)Х(С)100-Х (Co45Fe45Zr10)Х(C)100-Х after the percolation threshold have good soft magnetic properties.
APA, Harvard, Vancouver, ISO, and other styles
42

Lähderanta, E., A. V. Lashkul, K. G. Lisunov, D. A. Zherebtsov, D. M. Galimov, and A. N. Titkov. "Irreversible magnetic properties of carbon nanoparticles." EPJ Web of Conferences 40 (2013): 08008. http://dx.doi.org/10.1051/epjconf/20134008008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Abramov, N. V., P. P. Gorbyk, and V. M. Bogatyrev. "Magnetic properties of carbon-nickel nanocomposites." Surface 8(23) (December 30, 2016): 223–35. http://dx.doi.org/10.15407/surface.2016.08.223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Lin, Ming-Fa. "Magnetic Properties of Toroidal Carbon Nanotubes." Journal of the Physical Society of Japan 67, no. 4 (April 15, 1998): 1094–97. http://dx.doi.org/10.1143/jpsj.67.1094.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Heremans, J., C. H. Olk, and D. T. Morelli. "Erratum: Magnetic susceptibility of carbon structures." Physical Review B 52, no. 5 (August 1, 1995): 3802. http://dx.doi.org/10.1103/physrevb.52.3802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kopyl, Svitlana, Vladimir Bystrov, Igor Bdikin, Mikhail Maiorov, and Antonio C. M. Sousa. "Filling carbon nanotubes with magnetic particles." Journal of Materials Chemistry C 1, no. 16 (2013): 2860. http://dx.doi.org/10.1039/c3tc30119b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Mehrez, H., Jeremy Taylor, Hong Guo, Jian Wang, and Christopher Roland. "Carbon Nanotube Based Magnetic Tunnel Junctions." Physical Review Letters 84, no. 12 (March 20, 2000): 2682–85. http://dx.doi.org/10.1103/physrevlett.84.2682.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bellucci, S., J. González, F. Guinea, P. Onorato, and E. Perfetto. "Magnetic field effects in carbon nanotubes." Journal of Physics: Condensed Matter 19, no. 39 (August 30, 2007): 395017. http://dx.doi.org/10.1088/0953-8984/19/39/395017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Saito, R., G. Dresselhaus, and M. S. Dresselhaus. "Magnetic energy bands of carbon nanotubes." Physical Review B 50, no. 19 (November 15, 1994): 14698–701. http://dx.doi.org/10.1103/physrevb.50.14698.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Bolzoni, F., F. Leccabue, L. Pareti, and J. L. Sanchez. "MAGNETIC ANISOTROPY OF CARBON DOPED Nd2Fe14B." Le Journal de Physique Colloques 46, no. C6 (September 1985): C6–305—C6–308. http://dx.doi.org/10.1051/jphyscol:1985654.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography