Academic literature on the topic 'Magnetic carbon'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic carbon.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Magnetic carbon"
Makarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Magnetic carbon." Nature 413, no. 6857 (October 18, 2001): 716–18. http://dx.doi.org/10.1038/35099527.
Full textRukhadze, Leri, Elguja R. Kutelia, N. Maisuradze, B. Eristavi, and Sayavur I. Bakhtiyarov. "Magnetic Carbon Nanopowders." i-manager's Journal on Mechanical Engineering 1, no. 1 (January 15, 2011): 16–20. http://dx.doi.org/10.26634/jme.1.1.1212.
Full textMakarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Erratum: Magnetic carbon." Nature 436, no. 7054 (August 2005): 1200. http://dx.doi.org/10.1038/nature04100.
Full textLi, Shandong, Guangbin Ji, and Liya Lü. "Magnetic Carbon Nanofoams." Journal of Nanoscience and Nanotechnology 9, no. 2 (February 1, 2009): 1133–36. http://dx.doi.org/10.1166/jnn.2009.c103.
Full textMakarova, T. L., B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. Davydov, L. S. Kashevarova, and A. V. Rakhmanina. "Correction: Retraction: Magnetic carbon." Nature 440, no. 7084 (March 2006): 707. http://dx.doi.org/10.1038/nature04622.
Full textMalthouse, J. P. G., and P. Phelan. "Effect of magnetic field strength on the linewidth and spin-lattice relaxation time of the thiocyanate carbon of cyanylated β-lactoglobulin B: optimization of the experimental parameters for observing thiocyanate carbons in proteins." Biochemical Journal 306, no. 2 (March 1, 1995): 531–35. http://dx.doi.org/10.1042/bj3060531.
Full textKamishima, Kenji, Daisuke Miyata, Yuki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of Pyrolytc Magnetic Carbon under Magnetic Field." Journal of the Japan Society of Powder and Powder Metallurgy 56, no. 7 (2009): 456–60. http://dx.doi.org/10.2497/jjspm.56.456.
Full textKamishima, Kenji, Daisuke Miyata, Yūki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of pyrolytic magnetic carbon under magnetic field." Journal of Physics: Conference Series 200, no. 11 (January 1, 2010): 112003. http://dx.doi.org/10.1088/1742-6596/200/11/112003.
Full textDiao, Xiuhui, Hongyu Chen, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan. "Magnetic Carbon Nanotubes for Protein Separation." Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/806019.
Full textGoze-Bac, C., S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, and P. Bernier. "Magnetic interactions in carbon nanostructures." Carbon 40, no. 10 (August 2002): 1825–42. http://dx.doi.org/10.1016/s0008-6223(02)00061-1.
Full textDissertations / Theses on the topic "Magnetic carbon"
Zagaynova, Valeria. "Carbon-based magnetic nanomaterials." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53568.
Full textMagnetism av kolbaserade material är ett utmanande område för både grundforskning och möjliga tillämpningar. Vi presenterar studier med låg-dimensionella kolbaserade magnetiska system (fulleren-utspädda molekylära magneter, kolnanorör, grafit fluorid och nanoporösa kol) med hjälp av SQUID magnetometer, röntgendiffraktion och vibrerande spektroskopi, de senare tekniker som används som komplement instrument för att finna sambandet mellan den magnetiska uppträdande och strukturen hos proven. I den första delen av avhandlingen är egenheter från magnetisering processen i linje filmer av kolnanorör med låg koncentration av järn diskuteras. Det visas att magnetism av sådana strukturer påverkas av kvantmekaniska effekter och anisotropin beteende är motsatsen till vad som observerats i kraftigt dopade nanorör. I den tvåa delen är Mn12-baserade enda-molekyl magneter med olika karboxylsyror ligander och deras 1:1 fulleren-utspädda komplex studeras. Vi visar att magnetiska egenskaperna hos sådana system beror i hög grad på miljön, och i princip är det möjligt att utforma en magnet med önskvärda egenskaper. En av de studerade föreningarna visade en post blockeringstemperaturen för en enda molekylär magnet. Både fulleren-utspädda komplex visade "magnetisering utbildning" effekt i alternerande magnetfält och möjligheten att bevara magnetiskt moment. Den tredje och fjärde delarna av avhandlingen är avsedda för inneboende magnetism av analys av olika bidrag till magnetisk susceptibilitet av metall-fritt kol-baserade system -inskjutna föreningar grafit fluorider och nanoporösa O2-eroderade grafit. Magnetiska egenskaperna hos dessa system är starkt beroende av strukturen, och kan fint avstämmas genom att man ändrar π-elektronsystem av grafit, i. e. med graden av fluorering av inskjutna föreningar och genom införandet av bor föroreningar till värd matris av nanoporösa grafit.
Li, Xiaojian. "Carbon nanotubes as nanoreactors for magnetic applications." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0062.
Full textCarbon nanotubes (CNTs), because of their unique properties and potential use in a variety of applications, are probably the most studied class of nanomaterials. Functionalized CNTs, which can be easily manipulated and modified by covalent or non-covalent functionalization, appear as new tools in biotechnology and biomedicine. Indeed, CNTs have optical, electronic and mechanical properties that can be exploited in biological or biomedical applications. Metallic magnetic nanoparticles (MMNPs) of the 3d series and their alloys exhibit excellent magnetic properties unlike their oxide counterparts, which can be exploited in biomedicine and ultra-high density magnetic recording. When confined in CNTs nano-materials can have different properties and behaviors compared to bulk materials. Various confinement effects resulting from the interaction between the confined materials and the internal cavities of CNTs provide opportunities for regulating or designing new nanocomposites. This thesis is devoted to the study of a new approach for the development of nanocomposite materials MMNPs@CNTs and their properties. MMNPs of controlled size and shape of Co and Fe were synthesized with novel aromatic ligands as stabilizers. These MMNPs were then selectively introduced into the cavity of CNTs due to repulsive/attractive interactions between the functionalized multi-walled CNTs and the MMNPs. We were then interested in the protection of these nanoparticles from oxidation by air. Thus, confined iron nanoparticles have been coated with polyisoprene. To do this, the surface of the Fe nanoparticles has been modified with a polymerization catalyst by ligand exchange; then, polymerization of isoprene was conducted inside the channel of CNTs. The protection from oxidation by the polyisoprene was evaluated by magnetic measurements after exposure to air. Quite surprisingly, this study showed that the iron nanoparticles the more resistant to oxidation were those obtained after ligand exchange and without polymerization. In this case only, the original properties of the nanoparticles are maintained after venting. Finally, magnetic bimetallic nanostructures (particles or rods) combining Pt and cobalt or iron were obtained and confined in CNTs. Their chemical structure orderings were also studied by thermal annealing studies. The work developed in this thesis opens up new perspectives for the production of new MMNPs@NTC nanocomposites resistant to oxidation
Malone, Johnathan Scott. "Magnetic Characterization of Ferrocene Derived Carbon Nanotubes." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/theses/1582.
Full textAlexander-Webber, Jack A. "High magnetic field effects in low-dimensional carbon nanostructures." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:1f81947b-16d7-4ab4-ace3-6e8b192429c8.
Full textLang, Volker. "Electrically detected magnetic resonance in semiconductor and carbon nanodevices." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:614ed1d1-0304-4356-8bd3-eb0ce7bd6c9d.
Full textRepa, Kristen Lee Stojak. "Confinement Effects and Magnetic Interactions in Magnetic Nanostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6573.
Full textChangyong, Lu. "Synthesis and characterization of magnetic nanocomposites and their applications study." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457572.
Full textNanomaterials especially nanoparticles become one of the most attractive area not only in scientific research but also in industrial applications. In this thesis, the preparation of magnetite nanoparticles, their related nanocomposites and the application of those obtained nanomaterials have been studied. The Fe3O4@SiO2 core-shell nanoparticles were synthesized via normal and microwave assistance reverse microemulsion methods. The obtained nanoparticles were fully characterized with different laboratory techniques and the effect of reaction parameters on final products was also studied. These nanoparticles were used as a support of Ag catalysts nanoparticles and the as synthesized nanocomposites shown nice catalytic property and high recyclability. A novel Fe3O4@GNF@SiO2 nanocapsulates were also prepared via in situ formation of magnetite nanoparticles and silica coverage process. The obtained nanocapsulates have nice stabilities even in the acid environments. The potential application of these nanocapsulates in magnetic resonance imaging research was also studied. On the other hand, the cytotoxity and interaction with cell of Fe3O4@SiO2 core-shell nanoparticles were studied which indicate the possibility of using them in biomedical research. Then, the Fe3O4@SiO2 core-shell nanoparticles were further decorated with biomolecules such as MC540 and L-thyroxine. The Fe3O4@SiO2 core-shell nanoparticles with the surface functionalized with molecule imprinted polymers also suggested the potential application in biosensor research.
Nicolas, Ubrig. "Optical properties of carbon based materials in high magnetic fields." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00646148.
Full textVenkateswaran, N. "Magnetic and microstructure properties of iron-rare earth-carbon magnets." Thesis, Kansas State University, 1988. http://hdl.handle.net/2097/16051.
Full textNyamsi, Francois T. "Carbon Nanotube and Soft Magnetic Lightweight Materials in Electric Machines." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535381574629281.
Full textBooks on the topic "Magnetic carbon"
Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. 2nd ed. Malabar, Fla: Krieger, 1993.
Find full textLevy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. Malabar, Fla: Krieger Pub. Co., 1992.
Find full textCarbon-13 NMR spectroscopy. Chichester: Wiley, 1988.
Find full textBerliner, L. J. Biological Magnetic Resonance, Volume 15: In vivo Carbon-13 NMR. Dordrecht: Springer, 1999.
Find full textYeo, Reuben Jueyuan. Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4882-1.
Full textBreitmaier, E. Carbon-13 NMR spectroscopy: High-resolution methods and applications in organic chemistry and biochemistry. 3rd ed. New York: VCH Publishers, 1987.
Find full textPihlaja, Kalevi. Carbon-13 NMR chemical shifts in structural and stereochemical analysis. New York: VCH, 1994.
Find full textWehrli, F. W. Interpretation of carbon-13 NMR spectra. 2nd ed. Chichester: Wiley, 1988.
Find full textDreeskamp, Herbert. Anwendung neuer Techniken der ¹³C-NMR-Spektroskopie in der Analytik der für den Bereich der Kohlechemie typischen Stoffe. Hamburg: Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie, 1985.
Find full textWhitesell, James K. Stereochemical analysis of alicyclic compounds by C-13 NMR spectroscopy. London: Chapman and Hall, 1987.
Find full textBook chapters on the topic "Magnetic carbon"
Vobornik, I., J. Fujii, G. Panaccione, M. Unnikrishnan, Y. S. Hor, and R. J. Cava. "“Flatlands” in Spintronics: Controlling Magnetism by Magnetic Proximity Effect." In Carbon Nanostructures, 215–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_27.
Full textKuznetsov, Anatoly A., Avetik R. Harutyunyan, Edward K. Dobrinsky, Victor I. Filippov, Andrei G. Malenkov, Anatoly F. Vanin, and Oleg A. Kuznetsov. "Ferro-Carbon Particles." In Scientific and Clinical Applications of Magnetic Carriers, 379–89. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-6482-6_29.
Full textRobert, D. "Carbon-13 Nuclear Magnetic Resonance Spectrometry." In Methods in Lignin Chemistry, 250–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_18.
Full textZeltner, Martin, and Robert N. Grass. "Carbon-Coated Magnetic Metal Nanoparticles for Clinical Applications." In Clinical Applications of Magnetic Nanoparticles, 43–52. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315168258-3.
Full textSobik, Martin, Kirsten M. Pondman, Ben Erné, Bonny Kuipers, Bennie ten Haken, and Horst Rogalla. "Magnetic Nanoparticles for Diagnosis and Medical Therapy." In Carbon Nanotubes for Biomedical Applications, 85–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14802-6_5.
Full textKono, Junichiro, Robin J. Nicholas, and Stephan Roche. "High Magnetic Field Phenomena in Carbon Nanotubes." In Topics in Applied Physics, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72865-8_13.
Full textJurs, Peter C., and Debra S. Egolf. "Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation." In Computer-Enhanced Analytical Spectroscopy, 163–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5368-3_8.
Full textYeo, Reuben Jueyuan. "Overview of Amorphous Carbon Films." In Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording, 29–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4882-1_2.
Full textAnuganti, Vijay K., and Aldrik H. Velders. "Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes." In Carbon Nanotubes for Biomedical Applications, 125–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14802-6_7.
Full textMarquina, Clara, and M. Ricardo Ibarra. "Carbon Encapsulated Functional Magnetic Nanoparticles for Life Sciences." In Pure and Functionalized Carbon Based Nanomaterials, 228–55. Boca Raton : CRC Press, Taylor and Francis Group, [2020] | “CRC Press is an imprint of the Taylor & Francis Group, an informa business.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781351032308-10.
Full textConference papers on the topic "Magnetic carbon"
Вызулин, Sergey Vyzulin, Кевралетин, Aleksandr Kevraletin, Сырьев, and Nikolay Syrev. "Magnetic resonance properties of nano granular magnetic films with carbon matrix." In XXIV International Conference. Москва: Infra-m, 2016. http://dx.doi.org/10.12737/22883.
Full textMiyake, Nobuhisa, Daisuke Yamaki, and Masahiko Hada. "Magnetic shielding in carbon nanotube." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771829.
Full textZhao, B. "Magnetic Systems with Carbon Nanotubes." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514188.
Full textKaeokhamchan, Y., S. Sangphet, T. Eknapakul, S. Pinitsoontorn, and W. Meevasana. "Synthesis of magnetic carbon sand." In THE SECOND MATERIALS RESEARCH SOCIETY OF THAILAND INTERNATIONAL CONFERENCE. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0022942.
Full textIn, H. J., A. J. Nichol, and G. Barbastathis. "Magnetic Alignment of Carbon Nanotube Interconnects." In 2007IEEE/LEOS International Conference on Optical MEMS and Nanophotonics. IEEE, 2007. http://dx.doi.org/10.1109/omems.2007.4373904.
Full textYang, Zhengtao, Ali Shaito, and Nandika Anne D'Souza. "Magnetorheology of Multiwalled Carbon Nanotube Mineral Dispersions." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16004.
Full textParmar, Mayur A., Hiral A. Virpura, Vishaka Dave, and Rajesh J. Patel. "Aligning carbon nano fibers using magnetic nanofluids." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872591.
Full textManago, T., H. Kuramochi, T. Uzumaki, M. Yasutake, A. Tanaka, H. Akinaga, and H. Yokoyama. "Magnetic Force Microscope Using Carbon Nanotube Probes." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.p9-14l.
Full textRode, A. V. "Magnetic Carbon Cluster Formation Process: Optical Spectroscopy of Laser-Ablated Carbon Plume." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103829.
Full textMas'udah, Kusuma Wardhani, Pelangi Eka Yuwita, Yuanita Amalia Haryanto, Ahmad Taufiq, and Sunaryono. "Effect of heat treatment on carbon characteristic from corncob powders prepared by coprecipitation method." In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015777.
Full textReports on the topic "Magnetic carbon"
Axelson, D. E. Carbon-13 solid state nuclear magnetic resonance spectroscopy of pitch. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304931.
Full textLudtka, Gerard Michael. Heat Treatment of Iron-Carbon Alloys in a Magnetic Field (Phase 2). Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1410924.
Full textPartee, Jonathan. Optically detected magnetic resonance studies on π-conjugate polymers and novel carbon allotropes. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348885.
Full textAnders, Andre. CRADA Final Report: Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/1157022.
Full textBruck, H. A., J. S. Epstein, K. E. Jr Perry, and M. G. Abdallah. Dynamic characterization of short duration stress pulses generated by a magnetic flyer plate in carbon-fiber/epoxy laminates. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/125087.
Full textThornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing, and Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38721.
Full textEngelhardt, Larry. Quantum Monte Carlo Calculations Applied to Magnetic Molecules. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/892729.
Full textDumont, R. Residual total magnetic field, HELIGEOTEM survey of Cariboo Lake, parts of NTS 93 A/10, 93 A/11, 93 A/12, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248049.
Full textDumont, R. Residual total magnetic field, HELIGEOTEM survey of Cariboo Lake, parts of NTS 93 A/13, 93 A/14, 93 A/15, 93 H/3, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248050.
Full textNuclear Magnetic Resonance Spectroscopy. ConductScience, November 2019. http://dx.doi.org/10.55157/cs20191121.
Full text