Academic literature on the topic 'Magnetic carbon'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Magnetic carbon.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Magnetic carbon"

1

Makarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Magnetic carbon." Nature 413, no. 6857 (October 18, 2001): 716–18. http://dx.doi.org/10.1038/35099527.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rukhadze, Leri, Elguja R. Kutelia, N. Maisuradze, B. Eristavi, and Sayavur I. Bakhtiyarov. "Magnetic Carbon Nanopowders." i-manager's Journal on Mechanical Engineering 1, no. 1 (January 15, 2011): 16–20. http://dx.doi.org/10.26634/jme.1.1.1212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Makarova, Tatiana L., Bertil Sundqvist, Roland Höhne, Pablo Esquinazi, Yakov Kopelevich, Peter Scharff, Valerii A. Davydov, Ludmila S. Kashevarova, and Aleksandra V. Rakhmanina. "Erratum: Magnetic carbon." Nature 436, no. 7054 (August 2005): 1200. http://dx.doi.org/10.1038/nature04100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Li, Shandong, Guangbin Ji, and Liya Lü. "Magnetic Carbon Nanofoams." Journal of Nanoscience and Nanotechnology 9, no. 2 (February 1, 2009): 1133–36. http://dx.doi.org/10.1166/jnn.2009.c103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Makarova, T. L., B. Sundqvist, R. Höhne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. Davydov, L. S. Kashevarova, and A. V. Rakhmanina. "Correction: Retraction: Magnetic carbon." Nature 440, no. 7084 (March 2006): 707. http://dx.doi.org/10.1038/nature04622.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Malthouse, J. P. G., and P. Phelan. "Effect of magnetic field strength on the linewidth and spin-lattice relaxation time of the thiocyanate carbon of cyanylated β-lactoglobulin B: optimization of the experimental parameters for observing thiocyanate carbons in proteins." Biochemical Journal 306, no. 2 (March 1, 1995): 531–35. http://dx.doi.org/10.1042/bj3060531.

Full text
Abstract:
The linewidths and spin-lattice relaxation times of the 13C-n.m.r. signal at 109.7 p.p.m. due to the thiocyanate carbon of intact [cyanato-13C]cyanylated-beta-lactoglobulin-B have been determined at magnetic field strengths of 1.88, 6.34 and 11.74 T as well as the spin-lattice relaxation times of its backbone alpha-carbon atoms. The linewidths were directly proportional to the square of the magnetic field strength and we conclude that, at magnetic field strengths of 6.34 T or above, more than 70% of the linewidth will be determined by chemical-shift anisotropy. We estimate that the spin-lattice relaxation time resulting from the chemical-shift anisotropy of the thiocyanate carbon is 1.52 +/- 0.1 s and we conclude that for magnetic field strengths of 6.34 T and above the observed spin-lattice relaxation time of the thiocyanate carbon will be essentially independent of magnetic field strength. Using the rigid-rotor model we obtain estimates of the rotational correlation time of [cyanato-13C]cyanylated-beta-lactoglobulin-B and of the chemical-shift anisotropy shielding tensor of its thiocyanate carbon. We have calculated the linewidths and spin-lattice relaxation times of thiocyanate carbons at magnetic field strengths of 1.88-14.1 T in proteins with M(r) values in the range 10,000-400,000. The effects of magnetic field strength on the resolution and signal-to-noise ratios of the signals due to thiocyanate carbons attached to proteins of M(r) greater than 10,000 are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Kamishima, Kenji, Daisuke Miyata, Yuki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of Pyrolytc Magnetic Carbon under Magnetic Field." Journal of the Japan Society of Powder and Powder Metallurgy 56, no. 7 (2009): 456–60. http://dx.doi.org/10.2497/jjspm.56.456.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Kamishima, Kenji, Daisuke Miyata, Yūki Sato, Takashi Tokue, Koichi Kakizaki, Nobuyuki Hiratsuka, Yasutaka Imanaka, and Tadashi Takamasu. "Preparation of pyrolytic magnetic carbon under magnetic field." Journal of Physics: Conference Series 200, no. 11 (January 1, 2010): 112003. http://dx.doi.org/10.1088/1742-6596/200/11/112003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Diao, Xiuhui, Hongyu Chen, Guoliang Zhang, Fengbao Zhang, and Xiaobin Fan. "Magnetic Carbon Nanotubes for Protein Separation." Journal of Nanomaterials 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/806019.

Full text
Abstract:
Magnetic separation is a promising strategy in protein separation. Owing to their unique one-dimensional structures and desired magnetic properties, stacked-cup carbon nanotubes (CSCNTs) with magnetic nanoparticles trapped in their tips can serve as train-like systems for protein separation. In this study, we functionalized the magnetic CSCNTs with high density of carboxyl groups by radical addition and then anchored 3-aminophenylboronic acid (APBA) through amidation reaction to achieve oriented conjunction of antibodies (IgG). It was also demonstrated that the obtained magnetic CSCNTs-APBA-IgG conjugates could readily react with target antigens through specific antigen-antibody reaction and be used as new magnetic systems for protein separation.
APA, Harvard, Vancouver, ISO, and other styles
10

Goze-Bac, C., S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, and P. Bernier. "Magnetic interactions in carbon nanostructures." Carbon 40, no. 10 (August 2002): 1825–42. http://dx.doi.org/10.1016/s0008-6223(02)00061-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Magnetic carbon"

1

Zagaynova, Valeria. "Carbon-based magnetic nanomaterials." Doctoral thesis, Umeå universitet, Institutionen för fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-53568.

Full text
Abstract:
Magnetism of carbon-based materials is a challenging area for both fundamental research and possible applications. We present studies of low-dimensional carbon-based magnetic systems (fullerene-diluted molecular magnets, carbon nanotubes, graphite fluoride, and nanoporous carbon) by means of SQUID magnetometer, X-ray diffraction and vibrational spectroscopy, the latter techniques used as complementary instruments to find a correlation between the magnetic behaviour and the structure of the samples.In the first part of the thesis, characteristic features of the magnetization process in aligned films of carbon nanotubes with low concentration of iron are discussed. It is shown that the magnetism of such structures is influenced by quantum effects, and the anisotropy behaviour is opposite to what is observed in heavily doped nanotubes.In the second part, Mn12-based single molecular magnets with various carboxylic ligands and their 1:1 fullerene-diluted complexes are studied. We prove that magnetic properties of such systems strongly depend on the environment, and, in principle, it is possible to design a magnet with desirable properties. One of the studied compounds demonstrated a record blocking temperature for a single molecular magnet. Both fullerene-diluted complexes demonstrated “magnetization training” effect in alternating magnetic fields and the ability to preserve magnetic moment.The third and the fourth parts of the thesis are dedicated to the analysis of various contributions to the magnetic susceptibility of metal-free carbon-based systems – intercalated compounds of graphite fluorides and nanoporous oxygen-eroded graphite. The magnetic properties of these systems are strongly dependent on structure, and can be delicately tuned by altering the π-electron system of graphite, i. e. by degree of fluorination of intercalated compounds and by introduction of boron impurity to the host matrix of nanoporous graphite.
Magnetism av kolbaserade material är ett utmanande område för både grundforskning och möjliga tillämpningar. Vi presenterar studier med låg-dimensionella kolbaserade magnetiska system (fulleren-utspädda molekylära magneter, kolnanorör, grafit fluorid och nanoporösa kol) med hjälp av SQUID magnetometer, röntgendiffraktion och vibrerande spektroskopi, de senare tekniker som används som komplement instrument för att finna sambandet mellan den magnetiska uppträdande och strukturen hos proven. I den första delen av avhandlingen är egenheter från magnetisering processen i linje filmer av kolnanorör med låg koncentration av järn diskuteras. Det visas att magnetism av sådana strukturer påverkas av kvantmekaniska effekter och anisotropin beteende är motsatsen till vad som observerats i kraftigt dopade nanorör. I den tvåa delen är Mn12-baserade enda-molekyl magneter med olika karboxylsyror ligander och deras 1:1 fulleren-utspädda komplex studeras. Vi visar att magnetiska egenskaperna hos sådana system beror i hög grad på miljön, och i princip är det möjligt att utforma en magnet med önskvärda egenskaper. En av de studerade föreningarna visade en post blockeringstemperaturen för en enda molekylär magnet. Både fulleren-utspädda komplex visade "magnetisering utbildning" effekt i alternerande magnetfält och möjligheten att bevara magnetiskt moment. Den tredje och fjärde delarna av avhandlingen är avsedda för inneboende magnetism av analys av olika bidrag till magnetisk susceptibilitet av metall-fritt kol-baserade system -inskjutna föreningar grafit fluorider och nanoporösa O2-eroderade grafit. Magnetiska egenskaperna hos dessa system är starkt beroende av strukturen, och kan fint avstämmas genom att man ändrar π-elektronsystem av grafit, i. e. med graden av fluorering av inskjutna föreningar och genom införandet av bor föroreningar till värd matris av nanoporösa grafit.
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Xiaojian. "Carbon nanotubes as nanoreactors for magnetic applications." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0062.

Full text
Abstract:
Les nanotubes de carbone (NTCs), en raison de leurs propriétés exceptionnelles et d’une utilisation potentielle dans un grand nombre d'applications, constituent surement la classe la plus étudiée des nanomatériaux. Les NTCs fonctionnalisés, qui peuvent être facilement manipulés et modifiés par liaison covalente ou fonctionnalisation non covalente, apparaissent comme de nouveaux outils dans le domaine des biotechnologies et en biomédecine. En effet, les NTC ont des propriétés optiques, électroniques et mécaniques qui peuvent être exploitées dans des applications biologiques ou biomédicales. Les nanoparticules magnétiques métalliques (NPMMs) de la série 3d ainsi que leurs alliages présentent d'excellentes propriétés magnétiques contrairement à leurs homologues oxydes, qui peuvent être exploitées en biomédecine et pour l'enregistrement magnétique ultra-haute densité. Les nano-matériaux confinés dans les NTCs peuvent présenter des propriétés et des comportements différents par rapport aux matériaux massifs. Divers effets de confinement provenant de l'interaction entre les matériaux confinés et les cavités internes des nanotubes de carbone offrent des possibilités de réglage ou la conception de nouveaux nanocomposites. Cette thèse est consacrée à l’étude d’une nouvelle approche pour le développement de matériaux nanocomposites NPMMs@NTC et de leurs propriétés. Des NPMMs de taille et forme contrôlée de Co et de Fe ont été synthétisées avec de nouveaux ligands aromatiques comme stabilisants. Ces MMNPs ont ensuite été introduites de manière sélective dans la cavité de NTCs du fait d’interactions attractives/répulsives entre les nanotubes de carbone multi-parois fonctionnalisés et les NPMMs. Nous nous sommes ensuite intéressés à la protection de ces nanoparticules de l’oxydation par l’air. Les nanoparticules de fer confinées ont ainsi été revêtues par du polyisoprène. Pour ce faire, la surface des nanoparticules de Fe a été modifiée avec un catalyseur de polymérisation par échange de ligand, puis la polymérisation de l'isoprène a été réalisée à l'intérieur du canal des NTCs. La protection de l'oxydation par le polyisoprène a été évaluée par des mesures magnétiques après exposition à l'air. De façon tout à fait surprenante, cette étude a montré que les nanoparticules de fer les plus résistantes à l’oxydation étaient celles obtenues après échange de ligand et sans polymérisation. Dans ce cas seulement les propriétés des nanoparticules originales sont maintenues après mise à l’air. Enfin, des nanostructures (particules ou fils) magnétiques bimétalliques associant le Pt au cobalt ou au fer ont été obtenues et confinées dans les NTCs. Leurs structures chimiques ordonnées ont également été étudiées par des études de recuit thermique. Le travail développé dans cette thèse ouvre de nouvelles perspectives pour la production de nouveaux nanocomposites MMNPs@NTC résistants à l’oxydation
Carbon nanotubes (CNTs), because of their unique properties and potential use in a variety of applications, are probably the most studied class of nanomaterials. Functionalized CNTs, which can be easily manipulated and modified by covalent or non-covalent functionalization, appear as new tools in biotechnology and biomedicine. Indeed, CNTs have optical, electronic and mechanical properties that can be exploited in biological or biomedical applications. Metallic magnetic nanoparticles (MMNPs) of the 3d series and their alloys exhibit excellent magnetic properties unlike their oxide counterparts, which can be exploited in biomedicine and ultra-high density magnetic recording. When confined in CNTs nano-materials can have different properties and behaviors compared to bulk materials. Various confinement effects resulting from the interaction between the confined materials and the internal cavities of CNTs provide opportunities for regulating or designing new nanocomposites. This thesis is devoted to the study of a new approach for the development of nanocomposite materials MMNPs@CNTs and their properties. MMNPs of controlled size and shape of Co and Fe were synthesized with novel aromatic ligands as stabilizers. These MMNPs were then selectively introduced into the cavity of CNTs due to repulsive/attractive interactions between the functionalized multi-walled CNTs and the MMNPs. We were then interested in the protection of these nanoparticles from oxidation by air. Thus, confined iron nanoparticles have been coated with polyisoprene. To do this, the surface of the Fe nanoparticles has been modified with a polymerization catalyst by ligand exchange; then, polymerization of isoprene was conducted inside the channel of CNTs. The protection from oxidation by the polyisoprene was evaluated by magnetic measurements after exposure to air. Quite surprisingly, this study showed that the iron nanoparticles the more resistant to oxidation were those obtained after ligand exchange and without polymerization. In this case only, the original properties of the nanoparticles are maintained after venting. Finally, magnetic bimetallic nanostructures (particles or rods) combining Pt and cobalt or iron were obtained and confined in CNTs. Their chemical structure orderings were also studied by thermal annealing studies. The work developed in this thesis opens up new perspectives for the production of new MMNPs@NTC nanocomposites resistant to oxidation
APA, Harvard, Vancouver, ISO, and other styles
3

Malone, Johnathan Scott. "Magnetic Characterization of Ferrocene Derived Carbon Nanotubes." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/theses/1582.

Full text
Abstract:
Carbon nanotubes (CNTs) functionalized/embedded with ferromagnetic particles have several important advantages as materials for magnetic applications. The presence of ferromagnetic particles in a carbon matrix can substantially change the magnetic properties of CNT-based composites. For example, iron filled CNTs have been used as probes in magnetic force microscopy (MFM), and have potential in magnetic data storage applications. In addition, encapsulation in nanotubes provides iron nanoparticles with resistance to oxidation and mechanical damage. Chemical vapor deposition (CVD) is one of the most common single-step processes for the fabrication of high quality carbon nanotubes containing varying amounts of embedded ferromagnetic particles. This process results in the effective magnetic functionalization of CNTs and opens the door to numerous new applications. However, in order to optimize these materials for any application, their properties need to be understood. This study explores the ferromagnetic properties of carbon nanotubes containing nano-scaled iron particles which were derived from thermal decomposition of ferrocene. Both room temperature as well as low-temperature magnetic measurements will be presented and the results analyzed in the light of available theory.
APA, Harvard, Vancouver, ISO, and other styles
4

Alexander-Webber, Jack A. "High magnetic field effects in low-dimensional carbon nanostructures." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:1f81947b-16d7-4ab4-ace3-6e8b192429c8.

Full text
Abstract:
This thesis describes studies of graphene, single walled carbon nanotubes (SWNTs) and InSb. Optical and electronic measurements probe the effects of high magnetic fields on these low-dimensional systems. Chapter 1 introduces a theoretical description and background behind the materials and physical phenomena studied in this work. The structure and unique properties of carbon nano-materials are described. The experimental methods used in this thesis are described in Chapter 2. Chapter 3 describes magnetotransport measurements on InSb/AlInSb heterostructures revealing that the large energy gaps, and extremely high mobility, associated with this system leads to exceptionally well defined quantum Hall plateaux for both even (Landau level) and odd (spin-split) filling factors. Even higher cyclotron energy gaps are expected in graphene. Chapter 4 reveals that due to a combination of large cyclotron energy gaps and fast electron-phonon energy loss rates, the quantum Hall effect (QHE) in graphene can be observed to unprecedented current densities (43 A/m) and temperatures (> 45 K). The behaviour of epitaxial graphene grown on silicon carbide in the quantum Hall regime is shown to be characterised by a strongly magnetic field dependent carrier density due to charge transfer from surface donor states in the substrate. Chapter 5 shows that polymer wrapping of SWNTs can achieve high quality purified samples. Individual SWNTs were probed using micro-photoluminescence measurements in magnetic fields up to 30 T. The combination of high magnetic fields and high spectral and spatial resolution allowed a detailed study of exciton fine structure. High intensity laser irradiation is shown to induce bound excitons in pristine tubes. The optical properties of a number of tubes are dominated by defect sites which may be imaged along the tube using the magnetic brightening of dark excitons associated with such defects.
APA, Harvard, Vancouver, ISO, and other styles
5

Lang, Volker. "Electrically detected magnetic resonance in semiconductor and carbon nanodevices." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:614ed1d1-0304-4356-8bd3-eb0ce7bd6c9d.

Full text
Abstract:
Electrically detected magnetic resonance (EDMR) is a sensitive spectroscopic technique, which can be used to readout few to single electron spins in semiconductor and carbon nanodevices for applications in solid state quantum information processing (QIP). Since only electrically active defects contribute to the EDMR signal, this technique can be used further to investigate defects and impurities in photovoltaic devices, in which they limit the sunlight-to-energy conversion efficiency significantly. Here, I employ X-band EDMR for semiconductor defect analysis and identify the most important recombination centres in Czochralski silicon with oxide precipitates, which can be intentionally grown to confine detrimental metallic impurities to inactive regions of the wafer in order to serve as a defect-free substrate for modern silicon photovoltaic devices. Those experiments show that oxide precipitation is accompanied by the formation of silicon dangling bonds. Furthermore, I describe a very promising route towards the fabrication and readout of few to single electron spins in carbon nanotube devices, which can be characterised structurally via transmission electron microscopy in order to relate their electrical and spin properties with their structure. Finally, I employ EDMR to read out electron spin states in donor-doped silicon field-effect transistors as a prerequisite for their application in QIP. I report on a novel cryogenic probe head for EDMR experiments in resonant microwave cavities operating at 0.35 T (9.7 GHz, X-band) and 3.34 T (94 GHz, W-band). This approach overcomes the inherent limitations of conventional X-band EDMR and permits the investigation of paramagnetic states with a higher spectroscopic resolution and signal intensity. Both advantages are demonstrated and discussed. I further report on a novel mechanism giving rise to the EDMR effect in donor-doped silicon field-effect transistors, which is capable of explaining why the EDMR signal intensities of the conduction electrons are enhanced by a factor of ∼100, while the donor resonance signals increase by a factor of ∼20 from X- to W-band only. The spin-relaxation and dephasing times are extracted from a series of pulsed-EDMR measurements and confirm this model. The author gratefully acknowledges funding from Trinity College Oxford, Department of Materials, EPSRC DTA, and Konrad-Adenauer-Stiftung e.V. (Begabtenförderung).
APA, Harvard, Vancouver, ISO, and other styles
6

Repa, Kristen Lee Stojak. "Confinement Effects and Magnetic Interactions in Magnetic Nanostructures." Scholar Commons, 2016. http://scholarcommons.usf.edu/etd/6573.

Full text
Abstract:
Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers. Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of transverse external magnetic fields of up to 4.5 kOe. Experiments confirm strong magnetic field dependence across all samples. When incorporated in to a cavity resonator device, tangent losses were reduced, quality factor increased by 5.6 times, and tunability of the resonance frequency was demonstrated, regardless of NP-loading. Work on PNC materials revealed the importance of NP interactions in confined spaces and motivated the study of confinement effects of magnetic NPs in more controlled environments, such as MWCNTs with varying diameters. MWCNTs were synthesized with diameters of 60 nm, 100 nm, 250 nm, and 450 nm to contain magnetic NP fillers (~10 nm) consisting of ferrites of the form MFe2O4, where M = Co2+, Ni2+, or Fe2+. All confined samples exhibit superparamagnetic-like behavior with stronger magnetic response with respect to increasing MWCNT diameter up to 250 nm due to the enhancement of interparticle interactions. This thesis provides the first systematic study of this class of nanocomposites, which paves the way to inclusion of novel nanostructured materials in real-world applications.
APA, Harvard, Vancouver, ISO, and other styles
7

Changyong, Lu. "Synthesis and characterization of magnetic nanocomposites and their applications study." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/457572.

Full text
Abstract:
Los nanomateriales, especialmente las nanopartículas, se convierten en una de las áreas más atractivas no sólo en la investigación científica, sino también en las aplicaciones industriales. En esta tesis se ha estudiado la preparación de nanopartículas de magnetita, sus nanocompuestos relacionados y la aplicación de los nanomateriales obtenidos. Las nanopartículas core-shell de Fe3O4@SiO2 se sintetizaron mediante métodos de microemulsión inversa estándar y de microondas. Las nanopartículas obtenidas se caracterizaron con diferentes técnicas de laboratorio y se estudiaron los diferentes efectos al cambiar algunos parámetros (temperatura, concentración, tiempo) de la reacción. Las nanopartículas se utilizaron como soporte de catalizadores de Ag y los nanocompuestos sintetizados mostraron una buena propiedad catalítica y una alta capacidad de reciclaje. También se prepararon nuevas nanocápsulas de Fe3O4@GNF@SiO2 mediante la formación in situ de nanopartículas de magnetita y el proceso de cobertura de sílica. Los nanocapsulados obtenidos tienen una buena estabilidad incluso en ambientes ácidos. También se estudió la posible aplicación de estas nanocápsulas por resonancia magnética. Por otra parte, se estudió la citotoxidad e interacción del core-shell Fe3O4 @ SiO2 de las nanopartículas unidas a células, para asegurarse una posible aplicación en investigación biomédica obteniendo un resultado favorable y de baja toxicidad. A continuación, las nanopartículas Fe3O4 @ SiO2 se decoraron añadiendo biomoléculas tales como MC540 y L-tiroxina las cuales muestran una posible aplicación en el estudio de biosensores.
Nanomaterials especially nanoparticles become one of the most attractive area not only in scientific research but also in industrial applications. In this thesis, the preparation of magnetite nanoparticles, their related nanocomposites and the application of those obtained nanomaterials have been studied. The Fe3O4@SiO2 core-shell nanoparticles were synthesized via normal and microwave assistance reverse microemulsion methods. The obtained nanoparticles were fully characterized with different laboratory techniques and the effect of reaction parameters on final products was also studied. These nanoparticles were used as a support of Ag catalysts nanoparticles and the as synthesized nanocomposites shown nice catalytic property and high recyclability. A novel Fe3O4@GNF@SiO2 nanocapsulates were also prepared via in situ formation of magnetite nanoparticles and silica coverage process. The obtained nanocapsulates have nice stabilities even in the acid environments. The potential application of these nanocapsulates in magnetic resonance imaging research was also studied. On the other hand, the cytotoxity and interaction with cell of Fe3O4@SiO2 core-shell nanoparticles were studied which indicate the possibility of using them in biomedical research. Then, the Fe3O4@SiO2 core-shell nanoparticles were further decorated with biomolecules such as MC540 and L-thyroxine. The Fe3O4@SiO2 core-shell nanoparticles with the surface functionalized with molecule imprinted polymers also suggested the potential application in biosensor research.
APA, Harvard, Vancouver, ISO, and other styles
8

Nicolas, Ubrig. "Optical properties of carbon based materials in high magnetic fields." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00646148.

Full text
Abstract:
La découverte des nanotubes de carbone, il y a maintenant une vingtaine d'années, a été un des moteurs de la recherche des nanotechnologies. Ces particules illustrent l'amalgame entre le monde macroscopique et le monde appelé nano. Cette discipline a également relancée la recherche sur le graphite et le carbone en général, qui atteint un nouveau sommet avec la découverte du graphène, une monocouche de graphite. Rapidement la physique des nanotubes et du graphène ont suscité l'intérêt d'être étudié sous champ magnétique avec la découverte de l'effet Aharonov-Bohm dans les nanotubes ou l'effet hall quantique dans le graphène. Cette thèse a pour but d'approfondir la connaissance des propriétés optiques des nanotubes, du graphène et du graphite sous champ magnétique intense. Pour cela nous nous interesserons dans un premier temps à la problématique des excitons sombres. Nous étudierons ensuite les propriétés magnétiques et dynamiques des tubes. La famille métallique est paramagnétique le long de son axe et diamagnétique perpendiculaire à celui-ci. La famille semiconductrice est diamagnétique par rapport à ces deux orientations mais la valeur perpendiculaire est plus élevée. De ce fait tous les nanotubes vont s'aligner parallèlement à un champ magnétique appliqué. Nous utiliserons des méthodes de spectroscopie optique pour étudier ce phénomène. La deuxième partie de la thèse consistera à examiner les propriétés optiques du graphène et du graphite et plus précisément les transitions entre niveaux de Landau sous champs intenses. La particularité du graphène est que ses porteurs de charge se comportent comme des particules relativistes avec une masse nulle. Les niveaux de Landau se trouvent modifiés avec une dépendance en racine du champ magnétique, par rapport aux systèmes deux dimensionels classiques, où l'on retrouve une dépendance linéaire comme pour l'électron libre par exemple. Ceci nous entrainera également à reéxaminer les propriétés du graphite et d'approfondir les connaissances, notamment à champ très élevé, sur ce matériau à priori bien connu et étudié dans le passé.
APA, Harvard, Vancouver, ISO, and other styles
9

Venkateswaran, N. "Magnetic and microstructure properties of iron-rare earth-carbon magnets." Thesis, Kansas State University, 1988. http://hdl.handle.net/2097/16051.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nyamsi, Francois T. "Carbon Nanotube and Soft Magnetic Lightweight Materials in Electric Machines." University of Cincinnati / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1535381574629281.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Magnetic carbon"

1

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. 2nd ed. Malabar, Fla: Krieger, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Levy, George C. Carbon-13 nuclear magnetic resonance spectroscopy. Malabar, Fla: Krieger Pub. Co., 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Carbon-13 NMR spectroscopy. Chichester: Wiley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Berliner, L. J. Biological Magnetic Resonance, Volume 15: In vivo Carbon-13 NMR. Dordrecht: Springer, 1999.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yeo, Reuben Jueyuan. Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4882-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Breitmaier, E. Carbon-13 NMR spectroscopy: High-resolution methods and applications in organic chemistry and biochemistry. 3rd ed. New York: VCH Publishers, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Pihlaja, Kalevi. Carbon-13 NMR chemical shifts in structural and stereochemical analysis. New York: VCH, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Wehrli, F. W. Interpretation of carbon-13 NMR spectra. 2nd ed. Chichester: Wiley, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dreeskamp, Herbert. Anwendung neuer Techniken der ¹³C-NMR-Spektroskopie in der Analytik der für den Bereich der Kohlechemie typischen Stoffe. Hamburg: Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie, 1985.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Whitesell, James K. Stereochemical analysis of alicyclic compounds by C-13 NMR spectroscopy. London: Chapman and Hall, 1987.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Magnetic carbon"

1

Vobornik, I., J. Fujii, G. Panaccione, M. Unnikrishnan, Y. S. Hor, and R. J. Cava. "“Flatlands” in Spintronics: Controlling Magnetism by Magnetic Proximity Effect." In Carbon Nanostructures, 215–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20644-3_27.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuznetsov, Anatoly A., Avetik R. Harutyunyan, Edward K. Dobrinsky, Victor I. Filippov, Andrei G. Malenkov, Anatoly F. Vanin, and Oleg A. Kuznetsov. "Ferro-Carbon Particles." In Scientific and Clinical Applications of Magnetic Carriers, 379–89. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-6482-6_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Robert, D. "Carbon-13 Nuclear Magnetic Resonance Spectrometry." In Methods in Lignin Chemistry, 250–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-74065-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zeltner, Martin, and Robert N. Grass. "Carbon-Coated Magnetic Metal Nanoparticles for Clinical Applications." In Clinical Applications of Magnetic Nanoparticles, 43–52. Boca Raton : Taylor & Francis, 2018.: CRC Press, 2018. http://dx.doi.org/10.1201/9781315168258-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sobik, Martin, Kirsten M. Pondman, Ben Erné, Bonny Kuipers, Bennie ten Haken, and Horst Rogalla. "Magnetic Nanoparticles for Diagnosis and Medical Therapy." In Carbon Nanotubes for Biomedical Applications, 85–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14802-6_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kono, Junichiro, Robin J. Nicholas, and Stephan Roche. "High Magnetic Field Phenomena in Carbon Nanotubes." In Topics in Applied Physics, 393–422. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72865-8_13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Jurs, Peter C., and Debra S. Egolf. "Carbon-13 Nuclear Magnetic Resonance Spectrum Simulation." In Computer-Enhanced Analytical Spectroscopy, 163–82. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5368-3_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yeo, Reuben Jueyuan. "Overview of Amorphous Carbon Films." In Ultrathin Carbon-Based Overcoats for Extremely High Density Magnetic Recording, 29–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4882-1_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Anuganti, Vijay K., and Aldrik H. Velders. "Nuclear Magnetic Resonance Spectroscopy and Imaging of Carbon Nanotubes." In Carbon Nanotubes for Biomedical Applications, 125–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14802-6_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Marquina, Clara, and M. Ricardo Ibarra. "Carbon Encapsulated Functional Magnetic Nanoparticles for Life Sciences." In Pure and Functionalized Carbon Based Nanomaterials, 228–55. Boca Raton : CRC Press, Taylor and Francis Group, [2020] | “CRC Press is an imprint of the Taylor & Francis Group, an informa business.”: CRC Press, 2020. http://dx.doi.org/10.1201/9781351032308-10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Magnetic carbon"

1

Вызулин, Sergey Vyzulin, Кевралетин, Aleksandr Kevraletin, Сырьев, and Nikolay Syrev. "Magnetic resonance properties of nano granular magnetic films with carbon matrix." In XXIV International Conference. Москва: Infra-m, 2016. http://dx.doi.org/10.12737/22883.

Full text
Abstract:
We investigated granular magnetic resonance characteristics nanocomposite magnet systems (CoFeB)m-С100-m and и (CoFeB)m-(SiO2)100-m. The ferromagnetic resonance spectrum of the samples (CoFeB)m-С100-m extra observed (compared with the system (CoFeB)m-(SiO2)100-m) of the absorption line. Analysis of experimental data shows that the dominant factor in determining the characteristics of the magnetic resonance system (CoFeB)m-С100-m, synthesized by the method of ion-plasma spraying is the formation for the synthesis of nanoparticles of iron carbide and/or cobalt.
APA, Harvard, Vancouver, ISO, and other styles
2

Miyake, Nobuhisa, Daisuke Yamaki, and Masahiko Hada. "Magnetic shielding in carbon nanotube." In INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009: (ICCMSE 2009). AIP, 2012. http://dx.doi.org/10.1063/1.4771829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao, B. "Magnetic Systems with Carbon Nanotubes." In STRUCTURAL AND ELECTRONIC PROPERTIES OF MOLECULAR NANOSTRUCTURES: XVI International Winterschool on Electronic Properties of Novel Materials. AIP, 2002. http://dx.doi.org/10.1063/1.1514188.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Kaeokhamchan, Y., S. Sangphet, T. Eknapakul, S. Pinitsoontorn, and W. Meevasana. "Synthesis of magnetic carbon sand." In THE SECOND MATERIALS RESEARCH SOCIETY OF THAILAND INTERNATIONAL CONFERENCE. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0022942.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

In, H. J., A. J. Nichol, and G. Barbastathis. "Magnetic Alignment of Carbon Nanotube Interconnects." In 2007IEEE/LEOS International Conference on Optical MEMS and Nanophotonics. IEEE, 2007. http://dx.doi.org/10.1109/omems.2007.4373904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Zhengtao, Ali Shaito, and Nandika Anne D'Souza. "Magnetorheology of Multiwalled Carbon Nanotube Mineral Dispersions." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-16004.

Full text
Abstract:
Multi-walled carbon nanotube (MWCNT) were dispersed in mineral oil and the magnetorheological response was measured. 0.5, 1.5 and 2.53 vol% nanotubes were dispersed in mineral oil. Strain sweep, frequency sweep, magneto sweep and steady shear tests were conducted in various magnetic field strengths. Storage modulus G', loss modulus G", complex viscosity η* and dynamic yield stress τy increased with magnetic field, which was partially attributed to the increasing degree of alignment of nanotubes in stronger magnetic field. G' and G" of MWCNT/mineral oil dispersions scaled with nanotube volume fraction φ by a power-law. The shear thinning behavior of MWCNT/mo dispersions followed the Ostwald-de Waele or power law.
APA, Harvard, Vancouver, ISO, and other styles
7

Parmar, Mayur A., Hiral A. Virpura, Vishaka Dave, and Rajesh J. Patel. "Aligning carbon nano fibers using magnetic nanofluids." In SOLID STATE PHYSICS: Proceedings of the 58th DAE Solid State Physics Symposium 2013. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4872591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Manago, T., H. Kuramochi, T. Uzumaki, M. Yasutake, A. Tanaka, H. Akinaga, and H. Yokoyama. "Magnetic Force Microscope Using Carbon Nanotube Probes." In 2004 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2004. http://dx.doi.org/10.7567/ssdm.2004.p9-14l.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rode, A. V. "Magnetic Carbon Cluster Formation Process: Optical Spectroscopy of Laser-Ablated Carbon Plume." In ELECTRONIC PROPERTIES OF NOVEL NANOSTRUCTURES: XIX International Winterschool/Euroconference on Electronic Properties of Novel Materials. AIP, 2005. http://dx.doi.org/10.1063/1.2103829.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mas'udah, Kusuma Wardhani, Pelangi Eka Yuwita, Yuanita Amalia Haryanto, Ahmad Taufiq, and Sunaryono. "Effect of heat treatment on carbon characteristic from corncob powders prepared by coprecipitation method." In INTERNATIONAL CONFERENCE ON ELECTROMAGNETISM, ROCK MAGNETISM AND MAGNETIC MATERIAL (ICE-R3M) 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0015777.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Magnetic carbon"

1

Axelson, D. E. Carbon-13 solid state nuclear magnetic resonance spectroscopy of pitch. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/304931.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Ludtka, Gerard Michael. Heat Treatment of Iron-Carbon Alloys in a Magnetic Field (Phase 2). Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1410924.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Partee, Jonathan. Optically detected magnetic resonance studies on π-conjugate polymers and novel carbon allotropes. Office of Scientific and Technical Information (OSTI), February 1999. http://dx.doi.org/10.2172/348885.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Anders, Andre. CRADA Final Report: Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/1157022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bruck, H. A., J. S. Epstein, K. E. Jr Perry, and M. G. Abdallah. Dynamic characterization of short duration stress pulses generated by a magnetic flyer plate in carbon-fiber/epoxy laminates. Office of Scientific and Technical Information (OSTI), November 1995. http://dx.doi.org/10.2172/125087.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Thornell, Travis, Charles Weiss, Sarah Williams, Jennifer Jefcoat, Zackery McClelland, Todd Rushing, and Robert Moser. Magnetorheological composite materials (MRCMs) for instant and adaptable structural control. Engineer Research and Development Center (U.S.), November 2020. http://dx.doi.org/10.21079/11681/38721.

Full text
Abstract:
Magnetic responsive materials can be used in a variety of applications. For structural applications, the ability to create tunable moduli from relatively soft materials with applied electromagnetic stimuli can be advantageous for light-weight protection. This study investigated magnetorheological composite materials involving carbonyl iron particles (CIP) embedded into two different systems. The first material system was a model cementitious system of CIP and kaolinite clay dispersed in mineral oil. The magnetorheological behaviors were investigated by using parallel plates with an attached magnetic accessory to evaluate deformations up to 1 T. The yield stress of these slurries was measured by using rotational and oscillatory experiments and was found to be controllable based on CIP loading and magnetic field strength with yield stresses ranging from 10 to 104 Pa. The second material system utilized a polystyrene-butadiene rubber solvent-cast films with CIP embedded. The flexible matrix can stiffen and become rigid when an external field is applied. For CIP loadings of 8% and 17% vol %, the storage modulus response for each loading stiffened by 22% and 74%, respectively.
APA, Harvard, Vancouver, ISO, and other styles
7

Engelhardt, Larry. Quantum Monte Carlo Calculations Applied to Magnetic Molecules. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/892729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dumont, R. Residual total magnetic field, HELIGEOTEM survey of Cariboo Lake, parts of NTS 93 A/10, 93 A/11, 93 A/12, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Dumont, R. Residual total magnetic field, HELIGEOTEM survey of Cariboo Lake, parts of NTS 93 A/13, 93 A/14, 93 A/15, 93 H/3, British Columbia. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2009. http://dx.doi.org/10.4095/248050.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Nuclear Magnetic Resonance Spectroscopy. ConductScience, November 2019. http://dx.doi.org/10.55157/cs20191121.

Full text
Abstract:
Two molecules may have the same number and type of atoms, but their properties would change depending on how they are arranged (i.e., the bonds linking them and their orientation). As an example, Ethanol and Dimethyl ether, both have one oxygen, two carbon, and six hydrogen atoms, but the structures and properties of both these compounds are different. Ethanol exists as a liquid and Dimethyl ether, on the other hand, is a poisonous gas . Thus, it is crucial for scientists to identify the exact structure of the compounds in order to understand their properties. Nuclear Magnetic Resonance (NMR) spectroscopy is a technique used to precisely identify the molecular structure of the compound . NMR results for unknown compounds can be scanned with respect to a library of known compounds to reveal the identity .
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography